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Estimation of interaction of drug-like compounds with antitargets is important for
the assessment of possible toxic effects during drug development. Publicly available
online databases provide data on the experimental results of chemical interactions
with antitargets, which can be used for the creation of (Q)SAR models. The structures
and experimental Ki and IC50 values for compounds tested on the inhibition of 30
antitargets from the ChEMBL 20 database were used. Data sets with Ki and IC50

values including more than 100 compounds were created for each antitarget. The
(Q)SAR models were created by GUSAR software using quantitative neighborhoods of
atoms (QNA), multilevel neighborhoods of atoms (MNA) descriptors, and self-consistent
regression. The accuracy of (Q)SAR models was validated by the fivefold cross-
validation procedure. The balanced accuracy was higher for qualitative SAR models
(0.80 and 0.81 for Ki and IC50 values, respectively) than for quantitative QSAR models
(0.73 and 0.76 for Ki and IC50 values, respectively). In most cases, sensitivity was higher
for SAR models than for QSAR models, but specificity was higher for QSAR models.
The mean R2 and RMSE were 0.64 and 0.77 for Ki values and 0.59 and 0.73 for IC50

values, respectively. The number of compounds falling within the applicability domain
was higher for SAR models than for the test sets.

Keywords: QSAR, antitarget, inhibition, adverse drug reactions, Ki, IC50, GUSAR, ChEMBL

INTRODUCTION

Adverse drug reactions (ADRs) are one of the main problems in drug discovery and clinical
practice (Böhm and Cascorbi, 2016). According to some estimates, ADR is one of the leading
causes of hospitalization and death in developed countries (Starfield, 2000; Kochanek et al., 2016),
the second most common cause of drug attrition in later stages of clinical trials and the major
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reason for drug withdrawal from the market (Hornberg et al.,
2014). This situation is largely due to disadvantages of traditional
animal toxicological experiments and clinical trials that cannot
detect all serious ADRs because of inter-species differences
and their idiosyncratic nature. Therefore, additional methods
including in vitro and in silico approaches are currently being
developed. In silico approaches are usually based on machine
learning techniques and network analyses to link several chemical
and biological features of approved and withdrawn drugs to
ADRs, which include molecular descriptors, known or predicted
drug targets, drug-induced gene expression profiles and cell
phenotypic features (Ivanov et al., 2016). These approaches allow
predict dangerous ADRs in the early stages of drug development
and provide insights into potential toxic mechanisms of drug
candidates. It is currently accepted that the most ADRs are the
consequence of unintended interactions of drugs with human
protein targets and are not related to a therapeutic mechanism
of action. For example, blocking HERG potassium channels
in the heart causes life-threatening arrhythmias (Siramshetty
et al., 2016). There are dozens of human proteins that have
known relationships to ADRs, and corresponding information
has accumulated in public databases (Ji et al., 2003; Zhang et al.,
2007) and been described in some publications (Whitebread
et al., 2005; Bowes et al., 2012). These proteins are called
“antitargets” because to avoid dangerous ADRs, they should
not interact with drugs. Many pharmaceutical companies use
in vitro assays to measure interactions of lead compounds with
“antitargets” and select the least promiscuous ones for further
development. To avoid performing hundreds of experiments,
such interactions can also be predicted using ligand-based
structure-activity relationship analysis or docking (Ivanov et al.,
2016; Simões et al., 2018). Due to accumulation of data on
chemical-protein interactions and three-dimensional protein
structures in public databases such as ChEMBL (Gaulton et al.,
2017), PubChem (Wang et al., 2017), and PDB (Berman et al.,
2000), it has become possible to predict interactions with many
hundreds of human proteins, including “antitargets.” There are
plenty of published (Q)SAR models (Poroikov et al., 2007; Filz
et al., 2008; García-Sosa and Maran, 2014; Ivanov et al., 2016)
and free available web-services (Zakharov et al., 2012; Braga
et al., 2015) that may perform such predictions; however, no
study was found with a comparison between the accuracy of
classification (SAR) and quantitative (QSAR) models created
based on the same data, descriptors and mathematical algorithm.
The aim of this work is the creation, validation, and accuracy
estimation of SAR and QSAR models for the prediction of the
inhibition of 30 antitargets using GUSAR software and data on
structures and Ki and IC50 values of tested compounds from
the ChEMBL 20 database. Earlier, we published a study on the
creation of reasonable QSAR models by GUSAR software and
the appropriate web service1 for the prediction of interaction
between drug-like compounds and 18 antitargets (Zakharov et al.,
2012). In this paper, we have significantly expanded the list
of covered “antitargets” and significantly increased the volumes
and diversity of training samples, which allowed us to expand

1http://www.way2drug.com/gusar/antitargets.html

the range of applicability of models and to obtain valuable
results.

MATERIALS AND METHODS

Data Sets
Structures and experimental Ki and IC50 values of compounds
tested on the inhibition of 30 antitargets were extracted from
the ChEMBL 20 database. The data sets with Ki and IC50 values
including more than 100 compounds were created for each
antitarget (Table 1). Only the records with Ki or IC50 values
in nM and symbol “ = ” in the field “Relation” were extracted
from ChEMBL database. During the creation of data sets of
compounds interacting with receptors, we included records
with compounds studied as truly antagonists and records with
compounds studied on biding affinity because of we could
not divided them. In spite of Ki and IC50 values indicate the
affinity of a compound by a given receptor, and they do not
necessarily provide functional information related with agonism
or antagonism of a compound to such target we decided to
include such data because antagonism of receptors may be related
with Ki and IC50 values, whereas agonism to receptors are usually
represented by EC50 values. Ki or IC50 values were transformed
in pIC50 = −log10(IC50(M)) and pKi = −log10(Ki(M)) values.
Table 1 also shows the known relations between the inhibition of
antitargets and ADRs. The number of compounds with Ki values
was approximately 1.5 times higher than that for IC50 values
(46830 and 29678, respectively). The sets included structures of
single electroneutral small (molecular weight in range from 50
to 1250 Da) organic molecules. In general, such representation
of structure corresponds to the best QSAR practice (Fourches
et al., 2016) implemented in the GUSAR software, which was
used in our study (see below). If a compound had several
experimental values for the parameter, then a median value was
used. Such median values were calculated because the reference
compounds usually had several experimental values, since they
were tested in many experiments. Deleting such compounds
reduces an important part of chemical space and significantly
restricts the applicability domain of the global QSAR models.
In several publications related to the creation of global QSAR
models based on heterogeneous data, authors used average
values (Politi et al., 2014; Cortes-Ciriano and Bender, 2015). The
median value was used because it better characterizes the set
of values for strongly skewed distributions. Zip file including
SD files related with the appropriate target (the gene name
of targets is used in a file name), and endpoint is provided
in Supplementary Materials. Each SD file includes structures,
ChEMBL_ID, and experimental values. For classification models
and comparison of prediction results between the SAR and
QSAR models, 1 µM was used as a threshold between active
and inactive compounds. The sets were sorted by the ascending
mode of the appropriate values. Then, successively, a number
from 1 to 5 was assigned for each structure from a set. After
that, the sets were divided into five unique parts according
to the assigned number of structures. These parts were used
for the fivefold cross-validation (fivefold CV) procedure, when
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TABLE 1 | Data related with antitargets and the number of compounds with Ki and IC50 values in data sets.

Target UniProt ID Chembl Target ID Ki IC50 Effects at antagonism or inhibition

Acetylcholinesterase P22303 CHEMBL220 272 2573 ↓ BP; ↓ HR; ↑ GI motility (↓ at high doses); bronchoconstriction; ↑ respiratory
secretions; anaphylaxis; anorexiant; arrhythmogenic; asystole; colic; diarrhea;
emetic; gastrointestinal hemorrhage; headache; hypotension; muscle
weakness; nausea; neurotoxic; nightmare; respiratory failure; sialorrhea;
sweating; ulcer, gastric; urticaria

Adenosine receptor A2a P29274 CHEMBL251 3258 213 Platelet aggregation; ↑ BP; nervousness (tremors, agitation); arousal; insomnia

Alpha-1A adrenergic
receptor

P35348 CHEMBL229 942 100 ↓ smooth muscle tone; orthostatic hypotension and ↑ HR; dizziness; impact on
various aspects of sexual function; flushing; hypotension; impotence; nasal
congestion; postural (orthostatic) hypotension; tachycardia; weakness

Alpha-2A adrenergic
receptor

P08913 CHEMBL1867 557 201 ↑ GI motility; ↑ insulin secretion; hypertension exacerbates heart failure; anxiety;
depression

Beta-1 adrenergic receptor P08588 CHEMBL213 278 512 ↓ BP; ↓ HR; ↓ cardiac output; cardiotoxicity; heart failure

Beta-2 adrenergic receptor P07550 CHEMBL210 352 472 ↓ BP; increased bronchospasm

Androgen receptor P10275 CHEMBL1871 631 1054 ↓ spermatogenesis; impotence; gynecomastia, mastodynia; ↑ in breast
carcinoma

Muscarinic acetylcholine
receptor M1

P11229 CHEMBL216 635 544 ↓ cognitive function; ↓ gastric acid secretion; blurred vision

Muscarinic acetylcholine
receptor M2

P08172 CHEMBL211 799 422 Tachycardia; bronchoconstriction; tremors

Muscarinic acetylcholine
receptor M3

P20309 CHEMBL245 644 606 Constipation; blurred vision; pupil dilation; dry mouth

Cannabinoid receptor 1 P21554 CHEMBL218 1998 904 ↑ weight loss; emesis; depression

Cannabinoid receptor 2 P34972 CHEMBL253 2375 592 ↑ inflammation; ↓ bone mass

D(1A) dopamine receptor P21728 CHEMBL2056 681 106 Dyskinesia; parkinsonian symptoms (tremors); anti-emetic effects; depression;
anxiety; suicidal intent

D(2) dopamine receptor P14416 CHEMBL217 3946 431 Orthostatic hypotension; drowsiness; ↑ GI motility; dyskinesia; extrapyramidal
effect; sedative

Endothelin-1 receptor P25101 CHEMBL252 155 894 Teratogenicity

Histamine H1 receptor P35367 CHEMBL231 753 264 Sedation; ↓ allergic responses; ↑ body weight; dizziness; extrapyramidal effect;
hypnotic; hypotension; lassitude; tinnitus; xerostomia

5-hydroxytryptamine
receptor 1A

P08908 CHEMBL214 2505 432 Anxiogenic

5-hydroxytryptamine
receptor 1B

P28222 CHEMBL1898 662 266 ↑ aggression

5-hydroxytryptamine
receptor 2A

P28223 CHEMBL224 1768 659 hypnotic; sedative

5-hydroxytryptamine
receptor 2B

P41595 CHEMBL1833 705 248 Possible cardiac effects, especially during embryonic development

Potassium voltage-gated
channel subfamily H
member 2

Q12809 CHEMBL240 935 4078 Prolongation of QT interval of ECG

Tyrosine-protein kinase Lck P06239 CHEMBL258 364 1322 T cell inhibition; SCID-like immunodeficiency

Amine oxidase
[flavin-containing] A

P21397 CHEMBL1951 342 1031 ↑ BP when combined with amines such as tyramine; drug–drug interaction
potential; dizziness; sleep disturbances; nausea

Neuropeptide Y receptor
type 1

P25929 CHEMBL4777 321 304 Anxiogenic

Glucocorticoid receptor P04150 CHEMBL2034 632 1086 Hypoglycemia

Delta-type opioid receptor P41143 CHEMBL236 1603 534 ↑ BP; ↑ cardiac contractility

Mu-type opioid receptor P35372 CHEMBL233 1816 663 ↑ GI motility; dyspepsia; flatulence

Sodium-dependent
noradrenaline transporter

P23975 CHEMBL222 1346 1371 ↑ HR; ↑ BP; ↑ locomotor activity; constipation; abuse potential

Sodium-dependent
dopamine transporter

Q01959 SLC6A3 1195 1183 Addictive psychostimulation; dopaminergic hyperactivity; depression;
parkinsonism; attention deficit–hyperactivity disorder; psychotic disorders;
seizures; dystonia; dyskinesia; acne

Sodium-dependent
serotonin transporter

P31645 CHEMBL228 1868 1938 ↑ GI motility; ↓ upper GI transit; ↓ plasma renin; ↑ other serotonin-mediated
effects; insomnia; anxiety; nausea; sexual dysfunction

BP, blood pressure; ECG, electrocardiogram; GI, gastrointestinal; HR, heart rate; SCID, severe-combined immunodeficiency.
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each unique part was used as an external test set, and the
remaining parts were used as a training set. As a result, different
five training and five external test sets for Ki data and five
training and five external test sets for IC50 data, including both
quantitative and qualitative descriptions, were created for each
antitarget.

GUSAR Software
The (Q)SAR models were created by GUSAR software2,
which used quantitative neighbourhoods of atoms (QNA),
multilevel neighbourhoods of atom (MNA), and whole-molecule
descriptors with self-consistent regression (Lagunin et al., 2007;
Filimonov et al., 2009; Lagunin et al., 2011). QNA descriptors are
calculated by two functions, P and Q. The values for P and Q for
each atom i are calculated as:

Pi = Bi
∑

k

(Exp(−
1
2

C))ikBk,

Qi = Bi
∑

k

(Exp(−
1
2

C))ikBkAk,

where k is all other atoms in the molecule and

Ak =
1
2 (IPk + EAk), Bk = (IPk − EAk)

−
1
2

Here, IP is the ionization potential, EA is the electron affinity
for each atom, and C is the connectivity matrix for the
molecule. QNA descriptors describe each particular atom of a
molecule; at the same time, each P or Q value depends on
the total molecule composition and structure. Two-dimensional
Chebyshev polynomials are used for approximating the functions
P and Q over all atoms of the molecule. A detailed description of
QNA descriptors is represented in the publication of Filimonov
et al. (2009).

MNA descriptors (Filimonov et al., 1999) are based on the
molecular structure representation, which includes hydrogens
according to the valences and partial charges of other atoms
and does not specify the types of bonds. MNA descriptors are
generated as a recursively defined sequence:

• zero-level MNA descriptor for each atom is the mark A of
the atom itself;
• any next-level MNA descriptor for the atom is the sub-

structure notation A (D1D2...Di...),

where Di is the previous-level MNA descriptor for i–th
immediate neighbor of the atom A.

The mark of the atom may include not only the atomic
type but also any additional information about the atom. In
particular, if the atom is not included in the ring, it is marked
by “−”. The neighbor descriptors D1D2...Di... are arranged
in a unique manner, for example, in lexicographic order.
The iterative process of MNA descriptors generation can be
continued covering first, second, and so on, neighborhoods of
each atom.

2http://www.way2drug.com/gusar/index.html

For regression analysis, this molecule structure representation
was transformed using the original PASS (Prediction of Activity
Spectra for Substances) algorithm (Lagunin et al., 2011). This
algorithm estimates the biological activity profiles for chemical
compounds using MNA descriptors as input parameters.
Therefore, we used the results of PASS prediction as independent
variables for regression analysis. The results of PASS prediction
are given as a list of biological activities, for which the difference
between probabilities of being active (Pa) and inactive (Pi) was
calculated. The activities from the list of predicted biological
activities were randomly selected as input independent variables
for regression analysis. This allows obtaining different QSAR
models. GUSAR incorporates a PASS version that predicts
4130 types of biological activity. This version of PASS has
a mean prediction accuracy of approximately 95% calculated
by leave-one-out cross-validation procedure (Filimonov et al.,
2014). The list of predictable biological activities currently
includes 501 pharmacotherapeutic effects (e.g., antihypertensive,
hepatoprotectant, and nootropic), 3295 mechanisms of action
(e.g., 5-hydroxytryptamine antagonist, acetylcholine M1 receptor
agonist, and cyclooxygenase inhibitor), 57 adverse and toxic
effects (e.g., carcinogenic, mutagenic, and hematotoxic), 199
metabolic terms (e.g., CYP1A inducer, CYP1A1 inhibitor, and
CYP3A4 substrate), 49 transporter proteins (e.g., P-glycoprotein
3 inhibitor, nucleoside transporters inhibitors, and proline
transporter inhibitor), and 29 activities related to gene expression
(e.g., TH expression enhancer, TNF expression inhibitor, and
VEGF expression inhibitor). Therefore, the maximum number of
independent variables for the creation of MNA models is 4130.
The detailed description of realization of PASS in GUSAR is
represented in the publication of Lagunin et al. (2011).

QNA and MNA descriptors do not provide information on
the shape and volume of a molecule, although this information
may be important for determination of structure-activity
relationships. Therefore, these parameters, which are called
whole-molecule descriptors, are also used in GUSAR. The whole-
molecule descriptors used in GUSAR are: topological length,
topological volume, lipophilicity, number of positive charges,
number of negative charges, number of hydrogen bond acceptors,
number of aromatic atoms, molecular weight, and number of
halogen atoms. GUSAR uses estimation of the applicability
domain based on different types of structural similarity using
calculation of QNA and MNA descriptors (Zakharov et al., 2016).

GUSAR may provide an equation of any single (Q)SAR
model (Lagunin et al., 2011). But because we used consensus
(Q)SAR models from dozens or even hundreds of single (Q)SAR
models, it is not possible to provide a general equation describing
all selected variables. By this reason, the created consensus
(Q)SAR models could not provide information about positive
and negatively influencing descriptors. Instead that GUSAR
shows positive and negative impact of each atom of the structure
in the predicted value (Khayrullina et al., 2015). Analysis of the
influence of atoms on the predicted value and the search for
general relationships between the structures of active compounds
interacting with antitargets is a separate task (because of each
structure in the set should be analyzed), and it is beyond the scope
of this publication.
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FIGURE 1 | Plots of predicted and experimental values for the best and worst QSAR models by RMSE values calculated during fivefold cross-validation procedure.
(A) QSAR model for prediction of pIC50 values of compounds interacting with glucocorticoid receptor (the best QSAR model for IC50 values). (B) QSAR model for
prediction of pIC50 values of compounds interacting with D(2) dopamine receptor (the worst QSAR model for IC50 values). (C) QSAR model for prediction of pKi

values of compounds interacting with HERG channel (Potassium voltage-gated channel subfamily H member 2) (the best QSAR model for Ki values). (D) QSAR
model for prediction of pKi values of compounds interacting with Beta-2 adrenergic receptor (the worst QSAR model for Ki values).

Evaluation of Prediction Accuracy
The following statistical parameters were calculated for
estimating the accuracy of prediction:

(1) Sensitivity (Sens):
Sensitivity = TP

FN+TP , where TP is true positive, and FN is
false negative numbers.

(2) Specificity (Spec):
Specificity = TN

TN+FP , where TN is true negative, and FP is
false positive numbers.

(3) Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

(4) Balanced accuracy (BA): balance between sensitivity and
specificity:

BA =
Sensitivity+ Specificity

2

(5) Root mean square error (RMSE):

RMSE =

√∑
(yexp − ypred)2

n

(6) R-squared, coefficient of determination:

R2
= 1−

∑
(yexp − ypred)

2∑
(yexp − ymean)2 ,

where yexp – experimental value, ypred – predicted value, and
ymean – average value of experimental values in a training set.

Y-Randomization Procedure
Y-Randomization procedure is included in GUSAR software
and allows to be ensuring that the developed continues
QSAR models are robust and do not have the over
fitting (Wold and Eriksson, 1995). In this procedure, the
dependent-variable vector, Y vector (Ki or IC50 values in
our case), is randomly shuffled and a new QSAR model is
developed using the original independent variable matrix.
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FIGURE 2 | Comparison of parameters of accuracy of prediction for SAR and QSAR models calculated by the fivefold cross-validation procedure for all antitargets.
(A) Comparison of Accuracy (Acc.) and Balanced Accuracy (Bal. Acc.) between SAR and QSAR models for Ki data. (B) Comparison of Sensitivity (Sens.) and
Specificity (Spec.) between SAR and QSAR models for Ki data. (C) Comparison of Accuracy (Acc.) and Balanced Accuracy (Bal. Acc.) between SAR and QSAR
models for IC50 data. (D) Comparison of Sensitivity (Sens.) and Specificity (Spec.) between SAR and QSAR models for IC50 data.

It is expected that the resulting models should generally
have low Q2 values. This procedure was repeated five
times for each model, and then the average Q2 value was
calculated.

RESULTS AND DISCUSSION

Three hundred twenty SAR and 320 QSAR models with
modified calculation of descriptors and regression coefficients
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FIGURE 3 | Correlation of accuracy of prediction between SAR and QSAR models for all antitargets. (A) Correlation of Accuracy between SAR and QSAR models
for Ki data. (B) Correlation of Balanced Accuracy (BA) between SAR and QSAR models for Ki data. (C) Correlation of Accuracy between SAR and QSAR models for
IC50 data. (D) Correlation of Balanced Accuracy (BA) between SAR and QSAR models for IC50 data.

were created by GUSAR software for each from five training
sets (five training sets with qualitative and quantitative data
for Ki or IC50 values for each target) with internal validation
(five times 20% from the training set was randomly used
as an internal test set; this procedure is included into
GUSAR). As a result, one consensus SAR model and one
consensus QSAR model were created for each training set
based on the appropriate single (Q)SAR model with R2

train
and Q2

train and average R2 calculated for internal validation
sets more than 0.5. If R2 of internal validation for (Q)SAR
model was less than 0.5, then the model was excluded
from the final consensus model [excluding QSAR models
for D(1A) and D(2) dopamine receptors, histamine H1 and
5-hydroxytryptamine 2B receptors created on the basis of
IC50 data]. The final predicted values for tested compounds
were calculated using a weighted average of the predictions
from the obtained (Q)SAR models. Each model is based
on a different set of descriptors, and its predictions for
each compound were weighted according to the similarity

value that was calculated during the applicability domain
assessment.

After SAR and QSAR consensus models were created based
on a training set, they were used for prediction of inhibition of
the antitarget by compounds from the appropriate external test
set. It was repeated for five training sets with Ki values and five
training sets with IC50 values for each antitarget (fivefold CV
procedure). The average characteristics of the created (Q)SAR
models including average results of Y-randomization procedure
(Q2

Y−rand) are represented in Supplementary Tables S1, S2.
It was appeared that all Q2

Y−rand values for all QSAR models
were less 0.15. The average Q2

Y−rand values were from 0.026
to 0.06 and from 0.026 to 0.078 for QSAR models created
based on Ki and IC50 data, respectively. It is significant less
in comparison with Q2 values calculated based on original
data of the training sets and displays robustness of the given
models.

The plots between predicted and experimental values
for the best and worst QSAR models by RMSE values
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FIGURE 4 | Comparison of quality of (Q)SAR models for Ki and IC50 data for all antitargets. (A) Comparison of the percent of compounds in applicability domain
(AD) for SAR and QSAR models; (B) Comparison of R2 and RMSE values of QSAR models.

calculated by fivefold cross-validation are displayed in
Figure 1. The relations between predicted and experimental
values for others QSAR models are within these extreme
cases.

The statistical parameters describing accuracy of prediction
and mentioned in the section “Materials and Methods”
were calculated based on the prediction results given
during the fivefold CV procedure for both SAR and QSAR
models. To compare the accuracy of prediction of QSAR
and SAR models, the quantitative results of prediction
were transformed into qualitative ones according to the
threshold mentioned in the section “Materials and Methods.”
Statistical parameters of accuracy of prediction for SAR and
QSAR models created based on Ki and IC50 data for all
antitargets are represented in Supplementary Tables S3, S4,
respectively. The graphical representation of statistical
parameters of accuracy and their comparison are represented in
Figures 2–4.

Figures 2A,B show a comparison of the accuracy between
SAR and QSAR models created based on Ki values. Figures 2C,D
show the results given based on IC50 values. The accuracy of
the QSAR models was higher in most cases than the accuracy
of SAR models for both Ki and IC50 values (Figures 2A,
1C). The mean accuracy of prediction for Ki values was
0.84 and 0.87 for SAR and QSAR models, respectively. This
is statistically significant difference (p < 0.05). The mean
accuracy of prediction for IC50 values was 0.82 and 0.83
for SAR and QSAR models, respectively. This is statistically
insignificant difference (p = 0.285). The reverse result was
observed for balanced accuracy (SAR models: Ki data – 0.80,
IC50 data – 0.81; QSAR models: Ki data – 0.73, IC50 data –
0.76). The difference in balanced accuracy between SAR and
QSAR models is statistically significant in both cases, for Ki
and for IC50 values (p < 0.05). Specificity and sensitivity were
similar for SAR and QSAR models (Figures 2B, 1D). The
mean value of specificity was higher for QSAR models for
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both Ki and IC50 data (SAR models: Ki data – 0.76, IC50
data – 0.79; QSAR models: Ki data – 0.95, IC50 data – 0.90).
The mean value of sensitivity was higher for SAR models
for both Ki and IC50 data (SAR models: Ki data – 0.84,
IC50 data – 0.82; QSAR models: Ki data – 0.50, IC50 data –
0.61).

The analysis of values of accuracy and balanced accuracy
of SAR and QSAR models (Supplementary Tables S1, S2)
shows that there is a correlation between them. Figures 3A,B
show a correlation between accuracy and balanced accuracy
for both SAR and QSAR models created based on Ki data.
Figures 3C,D show a correlation between accuracy and balanced
accuracy for SAR and QSAR models created based on IC50
data. One may see that in the both cases, the correlation
between accuracy of SAR and QSAR models was higher than
for balanced accuracy (Figure 3). If the values correlate, it
means that there is no preference between SAR and QSAR
models for the appropriate criterion of accuracy. But similar
accuracy is achieved by different ways in the most cases
(high sensitivity or high specificity, see Figures 2B,D). One
can decide what is more important in the study: find as
many as possible active compounds (the models with highest
sensitivity should be selected) or reduce the number of false
positive prediction (the models with highest specificity should
be selected). The absence of correlation between the studied
parameters shows that one of methods has preference. The
values above the line show that QSAR models better than
SAR ones. The values below the line show that SAR models
better than QSAR ones. All cases excluding one which is
displayed in Figure 3C (Correlation of Accuracy between SAR
and QSAR models for IC50 data) had statistically significant
difference between the values of SAR and QSAR models
(p < 0.05). The values of balanced accuracy is the most
important criterion for estimation of accuracy of prediction
because of many used datasets were unbalanced (the number
of active and inactive compounds is significant different).
Therefore, the given results showed that SAR models are the
more preferable for the use of prediction of drug adverse
reactions.

The other parameters of SAR and QSAR models are
represented in Figure 4. Figure 4A shows the percent
of compounds in applicability domain (AD) of SAR and
QSAR models. The number of compounds in AD was 100%
approximately for all SAR models. At the same time, the
number of compounds in AD approximately for all QSAR
models was less 100%. The mean value of percent of compound
in AD for SAR and QSAR models was 99.9% and 98.6%,
respectively. The highest present of compounds in applicability
domain displays advantage and better predictive power for SAR
models in comparison with QSAR models. Figure 4B shows
the comparison of RMSE and R2 values for QSAR models
created on Ki and IC50 data. Clear features of distribution
of these characteristics cannot be seen, but in general, the
mean value of R2 for QSAR models based on Ki data was
higher than one for IC50 data (0.64 and 0.57, respectively).
The mean RMSE value for QSAR models based on IC50 data
was less than one for Ki data (0.73 and 0.77, respectively).

However, if we delete the RMSE value for the QSAR model
created based on Ki data for the beta-2 adrenergic receptor,
the mean RMSE value also became 0.73 for the other QSAR
models created based on Ki data. It means that both Ki
and IC50 values can be reliably used to predict interactions
with antitargets. We may compare (Q)SAR models based on
Ki and IC50 values only in general view because of they
were created on different number of compounds and different
structures. Nevertheless, we may reveal some features of the
created models. The plots with comparison of Specificity and
Sensitivity of (Q)SAR models created based on Ki and IC50
data are shown on Supplementary Figure S1. These plots
display that SAR models based on IC50 values have Specificity
better than SAR models based on Ki data for approximately
half of antitargets. The biggest difference is shown for Mu-
type opioid receptor (0.34 for Ki data and 0.97 for IC50 data).
SAR models based on Ki data for others antitargets have
better values of Specificity. The same picture we can see for
Sensitivity of SAR models. Analysis of QSAR models revealed
that majority of QSAR models based on Ki data had better
Specificity value, whereas majority of QSAR models based on
IC50 data had better Sensitivity value. High value of Sensitivity
is more important for revealing possible adverse drug reaction
than high value of Sensitivity. Analysis of Accuracy and Balanced
Accuracy of (Q)SAR based on IC50 and Ki data (Supplementary
Figure S2) show that the most (Q)SAR models based on
Ki values have better values, whereas the values of Balanced
Accuracy are higher at the most of QSAR models based on IC50
values.

CONCLUSION

The creation of SAR and QSAR models based on the same
data of compounds tested as inhibitors of 30 antitargets revealed
some features related to the use of qualitative and quantitative
data. They are valid to (Q)SAR models related to both Ki
and IC50 values. SAR models tended to have more balanced
prediction results when specificity and sensitivity have the
closest values in comparison with QSAR models (Figure 2).
High values of specificity and low values of sensitivity in
QSAR models may be explained by the fact that at the given
R2 values (0.64 and 0.59), prediction results tended to lie
closer to the average values of Ki or IC50 in the training
set. If a threshold of 1 µM divided the training set into
different proportions of active and inactive compounds, then
a difference between specificity and sensitivity may occur.
At the same time, despite the difference of specificity and
sensitivity between SAR and QSAR models, the values of
accuracy and balanced accuracy for SAR correlated with those
of QSAR models (Figure 3). This indicated that the prediction
results of SAR and QSAR models would complement each
other and that the use of both approaches would improve
the quality of assessment of interaction between ligands and
antitargets.

Another conclusion is that SAR models had advantages in the
applicability domain. It may be related to the fact that the use of
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qualitative data gives SAR models less sensitivity to experimental
errors in Ki and IC50 values.

In this study, we also displayed that the modern experimental
data and methods of (Q)SAR modeling allow for the creation of
rather reasonable (Q)SAR models for prediction of interaction
between compounds and dozens of antitargets. The used
approaches may be applied to the creation of in silico panels
for estimation of “ligand-antitarget” interactions during the drug
design process.
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