
from fluorodeoxyglucose (FDG)-PET was simulated using the Herder
model (7). Used this way, FDG-PETwas less accurate in reclassification
of nodules than the CBM, and this is cause for optimism. FDG-PET
is widely used specifically because, when used in the correct context
(e.g., those with intermediate Pca), it provides outstanding negative
predictive value (8). As important as it is to carefully map out the role
of novel biomarkers or combinations of biomarkers, it is equally
important to determine how they might complement or perhaps
replace current standards like the FDG-PET scan.

How feasible is applying this CBM in current practice? TheMayo
model is available online and has been widely used and validated
through clinical experience. It can be easily incorporated into decision
support. Elements of the radiomic classifier reported in this study can
be acquired from several imaging software platforms that interface with
the widely used clinical picture archiving and communication system.
The serummarker CYFRA 21-1 is not routinely assayed in clinical
settings, and technical aspects of measuring CYFRA 21-1 are not
uniform across analytic platforms. Disseminating the capability to
derive this CBM on a larger scale represents a challenge. Disseminating
the know-how needed to consistently incorporate complex biomarkers
into an already complex algorithm poses yet another challenge. We
struggle to do the “basics” in following existing evidence-based
guidelines on the management of lung nodules (9–11), so we might ask
how prepared we are to appropriately incorporate complicated
biomarkers. Decision support tools from electronic medical records
offer unfulfilled promise in complex tasks. If we are to take advantage of
biomarkers like the CBM to manage patients with pulmonary nodules,
health systems and vendors should support creating user-friendly
computational tools to supplement clinician judgement. Thoughtfully
applied technology can make the impossible seem possible. Kammer
and colleagues have shown the way to what is possible.�
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Using Isoniazid More Safely and More Effectively
The Time Is Now

Isoniazid, or isonicotinic acid hydrazide (INH), is a nicotinic acid
derivative that became one of the earliest antibiotics introduced for
the treatment of tuberculosis (TB). It was first synthesized in 1912 (1),

but it was not until the early 1950s that it was studied systematically
for use in patients with TB byWalshMcDermott, Carl
Muschenheim, Irving Selikoff, and Edward Robitzek, who shared the
1955 Lasker Prize for their work. By the late 1950s, INH had become
a part of the standard regimen for treating TB and it has remained
there ever since, even as other components of the regimen have
changed. Today, INH is a part of the backbone of the short-course
regimen used to treat patients with TB everywhere in the world, and
it is used in some shorter-course regimens for multidrug-resistant
strains as well (2). However, use of INH is often constrained by
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higher levels of drug resistance and drug-induced toxicity. TheWorld
Health Organization estimates that roughly 14% of cases of TB in the
world are caused by strains ofMycobacterium tuberculosis resistant to
INH (3).

Isoniazid is actually a prodrug that passively diffuses into
mycobacterial cells (4). It is initially activated by the
catalase–peroxidase KatG, encoded for by the katG gene. Once
activated by KatG, INH interacts with nicotinamide adenine
dinucleotide (NADH) reduced and then forms a complex with the
InhA protein (a product of the inhA gene), an enzyme critical to the
synthesis of mycolic acids that are a vital component of the
mycobacterial cell wall. Inhibition of the action of InhA prevents
mycolic acid synthesis, and this leads to the death of the mycobacterial
cell. Mutations in the katG and inhA genes are responsible for most
of the resistance to INH seen in clinical settings (5).

INH is metabolized by acetylation catalyzed by NAT2 (N-
acetyl transferase type 2), which reduces the serum concentration
of the drug (6). Activity of the NAT2 enzyme may play a major
role in both the clinical efficacy of INH and its toxicity (7–10).
Fast acetylators may not achieve high enough serum
concentrations of the drug for a long enough period of time to
achieve effective killing. At least some of the hepatotoxicity of INH
is linked to the activity of NAT2; polymorphisms in NAT2 that
are associated with slow acetylation place patients at greater risk of
hepatotoxicity.

Two important and complementary papers in this issue of the
Journal advance our understanding of the role ofNAT2
polymorphisms in ways that could have direct clinical implications
for dosing of INH in patients with TB. Gausi and colleagues (pp.
1327–1335) performed an early bactericidal activity study of INH in
which patients were randomized to receive either 5, 10, or 15 mg/kg
of the drug if inhA-related resistance was detected, or 5 mg/kg if it
was not (11). INHwas given as a single drug for 7 days, and sputum
colony-forming units and time-to-positivity of sputum cultures were
assessed daily. With sophisticated pharmacokinetic/
pharmacodynamic (PK/PD) modeling, these investigators
determined that for inhA-mutated strains, doses of 10 and 15 mg/kg
of INH could achieve effects on sputum colony-forming units and
time-to-positivity similar to the clinical effect of 5 mg/kg in patients
infected with inhA-wild type strains if those patients hadNAT2
polymorphisms resulting in slow or intermediate rates of acetylation
of INH. In patients who were fast acetylators, even the 15 mg/kg dose
was ineffective.

Verma and colleagues (pp. 1317–1326) developed a method
to predict acetylation status in patients based on an analysis of a
relatively small number of the most frequently occurring NAT2
SNPs that affect acetylation status (12). Using a database that was
both geographically and ethnically diverse, they developed a
model that was validated in patients with TB and that predicted
INH clearance with an extremely high level of accuracy by
examining allelic variants in only 5 SNPs. They then further
refined this technique by developing a highly automated
pharmacogenomic assay based on the GeneXpert platform that
could examine the relevant SNPs in about two and a half hours
using blood samples of only 25 μl.

Taken together, these articles provide a strong rationale for
individualized dosing of INH in some patients infected with inhA-
mutated strains (and/or perhaps those at risk for hepatotoxicity)

based on acetylator status to achieve a better therapeutic effect with a
lower risk of toxicity. This could be accomplished by using a highly
automated platform (GeneXpert) that has been widely adopted
around the world, including in many low- andmiddle-income
countries with a high burden of TB (13).

INH has been part of the treatment for TB for 70 years. It is a
potent and useful drug and it is unlikely to disappear soon from the
armamentarium. New drug development for TB remains painfully
slow. TB is largely a disease of poor people living in poor countries, so
the market has not been an attractive one for pharmaceutical
companies. The global health community has struggled to address
this injustice. When bedaquiline was approved for the treatment of
TB, some 40 years after rifampin, there was optimism that the TB
drug pipeline would start to flow rapidly, but in reality it is more like
a very slow trickle. Using INH in as safe and effective a manner as is
possible is a medical and ethical imperative.

So will treatment of TB now enter the era of personalized
medicine that is transforming therapies in so many different areas
(14, 15)? Historically, in most high-burden countries, the treatment of
TB has been instituted on a programmatic basis rather than an
individualized one. Studies such as those published in this issue of the
Journal pressure that approach. The papers by Verma and Gausi and
their colleagues demonstrate that acetylator status can be rapidly,
simply, and accurately determined and can provide clinically
meaningful information that can potentially make TB treatment safer
andmore effective. Technologies such as nucleic acid amplification
and whole genome sequencing have transformed our ability to
rapidly diagnose TB and detect drug resistance, and these platforms
have been rapidly integrated into TB control programs in many high-
burden countries (13).

Until 2020 brought the emergence of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), TB was the leading killer
worldwide due to a single infectious agent. It will soon likely regain
that position. Patients with TB everywhere deserve the best that
modern science has to offer, and no less. Using sophisticated PK/PD
modeling and modern genomic techniques to make treatment safer
andmore effective is a step in the right direction.�
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