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Pythium insidiosum is a widespread pathogen that causes pythiosis in mammals. Recent

increase in cases reported in North America indicates a need to better understand

the distribution and persistence of the pathogen in the environment. In this study, we

reconstructed the distribution of P. insidiosum in the Chincoteague National Wildlife

Refuge, located on Assateague Island, Virginia, and based on 136 environmental water

samples collected between June and September of 2019. The Refuge hosts two grazing

areas for horses, also known as the Chincoteague Ponies. In the past 3 years, 12

horses have succumbed to infection by P. insidiosum. Using an ecological niche model

framework, we estimated and mapped suitable areas for P. insidiosum throughout

the Refuge. We found P. insidiosum throughout much of the study area. Our results

showed significant monthly variation in the predicted suitability, where the most influential

environmental predictors were land-surface water and temperature. We found that June,

July, and August were the months with the highest suitability for P. insidiosum across

the Refuge, while December through March were less favorable months. Likewise,

significant differences in suitability were observed between the two grazing areas. The

suitability map provided here could also be used to make management decisions, such

as monitoring horses for lesions during high risk months.

Keywords: disease mapping, spillover, equine pythiosis, spatial epidemiology, ecological niche model

INTRODUCTION

Pythium insidiosum is the only etiologic agent of pythiosis that affects mainly mammals in
tropical and subtropical countries (1, 2). P. insidiosum is an oomycete, a eukaryotic lineage in the
stramenopiles, and its closest relatives are plant pathogens (3). Pythiosis is characterized by chronic
lesions on the cutaneous and subcutaneous, intestinal, and bone tissues, as well as invasion of blood
vessels in infected animals and rarely humans (4, 5), which lead to death or render the affected
individual lame if left untreated (2, 4).

Pythiosis infection is acquired by animals and plants through the direct contact of wounds
with water that contains motile P. insidiosum spores (zoospores) (6–10). Zoospores are typically
released by sporangia, which are not highly differentiated from hyphae in P. insidiosum (2, 4).
Previous studies of other oomycetes have demonstrated that zoospores may be specifically
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attracted to molecules produced by hosts through chemotaxis
(11, 12). Zoospores encyst in response to environmental cues,
which may include a host substrate, other substrates, or chemical
cues (4). The encysted spore produces a germination tube which
also uses chemotaxis to find the host (13, 14). Zoosporulation
is triggered by environmental and host cues. Pythium species
vary in their response to cues and some are active in cold
temperatures, whereas others, including P. insidiosum, can thrive
at warm temperatures like 37◦C (15).

The ecological requirements of P. insidiosum resemble the
typical plant pathogens of the genus Pythium sensu lato, which
tend to be ubiquitous with broad host ranges (4). P. insidiosum
is found in freshwater bodies with lilies and aquatic grasses as
the primary vegetation coverage (4), as well as ephemeral ponds
and flooded areas (10, 16). As clinical and public awareness of
pythiosis has increased, the number of reported cases in areas
previously thought to be inhospitable for P. insidiosum is also
on the rise (17, 18). In the United States, P. insidiosum has been
described to be widely distributed, with case reports mostly in
dogs and horses (19–22) and rarely in humans (23, 24).

Few studies have examined the spatial distribution of P.
insidiosum using environmental samples. In Thailand, the
pathogen was found in rice fields (10) and in the soil
surrounding bodies of freshwater (10, 25). Another study
that utilized environmental samples found multiple genetic
lineages of P. insidiosum in lakes and ponds of north-central
Florida (22). A study conducted in the Brazil-Uruguay border
regions reconstructed the ecological conditions of P. insidiosum
circulation on tested positive horses, identifying areas with a
potential risk of pythiosis infection (26).

In this study, we utilized environmental water samples and
fine-scale geographic and ecological factors to characterize areas
suitable for P. insidiosum in the Chincoteague National Wildlife
Refuge and map its potential distribution. Ultimately, this study
aims to provide data for the design of strategies to reduce the risk
of exposure of the Chincoteague ponies to P. insidiosum within
the Refuge.

MATERIALS AND METHODS

The modeling framework used in this study included, (i)
data collection, considering the definition of sampling sites
for water sample collection, isolation, and identification of P.
insidiosum (Figure 1A), (ii) extraction of the most suitable
environmental variables used in the ecological niche model
(ENM) (Figure 1B), (iii) ENM model calibration and evaluation
(Figure 1C), followed by the (iv) comparison in the suitable areas
predicted by the annual and monthly ENMs in the northern and
southern grazing paddocks (Figure 1D).

Data Collection
The water samples were collected from moist soil management
units (also called impoundments), localized ephemeral ponds
and watering holes, and tidal salt marsh located within both
grazing paddocks throughout the Virginia portion of Assateague
Island (Supplementary Figure 1). Sampling was conducted
monthly from June, July, and September 2019. Sites with at

least one positive result in the laboratory procedures described
below were used as presence occurrences (using their geographic
coordinates) in the Ecological Niche Model (ENM).

Samples Processing
At each sampling site (Figure 2A), 500ml high-density
polyethylene (HDPE) bottles with polypropylene screw caps
were used to sample water by placing the opening one to
three inches below the surface of the water. In addition, water
temperature and salinity were measured at each site, using a
handheld refractometer for salinity. Immediately or shortly after
the collection of water, autoclaved human and dog hairs were
added to each collection bottle and stored at room temperature
for 1–3 days. On June 24, 34 sites were sampled and hairs were
incubated in sampled water for 72 h. Water was removed and
bottles were shipped to the University of Florida, where hairs
were removed from bottles, blotted on paper towels, and plated
on both Sabouraud dextrose agar (Difco) media amended 25
mg/ml pimaricin, 200 mg/ml ampicillin, 10 mg/ml rifampicin,
50 mg/ml PCNB, and 200 mg/ml streptomycin sulfate (SDA-
PARPS) and incubated at 37◦C. Plates were checked for colonies
each day for 3 days. Characteristic Pythium colonies were
isolated by serial transfer of the growing edge of the Pythium
colony. On July 22–24, two or four 500ml bottles of water
were sampled from each of 59 sites. Hair was incubated in
water samples for 24 h at room temperature and immediately
transferred to SDA-PARPS. Hairs were dried and plated on SDA
media immediately after incubation. Plates were incubated at
room temperature for 1–2 days and subsequently at 37◦C, and
checked for colonies each day. On September 20, 36 sites were
sampled using two water bottles per site. Hair was incubated
for 72 h at room temperature, after which isolation of Pythium
proceeded as in July.

On SDA media, P. insidiosum exhibits a distinct colony
morphology compared to other common Pythium species. PCR
identification was also used for all isolated Pythium colonies. A
small amount of mycelia was collected from 2 day-old Pythium
cultures and genomic DNA extracted from the mycelia using the
REDExtract-N-Amp kit (Sigma-Aldrich): mycelia were placed in
50 µl extraction solution in a 0.2ml sterile PCR tube, vortexed
well, and then incubated at 95◦C for 10min. After incubation,
50 µl dilution solution was added and vortexed again. Extracted
genomic DNA was stored at 4◦C. To confirm successful DNA
extraction, the ITS region was first amplified using ITS1 and
ITS4 primers (27). The PCR reaction used 4.4 µl water, 10
µl Red Extract-N-Amp PCR ReadyMix (Sigma-Aldrich), 0.8 µl
each of each primer at 10µm, and 4 µl extraction products.
The PCR conditions were initial denaturation at 94◦C for
3min, 35 cycles of denaturation at 94◦C for 1min, annealing
at 55◦C for 1min, and extension at 72◦C for 1min followed
by a final extension at 72 ◦C for 10min. Bands were confirmed
on a 1% agarose gel. Once successful amplification of DNA
was confirmed, the extraction products were used for a second
PCR with primers ITSpy1 and ITSpy2 to positively identify P.
insidiosum (10). The PCR reaction used 2 µl water, 10 µl Red
Extract-N-Amp PCR ReadyMix, 2 µl of each primer at 2µm,
and 4 µl extraction products. The PCR conditions were initial
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FIGURE 1 | The study workflow. (A) Fieldwork for water sample collection and Pythium insidiosum laboratory identification; (B) gathering of environmental and

landscape variables relevant for the Chincoteague National Wildlife Refuge; (C) ecological niche model calibration, and (D) suitability of the northern and southern

grazing areas “paddock” comparison.

denaturation at 94◦C for 3min, 35 cycles denaturation at 94◦C
for 45 s, annealing at 60◦C for 30 s, and extension at 72◦C for 30 s,
followed by a final extension at 72◦C for 10min. The ITSpy PCR
products were run on a 1.5% agarose gel. Each ITSpy PCR was
conducted with positive control P. insidiosum isolate NATL_5A,
collected in Gainesville, Florida (22). Selected ITS PCR products
were sequenced to confirm the ITSpy PCR-based identification.
Single-stranded DNAs were removed using 0.5 µl ExoSAP-IT
(Affymetrix) and sent to Genewiz, LLC (South Plainfield, NJ) for
Sanger sequencing.

Ecological Niche Model (ENM)
The variables used to estimate the distribution of P. insidiosum
were selected based on previous studies that have described
the environmental requirements of this oomycete (22, 26, 28),
including the pathogen preferences for survival in specific
landscapes with high humidity, and high temperature (15, 29,
30). To reconstruct the environment settings where P. insidiosum
is more likely to be distributed across the island (31, 32),
we used land-surface water, soil cation exchange capacity (a
proxy of soil salinity), mean temperature, minimum temperature,
and maximum temperature. These variables were collected
and processed at 30m scale, which is considered a fine-scale
in remote sensing. Temperature variables (mean, minimum,
and maximum) correspond to land surface temperature data.
To assess land-superficial water bodies, we used normalized-
difference water index (NDWI) (33) because it has been
successfully used in several surface-water body classification
methods (34–37). Soil salinity was estimated using soil cation
exchange capacity as a proxy (38, 39). For all variables, but
soil salinity, we reconstructed monthly averages from June
2019 until May 2020 (Supplementary Table 1). Soil salinity was
available only at annual average. We used VIF (Variance Inflation
Factors) to identify and exclude correlated variables before
ENM models were built. VIF > 7 was considered as exclusion

criteria. VIF was calculated using the “usdm” package (40) see,
Supplementary Table 1 for more details.

ENMs were conducted using MaxEnt v3.4.1 (41), a maximum
entropy-based machine learning software that uses occurrence-
background algorithms to estimate the probability spatial
distribution for a species’ occurrence across a selected calibration
region, based on environmental constraints and assumptions
(42, 43). MaxEnt models were performed with clamping and
extrapolation turned off (i.e., no prediction outside the range
of environmental conditions in the calibration data) (44–46).
To determine the model parametrization with the best fit to
the data available, we assessed MaxEnt models under a range
of regularization multiplier values (0.1, 0.3, 0.5, 0.7, 0.9, 1.3,
1.5, 1.7, 1.9, and 2) (47). At the same time, we explored all
the possible feature combinations available in MaxEnt, from a
single feature, linear (L), quadratic (Q), product (P), threshold
(T), and hinge (H) using the “ENMeval” package (48). Models
were selected based on Akaike Information Criterion (AIC)
(49), where lower values represent a better model fit to the
data with moderate model complexity. We chose as the final
model the one with 1AICc = 0 from among the 319 model
combinations generated in ENMeval (48) for each feature and
regularization used (47) (Supplementary Table 2). To facilitate
interpretations of final models, we used the MaxEnt logistic
output as a proxy of environmental suitability (43). Briefly, the
logistic output of the whole study area was cropped by the two
defined grazing areas: the northern and southern grazing areas
(paddocks). The northern paddock is 13,767 km2 and holds
∼100 horses, and the southern paddock holds ∼40 horses in an
area of 2,215 km2. To extract the “suitability values,” we used
the sample raster values tool in QGIS v3.10.5. We extracted
the suitability value for each month and for the whole year
within each paddock and compared their weighted distribution.
The suitability distribution was simplified by dividing it by the
number of cells (30m resolution) of each paddock: 18,797 cells
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FIGURE 2 | Dynamic ecological niche model showing the most suitable areas of Pythium insidiosum in Chincoteague National Wildlife Refuge. (A) Shows positive and

negative P. insidiosum detections in both grazing paddocks, delimited by purple lines. (B) Shows the dynamic ENM results and the expanded visualization of each

grazing paddock (C). (D) Shows the comparison of the predicted suitability weighted distribution for P. insidiosum for each paddock, where suitability values range

from 0 to 1, with 1 being the most suitable.

Frontiers in Veterinary Science | www.frontiersin.org 4 February 2021 | Volume 8 | Article 640339

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Jara et al. Potential Distribution of Pythium insidiosum

in the north, and 3,086 in the south paddock. To assess the
difference between suitability distributions between the paddocks
we used the Two-sample Welch T-statistic (50) using the “dplyr”
package (51) in R software v3.5.1 (52).

The ENM final model was calibrated in July and then
projected to the remaining months using the remote sensing
monthly variables mentioned above, as well as the features and
regularization parameters resulting from the model calibration.
These ENMs projections were conducted via model transference
considering MaxEnt model with extrapolation and clamping
turned off (46). To determine how each environmental variable
affects the ENM predictions, the response curves of the
annual model was recovered (Supplementary Figure 2). The
monthly ENMs were transformed into binary predictions using
a threshold removing 10% of the calibration occurrences (error
= 10%) to facilitate the interpretation of the results as well as
reducing the uncertainty in the estimations (53). The resulting
monthly binary models were assembled by adding the binary
predictions to generate a final continuous model ranging from
low (1) to high (12) values.

Characterization of the Most Suitable
Areas
Using the binary maps mentioned above, we extracted the land
use information to identify the landscape conditions that are
related to themost suitable areas for P. insidiosum. The land cover
information used here comes from the Multi-Resolution Land
Characteristics (MRLC) consortium (54).

RESULTS

In June, nine of 40 sites produced P. insidiosum positive samples,
confirmed by ITSpy PCR. In July, 16 of 50 sites produced P.
insidiosum colonies, confirmed by ITSpy PCR. Of the 16 sites, 9
were from sites where four 500ml bottles of water were collected
and 7were from sites where two bottles were collected. Only three
sites of 36 produced P. insidiosum colonies in September, two
confirmed by ITSpy PCR. We sequenced the ITS region for the
P. insidiosum isolates obtained in the July collection to confirm
the results of the ITSpy PCR. We obtained sequence from 14
isolates and BLAST analysis in GenBank indicated that seven
isolates were identical to P. insidiosum Cluster I sequence types
and seven were identical to the Cluster IV sequence type (22).
A representative of each sequence type is available in GenBank
as accession numbers MW517982 and MW517983. Cluster I
sequences are typically recovered from clinical infections in
humans and domestic animals in the Americas, whereas Cluster
IV sequences have been recovered from the environment but
have rarely been associated with disease (17). Both sequence types
were found in the northern paddock and outside the grazing
areas. None of the sequenced isolates were obtained from the
southern paddock. Because we did not retainmultiple isolates per
site, we cannot determine the relative distribution of sequence
types in the refuge.

In total, 30 spatially unique sites were determined positive
for P. insidiosum. Most presences were at low salinity pools in

salt marsh and brackish impoundments, and ephemeral ponds
and water holes. Some sites were positive in June and July,
while others that were positive in July were not detected as
positive in June, and vice versa. Collection of two or four bottles
of water per site in July likely increased our ability to detect
P. insidiosum relative to the collection of a single sample of
water in June. All but one of the sites where P. insidiosum was
detected in June but not July had salinity above 10 parts per
thousand (ppt) in July, and we did not detect P. insidiosum
from any water with salinity >7 ppt. In June and July, P.
insidiosum was detected at water temperatures ranging from 25
to 38◦C. In September, P. insidiosum was detected in water of 21
and 22◦C.

Spatial Patterns of P. insidiosum
From the 136 samples collected during the period from
June until September 2019, the 30 positive P. insidiosum
samples (Figures 2A, 3A) were identified in a landscape
characterized by freshwater wetlands mostly inhabited by
submergent and emergent vegetation with limited salt tolerance.
Likewise, tidal flooding influences the distribution of salt marsh
plants that can be mostly found on the west side of the
islands (Figure 2B).

Ecological Niche Model (ENM) Overall
Predictions
Model evaluation results showed that overall, the model that
exhibited the best performance (1AICc = 0) was quadratic
+ threshold + hinge with a regularization multiplier of
1.9 (Supplementary Table 2). The overall prediction resulted
from the dynamic model showed high proportion of suitable
areas for P. insidiosum across the whole island (Figure 2B).
When comparing the two grazing areas, we observed that the
northern paddock showed the lowest proportion of suitable
areas (Figures 2C,D). While the southern grazing paddock,
which is mostly utilized for horse viewing, hosts a potentially
much higher population with higher suitability areas, these
areas consist mostly of tidal salt marsh and several ephemeral
ponds and watering holes (Figure 2). The previously observed
pattern was also supported by the annual ENM predictions
(Supplementary Figure 2).

Ecological Niche Model (ENM) Monthly
Predictions
Ecological niche models showed substantial monthly variation in
the predicted suitable areas across the island. We observed that
the monthly fluctuation in the proportion of suitability affected
both paddocks similarly, while the southern paddock produced
a higher proportion of suitable areas, except during November
(Figure 3).

Environmental Drivers of P. insidiosum
Distribution
ENM results showed that overall, the most influential predictors
of P. insidiosum distribution were land-surface water, assessed
through NDWI (median = 39.4%), minimum temperature
(median = 26.8%), followed by mean annual temperature
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FIGURE 3 | Monthly P. insidiosum suitability distributions. Each box-and-whisker plot represents the monthly suitability values for each grazing paddock. Y-axis

represents the weighted distribution where the suitability distribution was simplified by dividing it by the number of cells (30m resolution) of each paddock.

TABLE 1 | Variable importance for the annual and monthly ecological niche

models.

Month Mean annual

temperature

Minimum

temperature

Maximum

temperature

NDWI* Cation

exchange

capacity

January 3.2 34.4 13 45.3 4.1

February 14.3 21.9 15.9 44.7 3.2

March 19.8 28.1 9.9 41.2 1

April 7.3 31.3 16.8 41.7 2.9

May 25.4 28.4 5.9 38.5 1.8

June 19.3 37.1 2.6 39 2

July 24.2 26.8 5.6 40.6 2.8

August 17.2 23.5 10.4 45.8 3.1

September 21.5 23.1 13.2 38.9 3.3

October 19.3 29.1 8.3 39.2 4.1

November 22.1 23.1 12 37.7 5.1

December 16.8 26.6 12.4 39.4 4.8

Annual 19.5 23.5 13.4 38.5 5.1

*Normalized Difference Water Index (NDWI).

Warmer colors represent higher levels of importance (%).

(median = 19.3%) (Table 1). However, we also observed that the
level of importance of those three variables varied frommonth to
month, for example, the importance of maximum temperature
was observed to be lower during the warmer months (May–July)
(Table 1).

To visualize the variation in the probability of presence
(suitability) as each environmental variable is varied, we
looked at the MaxEnt response curves of the annual model
(Supplementary Figure 3). Our results showed that surface
water showed a positive relationship with areas with higher
suitability since the majority of hotspots are related to areas that
are surrounding superficial water bodies. Minimum temperature
showed a direct relationship with the observed suitability

values. Likewise, mean annual temperature evidenced the highest
peak of suitability at 22◦C. The remaining variables showed
lower levels of contribution to the ENM. For example, in
relation to maximum temperature, we observed that suitability
remained constant as temperature increases until reaching
30◦C, from where it started to decline as the temperature
increased. Finally, soil cation exchange capacity showed a peak
at∼350 mmol(C)/kg.

P. insidiosum Suitability Between Northern
and Southern Paddocks
We compared the distribution of suitable sites between
the northern and southern grazing paddocks. We observed
statistically significant differences between the two grazing areas
in every month (tmean=−37, p < 0.01). Our results also showed
that the lowest suitability values were observed during the cold
months, between December and March, while the highest levels
during June, July, and August (Figure 3).

Landscape Conditions Associated With the
Highest Suitability Areas
Areas that showed higher suitability in our model were mostly
associated with submergent and emergent herbaceous wetlands
(33.7%), followed by woody wetlands (30.7%), and barren land
(21.1%). These types of land cover are widely distributed across
the island, with 38.1, 24.6, and 26.5% of coverage in the study
area, respectively, being mostly distributed along the western side
(Supplementary Table 4).

Management Recommendations and
Surveillance Sites
Our results showed that the majority of the refuge exhibits
moderate to high suitability, although we observed a cold-spot
between the two grazing areas. Proportionally, the southern
paddock was more suitable for P. insidiosum than the northern
paddock, and the summer months more suitable than the
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winter months. These observations could help guide exposure
management and pathogen surveillance.

DISCUSSION

This study reconstructed the potential distribution of P.
insidiosum in the Chincoteague National Wildlife Refuge,
Assateague Island Unit located in the state of Virginia,
United States. The distribution of positive water samples
indicated a widespread prevalence of P. insidiosum swimming
zoospores in the Refuge. Our ecological niche model predicted
suitable areas for P. insidiosum zoosporulation across the
Refuge, beyond the areas where the disease has been detected
within the horse population. Novel areas predicted at risk
include ephemeral wetlands associated with maritime forest
and adjacent emergent freshwater/brackish marsh. The most
dominant plant species associated with these habitats is
Spartina patens, however, emergent vegetation within freshwater
impoundments include, Eleocharis sp., Bidens sp., Polygonum
sp., Scirpus sp., Bacopa monnieri, and Phragmites australis.
We observed a higher potential exposure of the horse
population to suitable conditions for the presence of P.
insidiosum during June, July, and August, especially in the
southern paddock.

Despite the global distribution exhibited by P. insidiosum (55,
56), a limited number of studies have examined its environmental
preference, or external variables that promote its growth, survival
and zoospore production (10, 22, 26, 57). Previous studies
examined how Pythium spp. sporulation is triggered by specific
environmental and host cues such as humidity and the presence
of vegetation (58). Although zoospores require fresh water to
disperse, it is important to consider that even a sheen of dew
on a leaf surface or moist soil is sufficient for sporulation
(22, 29). Our results showed that even though the majority
of predicted areas appeared to be near a known water source,
we found some risk areas in places with no permanent water
bodies. This can be explained by the fact that P. insidiosum,
like other Pythium species, can form drought-resistant oospores
that germinate when an area is re-flooded (4). In relation to the
host cues, it is well-known that P. insidiosum motile zoospores
are chemotactically attracted to both plant and animal tissues
(2, 4). Our results are consistent with plant material as a source
of nutrition for P. insidiosum since we observed that suitable
conditions were associated with non-emergent and emergent
herbaceous wetlands, as well as by woody wetlands. We also
found that these conditions are widely present in the ecoregion of
middle Atlantic coastal forests where the Chincoteague National
Wildlife Refuge is located (54, 59).

While P. insidiosum and some other Pythium species are
known to exhibit peak growth rates at high temperatures
(∼37◦C) (15, 30), our ENM monthly response curves suggested
that low temperature can also play an important role as
a limiting factor for explaining P. insidiosum distribution,
and consequently, reducing the exposure of host populations
during colder months (Supplementary Figure 3). Our results
also evidenced significant differences among months in the

predicted suitable areas, linked to annual seasonal variation
in temperatures and water availability. The lowest suitability
levels were associated with colder seasons (from December to
March) and the highest suitability during June, July, and August
when water levels in the freshwater impoundments are at their
lowest for the benefit of migrating shorebirds. The summer
months may be active months for P. insidiosum due to warm
temperatures, but the water is drawn down in the impoundments
during these months, leading to less surface water to support P.
insidiosum populations.

In this study, we applied an ecological niche model (ENM)
approach using the occurrences of P. insidiosum zoospores and
high-resolution satellite imagery data. ENMs have been widely
applied in epidemiology to predict species’ potential distributions
aiming to anticipate the future emergence of pathogens (60–
66). This has been achieved by the characterization of the
environmental requirements of the target species making use
of satellite data, which has demonstrated to offer relevant
guidance for local animal and human public health decision-
making (67–69). Nevertheless, the main limitation of this study
is that it relies on environmental variables that were processed
as a monthly average, therefore, the predicted suitable areas
should not be considered as physiological limits of tolerance
of P. insidiosum.

Finally, this study highlights the imperative need to improve
our ability to adequately define risk areas for pythiosis, given
its severe and often fatal impact on infected animals despite
its overall low incidence. Thus, the information generated
here is a valuable first step toward informing pythiosis
prevention and control plans in the Chincoteague National
Wildlife Refuge and a first step toward defining high risk
environments elsewhere.

CONCLUSION

In this study, we examined the ecological conditions favoring
P. insidiosum, by identifying its geographic and environmental
distribution in the Chincoteague NationalWildlife Refuge Island.
Using an ecological niche model approach, we produced an
annual high-resolution map to visualize the most suitable areas
for the presence of infectious P. insidiosum zoospores. The
suitability map could be used to identify areas of higher risk for
surveillance and of lower risk for grazing. We also found that
June, July, and August were the months that showed the highest
suitability for P. insidiosum in both grazing areas, especially in the
southern paddock, with potential elevated suitability in isolated
wet areas throughout the summer months. The information
generated in this study could be useful to design dynamic
management plans aimed at reducing the risk of exposure to
P. insidiosum.
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