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Abstract: A colonoscopy is a medical examination used to check disease or abnormalities in the
large intestine. If necessary, polyps or adenomas would be removed through the scope during a
colonoscopy. Colorectal cancer can be prevented through this. However, the polyp detection rate
differs depending on the condition and skill level of the endoscopist. Even some endoscopists have a
90% chance of missing an adenoma. Artificial intelligence and robot technologies for colonoscopy
are being studied to compensate for these problems. In this study, we propose a self-supervised
monocular depth estimation using spatiotemporal consistency in the colon environment. It is our
contribution to propose a loss function for reconstruction errors between adjacent predicted depths
and a depth feedback network that uses predicted depth information of the previous frame to
predict the depth of the next frame. We performed quantitative and qualitative evaluation of our
approach, and the proposed FBNet (depth FeedBack Network) outperformed state-of-the-art results
for unsupervised depth estimation on the UCL datasets.

Keywords: unsupervised deep learning; monocular depth estimation; colonoscopy

1. Introduction

According to Global Cancer Statistics 2018 [1], colorectal cancer causes approximately
90,000 deaths worldwide each year, with the highest incidence rates in Europe, Australia,
New Zealand, North America, and Asia. Colonoscopy is a test for the detection and removal
of polyps, and it can prevent cancer by detecting adenoma. However, the polyp detection
rate varies according to the condition and skill level of the endoscopist, and even some
endoscopists have a 90% chance of missing an adenoma [2]. Endoscopy doctors’ fatigue
and skill problems can be compensated for by artificial intelligence and robotic medical
systems [3]. Recently, polyp detection [4], size classification [5], and detecting deficient
coverage in colonoscopy [6] have been proposed as computer-assisted technologies using
artificial intelligence. In the field of robotic colonoscopy technology, there are studies on
conventional colonoscope miniaturizing [3], robotic meshworm [7], treaded capsule [8],
and autonomous locomotion system [9] to facilitate colonoscopy.

In general, computer-assisted endoscopic imaging systems are mainly studied based
on the monocular camera because it is difficult to utilize a stereo camera according to the
size limitation of each organ [10,11] Monocular depth estimation, which provides spatial
information in a limited colon environment, is an important research topic for colonoscopy
image analysis systems [12–16].

The recent monocular depth estimation technology shows comparable performance to
the conventional stereo depth estimation method [17]. In the study of colonoscopy depth
estimation using a monocular supervised learning method [13–15], conditional random
field, pix2pix [18], and a conditional generative adversarial network (GAN) [19] were used
as the depth prediction network. In the study of measuring the coverage of colonoscopy
based on a self-supervised learning [6], the view synthesis loss [20] and the prediction of
the camera intrinsic matrix in the network [21] are applied. However, the depth obtained
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by the monocular learning-based method often flickers depending on the scale ambiguity
and prediction per single frame [22]. In recent research, recurrent depth estimation using
temporal information [23] and multi-view reconstruction using spatial information [24]
were proposed for using spatiotemporal information.

It is our purpose for improving the existing self-supervised monocular depth esti-
mation method through geometric consistency using a predicted depth. In this study, we
propose a depth feedback network that inputs the predicted depth of the previous frame
into the current frame depth prediction, and a depth reconstruction loss between the view
synthesis of the predicted depth of the previous frame and the predicted depth of the
current frame. Figure 1 shows the proposed FBNet structure including the depth feedback
network and depth reconstruction loss.
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Figure 1. Our proposed self-supervised monocular network architecture. We introduce a depth feedback network and
depth reconstruction loss.

The remainder of this paper is organized as follows. Section 2 presents recent research
on colonoscopy depth estimation and unsupervised monocular depth estimation. Section 3
reviews the unsupervised monocular depth estimation used in this study and introduces
the proposed depth feedback network and depth reconstruction loss. Section 4 performs a
performance comparison with existing studies and proves the performance improvement
for the network proposed by the ablation study. Finally, Section 5 presents the conclusion.
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2. Related Works

The goal of this work is to improve the depth estimation performance of colonoscopy.
The depth estimation study was mainly learned by a supervised method, but it is dependent
on the image and depth pair data. However, the recent self-supervised method outperforms
comparable performance to the supervised method. When it is difficult to obtain label data
such as a colonoscopy image, the self-supervised method is more effective. In this work,
the depth of colonoscopy is predicted by self-supervised learning. In addition, a monocular
camera-based depth estimation technique is investigated according to the characteristics
of colonoscopy. To this end, this section reviews the related work of colonoscopy depth
estimation and unsupervised monocular depth and pose estimation.

2.1. Colonoscpy Depth Estimation

The depth estimation network based on supervised learning is trained with data
consisting of pairs of image and depth, like the autonomous driving dataset KITTI [25].
The KITTI dataset was acquired using multiple cameras and lidar sensors. However, it
is a difficult problem to acquire actual depth data from colonoscopy images. Existing
research creates a dataset from a CT-based 3D model to solve the scarce data. The 3D model
is converted to an image dataset using 3D graphic engine software such as Blender or
Unity. In the graphics engine, animation scenes are created by changing textures, creating
virtual camera paths, and using various lights. The image and depth pairs to be used as
the synthetic dataset are the outputs of each image and depth renderer in the produced
animation scene [6,14].

Unlike the supervised method, which requires data consisting of pairs of image and
depth, the unsupervised depth estimation network uses continuous colonoscopy images as
training data. Therefore, the self-supervised method uses not only synthetic datasets, but
also images taken from real patients or images from phantoms for network training [6,26].

As a colonoscopy study using depth estimation, Itoh et al. [5], Nadeem, and Kauf-
man [11] use depth estimation for polyp detection. In addition, Freedman et al. [6] and
Ma et al. [27] apply dense 3D reconstruction to measure non-search areas of colonoscopy. In
addition, there are adversarial training network-based approaches [12,14] that make com-
posite images resemble real medical images, and unsupervised depth estimation studies to
be applied to wireless endoscopic capsules [26].

2.2. Unsupervised Monocular Depth and Pose Estimation

A supervised learning method shows relatively good performance, but, in recent
research, the unsupervised learning method also shows comparable performance [28].
Unsupervised learning is a suitable solution for the problem where it is difficult to acquire
depth labels such as colonoscopy images. Garg et al. [29] propose a view synthesis that
reconstructs the right image into the left image with the depth estimated from the left image
in a pair of calibrated stereo images, and defines the difference between the reconstructed
image from the right image and the left image as a reconstruction error. This has a
problem in which a pre-calibrated pair must exist. Zhou et al. [20] propose a network
that simultaneously estimates depth and ego-motion from a monocular sequence, and
they apply view synthesis to reconstruct the image with the predicted pose and depth.
They also use a mask that improves the explainability of the model. Godard et al. [30]
applied a spatial transformer network (STN) [31], which is a completely differentiable
sampling technique that does not need to simplify or approximate the cost function for the
image reconstruction method. In addition, they proposed a photometric loss combining a
structural similarity index measure (SSIM) [32] and L1 loss. Godard et al. [17] propose a
minimum reprojection loss that uses a minimum value instead of an average in calculating
the photometric error with adjacent images, reduces the artifacts of the image boundary,
and improves the sharpness of the occlusion boundary. They also propose a multi-scale
prediction to prevent the training target from being trapped in the local minimum with
gradient locality by bilinear sampling. Recent approaches add loss [33], networks such as an
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optical flow network for motion information supplementation [34,35], and a feature-metric
network for semantic information addition [36] and reduce the performance difference
between monocular and stereo-based depth estimation.

However, this unsupervised learned depth is not guaranteed by a metric measure.
That is, the network output is relative depth, and it is evaluated after scaling by the median
value of the ground truth. Guizilini et al. [37] propose a velocity supervision loss based
on the multiplication of the speed by the time between target and source frames for a
scale-aware network.

Existing unsupervised learning models need to know the camera intrinsic matrix.
Guizilini et al. [21] propose a network that can learn camera intrinsic parameters, and
Vasiljevic et al. [38] propose a general geometric model [39] based on the neural ray surface
that can learn depth and ego-motion without prior knowledge of the camera model.

3. Methods

This section describes a self-supervised depth estimation network that estimates depth
from adjacent input images. First, we review the main technologies of self-supervised
learning based on previous studies. This review describes the notation and geometry
model used in the proposed method. In this review, we also explain the loss to be used for
the total loss. Then, the depth feedback network, depth reconstruction loss, and total loss
proposed in this study are explained.

3.1. Self-Supervised Training

Following recent studies based on a self-supervised learning method [17,20], the
depth network and the pose network are simultaneously learned. Networks are trained
by minimizing the reconstruction error Lp between the target image It and the image
Îs→t reconstructed from the source image Is to the target view. Figure 2 shows this view
synthesis process for self-supervised image reconstruction loss.
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Figure 2. View synthesis structure for image reconstruction. This is a view synthesis process for self-supervised image
reconstruction loss. The predicted depth D̂t by the depth feedback network proposed in this work are reconstructed and
transformed into a source viewpoint using predicted pose. Îs→t is synthesized from Is by bilinear sampling using a pixel
coordinate ps obtained by projecting reconstructed 3D points Q̂t→s.
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First, pixel correspondence between the source image and the target image is required
in the view synthesis process. This correspondence is used for sampling that transforms the
source image into a target image. The pixel coordinate ps projected from the homogeneous
pixel coordinate pt of the target image It to the source image Is is shown below the equation
using the predicted depth D̂t and the predicted relative pose P̂t→s =

(
R̂t→s, T̂ t→s

)
.

ps = π
(

R̂t→sφ
(

pt, D̂t
)
+ T̂t→s

)
(1)

Here, π is a camera projection operation that converts the 3D point Q = (X, Y, Z) of
the camera coordinate to the 2D pixel coordinate p = (u, v) of the image plane. φ is an
unprojection that converts the homogeneous coordinates p and depth values d of the image
into 3D points in the camera coordinate system, i.e.,

π(Q) =
1
Z

KQ =
1
Z

 fx 0 cx
0 fy cy
0 0 1

[X Y Z]T (2)

φ(p, d) = dK−1 p = d

 fx 0 cx
0 fy cy
0 0 1

−1

[u v 1]T (3)

where K is the camera intrinsic matrix. fx, fy are the focal length and cx, cy represent the
principal point.

To the next, the target image It can be reconstructed from the source image Is by
sampling the coordinates ps projected to the source image. Binary sampling is performed
to calculate Is(ps) in the discrete image space because ps is continuous. The discrete image
Îs→t(pt) is obtained by transforming Is(ps) calculated as the neighboring pixel value of
Is(ps). The sampling can be formulated as:

Îs→t(pt) = Is(ps) = ∑i∈{t,b},j∈{r,l} wi,j Is

(
pi,j

s

)
(4)

where pneighbor ∈
{

ptl
s , ptr

s , pbl
s , pbr

s

}
includes the values of the top-left, top-right, bottom-

left, and bottom-right pixels of ps, and wi,j is the weight value according to the distance
between ps and pneighbor, and ∑i,j wi,j = 1. This bilinear sampling process is shown in
Figure 3.
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Figure 3. Bilinear sampling process. This is the process of projecting each point pt of target image It to the source image Is,
and inputting a pixel value obtained by interpolating the surrounding pixels of the projected point into pt of Îs→t. As a
result, the image Îs→t at the viewpoint It is synthesized from Is.
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3.1.1. Image Reconstruction Loss

Following Reference [30], the evaluation of the similarity in pixels between the target
image It and the reconstructed image Îs→t from the source image can be formulated as
follows by combining the SSIM and L1 distances.

pl
(

It, Îs→t
)
= α

(
1− SSIM

(
It, Îs→t

))
2

+ (1− α)‖It − Îs→t‖1 (5)

where α = 0.85 is a balancing weight and SSIM is a method of comparing and evaluating
the quality of the predicted image with the original image. It is an index frequently used for
depth estimation [17,21,23,33,37]. The SSIM between two images Ix and Iy is defined by:

SSIM
(

Ix, Iy
)
=

(
2µxµy + c1

)(
2δxy + c2

)(
µ2

x + µ2
y + c1

)(
δ2

x + δ2
y + c2

) (6)

where µx, µy are the average values, δx, δx are the variances, δxy is the covariance of the
two images, and c1, c2 are stabilized variables.

The set of source images S ∈ {s1, s2, . . .} is composed of frames adjacent to the target
image in self-supervised learning. The number of predicted target images Îs→t varies
depending on the number of image groups in the adjacent frame. The existence of the
occluded area of the object according to the camera movement or the structure in the scene
increases the photometric loss. As shown in Reference [17], the minimum photometric loss
is adopted by applying the most consistent source image among the source image sets.

Lp = min
S

pl
(

It, Îs→t
)

(7)

Self-supervised learning works assuming a moving camera and a static scene. How-
ever, the dynamic camera movement, the object moving in the same direction as the
camera, and the large texture-free area cause the problem of measuring infinite depth. The
auto-masking technique introduced in Reference [17] is applied to the photometric loss to
remove static pixels and reduce hole problems. Auto-masking for static pixel removal is
set when the un-warped photometric loss pl(It, Is) is greater than the warped photometric
loss pl

(
It, Îs→t

)
and can be formulated as the following equation.

µ = min
S

pl
(

It, Îs→t
)
< min

S
pl(It, Is) (8)

where µ ∈ [0, 1] is a binary mask, and the intermediate experimental result in which the
texture-free area by auto-masking is removed is shown in Figure 4. The photometric
loss value of the area erased by auto-masking is not used for network training. The
result image below shows that the existing auto-masking works normally even in the
colonoscopy image.
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Figure 4. Auto-masking. Shows the auto-masking result learned in the experiment. Most of the colonoscopy images are flat
areas and are calculated as black (µ = 0) by auto-masking, and photometric loss is calculated based on the edge or textured
area (µ = 1).
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3.1.2. Depth Smoothness Loss

Since the depth discontinuity depends on the gradients δIt of the image, the edge-
aware term is used together as in previous studies [17,36,37] to limit the high depth gradient
δD̂t for the texture-less region.

Ls
(

D̂t
)
=
∣∣δxD̂t

∣∣e−|δx It | +
∣∣δyD̂t

∣∣e−|δy It | (9)

3.1.3. Multi-Scale Estimation

In the previous research [17], multi-scale depth prediction and reconstruction is per-
formed to prevent falling into local minima by the bilinear sampler. Holes tend to occur
at the predicted depth in the low-texture region of the low-resolution layer, and Refer-
ence [17] proposes to upscale the depth to the input image scale to reduce the occurrence of
holes. This study also adopts the intermediated layer upscale based on multi-scale depth
estimation, which upscales the intermediate resulting depth of each layer of the decoder to
the resolution of the input image, reprojects, and resamples it.

For each layer, the photometric loss is calculated as an average, and the depth smooth
loss is weighted according to the resolution size of each layer region, as shown in Refer-
ence [37]. Finally, the depth smoothness loss is formulated as follows.

Ls
(

D̂t
)
=

1
N ∑

n

Ls
(

D̂t,n
)

2n (10)

where N is the number of intermediate layers of the backbone decoder, and n is the scale
factor of the intermediate layer resolution divided by the input.

3.2. Improved Self-Supervised Training

As mentioned above, recent research studies use a method of adding a network
reinforcing feature or segmentation information [36,40] and a loss model for geometry or
light [16,33]. Intuitively, feature and semantic information are not appropriate for depth
prediction due to the characteristics of colonoscopy images. Therefore, in this study, we
add information about geometric consistency to the network and loss function.

In this work, in order to improve the performance of monocular depth estimation,
we propose a depth reconstruction loss that compares the similarity between the warped
previous depth and the current depth. We also propose a depth feedback network that
inputs the previous depth into the current depth prediction network.

3.2.1. Depth Reconstruction Loss

Image reconstruction loss is calculated as the similarity between the synthesized source
image converted at the target viewpoint by sampling and the target image. Similarly, the
synthesis depth converted from the source depth to the target viewpoint can be compared
with the target depth. This limits the prediction range of depth due to the assumption that
the depths of geometrically adjacent frames will be consistent. Similar to Reference [16],
this work focuses on the similarity of predicted depth maps between adjacent frames.

Reference [16] uses the target view 3D points Q̂t = φ
(

pt, D̂t
)

lifted from D̂t and the
transformed 3D points Q̂s→t. Here, Q̂s→t = R̂s→t Q̂s + T̂s→t is a 3D point obtained by
converting the 3D point Q̂s into a target image viewpoint with a predicted inverse pose
P̂−1

t→s. They use a loss that minimizes the error of the identity matrix and the transform
matrix between 3D points Q̂s→t and Q̂t.

Similarly, this work minimizes the distance between depth maps. The depth scale of 3D
points Q̂s→t = [x̂s→t, ŷs→t, ẑs→t] and Q̂t = [x̂t, ŷt, ẑt] may have different scales, according
to the depth scale ambiguous problem of self-supervised monocular learning. We use
force to maintain depth consistency in adjacent frames by adding a loss that minimizes the
difference between reconstructed depth ẑs→t and predicted depth ẑt. Figure 5 shows the
detailed structure diagram of view synthesis for depth reconstruction loss. Proposed depth
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reconstruction loss is formulated as follows by combining SSIM and L1 similarly to image
reconstruction loss.

Ld(ẑt, ẑs→t) = α
(1− SSIM(ẑt, ẑs→t))

2
+ (1− α)‖ẑt − ẑs→t‖1 (11)

where a = 0.15 is a balancing coefficient.
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)
is calculated.

3.2.2. Depth Feedback Network

Since the model trained by the general self-supervised monocular depth estimation
method predicts the relative depth for a single frame, flicker may occur when applied to
consecutive images [22]. Patil et al. [23] improves the depth accuracy based on spatiotem-
poral information by concatenating the encoding output of the previous frame with the
encoding output of the current frame and decoding it. In a recent study [22], performance
was improved by proposing optical flow-based loss including geometry consistency, but
real-time execution is impossible because of an additional operation that requires learning
at test time.

We propose a depth feedback network in which the depth network receives both the
current image and the previous depth. This forces the network to extract the current depth
based on the previous depth, as the network itself learns both the current image and the
previous depth. We expect the accuracy improvement because the depth reconstruction
loss and the depth feedback loss use spatiotemporal information of the depth of the
adjacent frame.

The proposed depth feedback network consists of D̂s = Netdepth(Is) predicting the
depth D̂s of the source frame and D̂t = NetDepthFeedback

(
[It, D̂s ]

)
predicting the depth D̂t

of the target frame. Here, [It, D̂s ] is the concatenation of It, D̂s.

3.2.3. Final Loss

All losses are summed according to scale N of multi-scale estimation. Final loss
function is defined as:

L = ∑
N

µLn
p + αLn

s + βLn
d (12)

Here, α, β are the scale correction values for each loss, and we set α = 0.001, β = 0.05.

4. Experiments
4.1. Experimental Setup

The hardware environment used in our training and testing experiments is a desktop
with Intel(R) i9-10900KF CPU 3.7GHz of Intel, 32G DDR4 memory of Samsung and GeForce
RTX 3090 24G of Nvidia. The software environment was tested on the deep learning
platforms pytorch, CUDA-10.1, and cudnn-7 on the operating system Ubuntu 18.04 LTS.
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The proposed depth feedback network and depth reconstruction network test the
Packnet-SfM [37] model as a baseline. The depth and pose network are trained 30 epoch
learning, a batch size of 8, an initial depth, a pose learning rate of 2·10−4, and an input
resolution of 256 × 256. The target frame is set as the current frame and the source frame is
set as the previous frame. Unwritten parameters followed the values of Packnet-SfM.

The camera intrinsic matrix K must be known to train view synthesis based on
monocular depth estimation. A recent work [21] proposed a model that can train a camera
intrinsic matrix at training time. In this experiment, the above model is trained using the
dataset to be used in our experiment, and the output camera intrinsic matrix K value of the
above model is used as all K values in our experiment. In the above model training, the
translation loss was excluded, as mentioned in their paper, as ineffective.

4.1.1. Datasets

Image and depth pair images are used to evaluate the performance of depth estimation.
However, it is difficult to measure the depth of colonoscopy with a sensor, such as lidar, to
obtain the actual depth label. Therefore, synthetic datasets that extract images and depth
from 3D modeling data are used for evaluation in the field of colonoscopy depth estimation.

To the best of our knowledge, a publicly available synthetic colonoscopy image and
depth dataset is the University College London (UCL) dataset [14]. They created a 3D
model from human colonography scan images, and they obtained about 16,000 images and
depth maps by moving virtual cameras and lights along the path of the colon using the
game engine Unity. In the case of Reference [6], 187,000 images and depth maps of synthetic
datasets were obtained in a similar way, but only the synthetic images were released. The
UCL dataset used for evaluation is divided into training and test datasets at a ratio of 6:4
similar to the previous unsupervised learning study [6]. In addition, 3D reconstruction is
performed on the image sequence taken from Koken’s LM-044B colonoscopy simulator.

4.1.2. Evaluation Metrics

The four error metrics, absolute relative error (AbsRel), square relative error (SqRel),
root mean squared error (RMSE), and RMSE(log) used in recent related studies [17,20,37]
are used for quantitative evaluation of the self-supervised monocular depth estimation
proposed in this work. Additionally, the threshold accuracy (δ) metric is used to evaluate
the accuracy. The error metric and accuracy metric are formulated as follows.

AbsRel =
1
N

N

∑
i

∣∣DGT
i − D̂i

∣∣
DGT

i
(13)

SqRel =
1
N

N

∑
i

∣∣DGT
i − D̂i

∣∣2
DGT

i
(14)

RMSE =

√√√√ 1
N

N

∑
i

∣∣DGT
i − D̂i

∣∣2 (15)

RMSE(log) =

√√√√ 1
N

N

∑
i

∣∣logDGT
i − logD̂i

∣∣2 (16)

Threshold accuracy(δ < thr) = max

(
DGT

i
D̂i

,
D̂i

DGT
i

)
(17)

Here, DGT
i and D̂i are values of the ground truth depth and predicted depth correspond-

ing to pixel i, respectively, and N is the total number of pixels. thr uses
(
1.25, 1.252, 1.253)

as in previous studies.
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4.2. Comparison Study

A comparison study is performed to evaluate the performance of the proposed algo-
rithm. There are [6,14] papers that have previously been evaluated with the UCL dataset.
Reference [14] was performed and tested based on extended pix2pix, which is a supervised
learning method, and Reference [6] was performed using self-supervised learning. These
results are cited in their paper, and we note that the detailed composition may differ from
our evaluation datasets because we divide the datasets in sequence units for learning
adjacent images.

In the comparative experiment, we compare the performance while changing the
backbone of the depth network of Monodepth2 [17], Packnet-SfM [37], and FBNet to
Resnet18, Resnet50 [41], and Packnet [37]. All pose networks used Resnet18 as the backbone,
and the number of 3D convolutional filters of the backbone network Packnet was set to 8.

First, Table 1 shows the results of quantitative performance evaluation based on
evaluation metrics. The quantitative performance of the proposed network shows higher
performance in most items than other control group networks. FBNet using Resnet50
shows the highest performance in threshold accuracy, and FBNet using Packnet shows the
highest performance in an absolute relative error.

Table 1. Quantitative performance comparison of the proposed algorithm on the UCL datasets. In the learning column, S
refers supervised learning and SS refers self-supervised learning. For Abs Rel, Sq Rel, RMSE, and RMSElog lower is better,
δ < 1.25, δ < 1.252, δ < 1.253 higher is better. The best performance of the test for each backbone is indicated in bold, and
the best performance of all experiments is indicated by an underline.

Learning Method Backbone Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

S Rau [14] 0.054 - - - - - -

SS

Freedman [6] Resnet18 0.168 - - - - - -
Monodepth2 [17] Resnet18 0.163 2.157 10.134 0.211 0.784 0.941 0.979
Packnet-SfM [37] Resnet18 0.121 1.150 7.957 0.165 0.868 0.966 0.988

FBNet Resnet18 0.108 1.060 7.369 0.149 0.904 0.974 0.991

Monodepth2 Resnet50 0.123 1.357 7.710 0.157 0.880 0.969 0.989
Packnet-SfM Resnet50 0.115 1.086 7.570 0.160 0.886 0.971 0.989

FBNet Resnet50 0.098 0.751 6.432 0.134 0.919 0.981 0.993

Packnet-SfM Packnet 0.116 1.091 7.806 0.159 0.884 0.971 0.990
FBNet Packnet 0.096 0.843 7.147 0.139 0.912 0.977 0.992

Next, the input image, ground truth depth, and qualitative comparison image of UCL
Datasets are shown in Figure 6. In the evaluation, the median value of predicted depth
is scaled by a median value of ground truth depth. The predicted depth is displayed in
color from blue to red, from the nearest to the farthest. Each column is the output of the
predicted depth from the input image for each network. In the qualitative performance
evaluation, the phenomenon in which the shape of the image texture is propagated to the
predicted depth has been reduced. It also can be seen that FBNet(Resnet50) predicts a deep
depth that is not predicted by other networks.

In addition, 3D reconstruction is performed by un-projection based on the predicted
depth and intrinsic camera matrix. Figure 7 shows the qualitative evaluation of 3D re-
construction results of FBNet and Packet-SfM. In addition, the backbone of each depth
network is tested on Packnet and Resnet50. The result is shown the front view captured
from the position of the predicted camera pose and the top view taken from the top by
moving the virtual camera. The mapped depth image is the result of Figure 6. Compared
to Packnet-SfM, the proposed FBNet shows robustness against noise caused by texture.
This is an improvement in qualitative performance as FBNet applies geometric consistency
using depth of adjacent frames.
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Finally, Figure 8 shows a 3D reconstruction comparison experiment for the image
captured by the colonoscopy simulator. The reconstruction result is shown in the same
way as in the above experiment. Only the input images are different. Since the captured
image has no ground truth, it is scaled by multiplying it by a constant value. There was
a noise for light reflection that could not be observed in UCL datasets, and the proposed
FBNet is more robust to lighting noise than Packnet-SfM.
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Figure 8. Qualitative results for 3D reconstruction. (a) is an input image taken with the camera in colonoscopy simulation.
(b–d) are results of FBNet. (e–g) are results of Packnet-SfM. (b,e) are the results of 3D reconstruction image mapping.
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4.3. Ablation Study

The evaluation of the performance improvement due to the depth feedback network
and depth reconstruction loss proposed by FBNet is performed as an ablation study and
is shown in Table 2. In this experiment, we remove the proposed factor and confirm the
increased performance as compared to the baseline model.

Table 2 shows that the performance improvement by the depth feedback network
is higher than that of the depth reconstruction loss. In addition, it was confirmed that
the performance of Packnet was better than Resnet50 in the KITTI dataset [37], while the
accuracy and error metric of the two backbones in the UCL dataset was almost similar in
both the baseline and FBNet models. This seems to mean that, in the case of colonoscopy
images, the effect of the deep-layer network is not large because the features are lacking
and there are many texture-less areas.

Compared to the baseline model, FBNet uses one more depth feedback network, so
it has more training parameters. In the inference time, the depth is predicted with the
depth network only in the first frame, and the depth feedback network is used in the
subsequent frames. Therefore, the computational load that increases in actual running time
is an operation according to the depth input channel insertion.
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Table 2. Ablation study on the FBNet. We perform the ablation study under the same conditions as the comparative
experiment. Performance is shown when depth reconstruction loss and depth feedback network are removed from the
proposed full network.

Method Backbone Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

FBNet

Resnet50

0.098 0.751 6.432 0.134 0.919 0.981 0.993
FBNet w/o Depth

Reconstruction Loss 0.102 0.875 7.093 0.147 0.908 0.978 0.992

FBNet w/o Depth
Feedback Network 0.107 0.824 6.453 0.146 0.906 0.973 0.989

Baseline 0.115 1.086 7.57 0.16 0.886 0.971 0.989

FBNet

Packnet

0.096 0.843 7.147 0.139 0.912 0.977 0.992
FBNet w/o Depth

Reconstruction Loss 0.1 0.846 7.144 0.143 0.909 0.978 0.992

FBNet w/o Depth
Feedback Network 0.106 1.029 7.941 0.146 0.894 0.975 0.992

Baseline 0.116 1.091 7.806 0.159 0.884 0.971 0.99

5. Discussion

In this study, a general self-supervised monocular depth estimation methodology is
used for depth estimation of colonoscopy images. The existing depth estimation research
was conducted based on the autonomous driving datasets KITTI. This dataset can get
geometric information from enough texture of the image, but, in the case of colonoscopy im-
ages, almost all areas are texture-less. In this study, we propose the FBNet that applies both
depth feedback network and depth reconstruction loss to increase geometry information.

The proposed FBNet was evaluated quantitatively and qualitatively using images
taken from a colonoscopy simulator and UCL datasets. We confirmed the lower error
metric and higher accuracy metric. In addition, through qualitative evaluation, it was
confirmed that it is robust to depth noise and specular reflection noise.

Our future research will focus on the colonoscopy map and path generation for
autonomous robotic endoscopes. The proposed depth estimation network will continue
to be used for solving a scale-ambiguity problem, image registration for simultaneous
localization and mapping (SLAM), and path planning. In addition, the current method
has limitations in that each model must be trained according to the colonoscopy device.
In order to apply to more general devices, we will apply a method of estimating camera
parameter values to the model.
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