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Abstract: Currently, hydrogen generation via photocatalytic water splitting using semiconductors is
regarded as a simple environmental solution to energy challenges. This paper discusses the effects
of the doping of noble metals, Ir (3.0 at.%) and Ni (1.5–4.5 at.%), on the structure, morphology,
optical properties, and photoelectrochemical performance of sol-gel-produced SnO2 thin films. The
incorporation of Ir and Ni influences the position of the peaks and the lattice characteristics of the
tetragonal polycrystalline SnO2 films. The films have a homogeneous, compact, and crack-free
nanoparticulate morphology. As the doping level is increased, the grain size shrinks, and the films
have a high proclivity for forming Sn–OH bonds. The optical bandgap of the un-doped film is 3.5 eV,
which fluctuates depending on the doping elements and their ratios to 2.7 eV for the 3.0% Ni-doped
SnO2:Ir Photoelectrochemical (PEC) electrode. This electrode produces the highest photocurrent
density (Jph = 46.38 mA/cm2) and PEC hydrogen production rate (52.22 mmol h−1cm−2 at −1V),
with an Incident-Photon-to-Current Efficiency (IPCE% )of 17.43% at 307 nm. The applied bias photon-
to-current efficiency (ABPE) of this electrode is 1.038% at −0.839 V, with an offset of 0.391% at 0 V
and 307 nm. These are the highest reported values for SnO2-based PEC catalysts. The electrolyte type
influences the Jph values of photoelectrodes in the order Jph(HCl) > Jph(NaOH) > Jph(Na2SO4). After
12 runs of reusability at −1 V, the optimized photoelectrode shows high stability and retains about
94.95% of its initial PEC performance, with a corrosion rate of 5.46 nm/year. This research provides a
novel doping technique for the development of a highly active SnO2-based photoelectrocatalyst for
solar light-driven hydrogen fuel generation.

Keywords: SnO2 nanoparticulate thin films; Ni/Ir-doping; photoelectrocatalyst; photoelectrochemi-
cal hydrogen generation; conversion efficiencies

1. Introduction

Photoelectrochemical water splitting (PEC-WS) and the hydrogen generation process
using unlimited solar energy have attracted increased attention worldwide. Hydrogen
energy is extensively used in various fields, such as rocket propellant, vehicle fuel, and
refining petroleum products. This is due to its zero CO2 emissions, low density, high energy
density, environmental friendliness, renewability, and storage capacity. This technique re-
quires a large-area photoelectrode and a low-cost chemically stable material with significant
absorption of solar light and a suitable bandgap [1–4].

Demonstrating abundance, facile preparation, chemical stability in a wide range of
pH values [1], and environmental compatibility [5], SnO2 is a semiconductor material
that inherits a direct bandgap (Eg) of 3.6 eV with a high exciton binding energy at room
temperature (RT) [2]; its electron mobility is in the order of 240 cm2 V−1 S−1 [6], and it has
high transparency in the visible range, low resistance, and high reflectivity for infrared
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light [7]. This oxide’s characteristics make it ideal for optoelectronics, solar cells, gas
sensors, catalysis, and thin-film transistors (TFTs). Sn4+ (4d105s0) is suggested to replace
In3+ in thin-film transistors to avoid the high cost of device fabrication [8]. On the other
hand, and despite these many advantages of SnO2, its wide Eg and low surface area limit
its use in industrial applications such as hydrogen generation.

Various physical and chemical approaches have been reported for the fabrication of
doped and pure SnO2 films and nanopowders. Sb-doped SnO2 films were synthesized by
means of the dip-coating technique [7] and spray pyrolysis [9] for possible use in optoelec-
tronic applications and photocurrent generation. A SnO2/ graphene sheet prepared by
means of a hydrothermal method showed photocatalytic activity in dye removal, and this
composite was found to be suitable as a supercapacitor electrode [10]. Bera et al. [11] synthe-
sized uniform SnO2 films of nanograss structure and SnO2/BiVO4 core-shell structures by
means of a vapor-solid deposition process to achieve high photoelectrochemical efficiency.
Moreover, Mohammad et al. [5] fabricated SnO2-g-C3N4 nanostructures by means of the
hydrothermal route for dye removal and wastewater treatment. Yuan et al. [12] found that
WO3@SnO2 core-shell nanosheets with a 20 nm SnO2 shell layer prepared using atomic
layer deposition have superior sensing performance with a response of 1.55 and selectivity
toward 15 ppm NH3 at 473 K.

Among the used elements, the transition metals represent a fascinating class of ma-
terials as dopants. Doping with Co was reported to enhance the hydrogen gas sensing
properties of the spin-coated SnO2 films [3]. Cr doping was applied to tune the linear and
nonlinear optical parameters of the spray-deposited SnO2 thin films [13]. Moreover, doping
SnO2 films with Fe (5–20%) caused the transition of the conductivity of SnO2 from n- to
p-type and induced a good rectifying character for SnO2 homojunction [14]. Ni doping has
been reported to induce a greater number of defects and oxygen vacancies, resulting in an
RT ferromagnetic character for the co-precipitated SnO2 nanoparticles (NPs) [15]. Addi-
tionally, the Ni-doped SnO2 was extensively studied for gas sensing applications [16,17].
Additionally, co-doping or double doping seems to be required for tuning the materials’
properties. Saadeddin et al. [18] found that the double doping of SnO2 by Zn and Sb signifi-
cantly improved its electrical conductivity and density, and the presence of Zn prevents the
Sb evaporation during solid-state reaction at 1300 ◦C. According to Lamrani [19], the dou-
ble (Eu, Gd) impurities substitute the adjacent Sn sites and result in strong ferromagnetic
interactions via the p–f hybridization between rare-earth 4f and Op states. The obtained
ferromagnetic alloy is expected to act as a great power source for effective photovoltaic
conversion in solar cell applications. Moreover, Sery et al. [20] proved that co-doping of
SnO2 NPs with (3% Ti, 3% Ni) and co-doping of NiO NPs with (3% Ti, 3% Sn) significantly
reduced their Eg and the obtained oxides are highly efficient photocatalysts.

The present work was focused on evaluating the influence of two transition metals,
the noble metals Ir and Ni, on the physicochemical features of SnO2 material. This work
represents the first attempt to improve the structural, optical, and photoelectrochemical
characterization of SnO2:Ni,Ir films to enhance their potential for hydrogen energy gen-
eration. The samples were prepared by means of a sol-gel method, owing to its low cost,
simplicity, safe, mass/large-scale production, and easy tailoring of film thickness. Addi-
tionally, sol-gel-prepared films usually have a mesoporous structure or a high specific area,
which made these films more suitable for gas sensing and hydrogen energy production [3].

2. Experimental Details
2.1. Chemicals and Preparation Process

The source of Sn was SnCl2·2H2O, MW~225.63, from Merck, whereas the source of Ir
element was IrCl3·H2O, MW~298.58 g/mol from Sigma. The Ni source was Ni(CH3COO)2.
4H2O, MW ~ 248.84 from Fairsky. High-purity and water-free ethanol was used as a
common solvent, and glacial acetic acid was used as a stabilizer. Meanwhile, 0.325 M
solutions of SnO2 and 3.0% Ir-doped SnO2 (SnO2:Ir) were synthesized by dissolving the
required amounts of SnCl2·2H2O and IrCl3·H2O/SnCl2·2H2O, respectively, in 10 mL
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ethanol for each. These two solutions were then stirred at 60 ◦C for 3 h. After the first
20 min, a predetermined amount of the stabilizing agent was added drop by drop to
obtain a clear and homogeneous solution. Then, the solutions were aged for one day at RT.
To obtain SnO2:Ni,Ir films, Ni(CH3COO)2·4H2O was added to the second solution with
specific weighted amounts for 1.5%, 3.0%, and 4.5% Ni-doped SnO2:Ir structures. The spin
coating process was carried out on pre-cleaned and dried glass substrates, and at 2500 rpm
for 25 s, followed by drying for 15 min at 200 ◦C. The coating and drying processes were
repeated 7 times. Finally, the films were subjected to heat treatments at 450 ◦C for 3.0 h in a
controlled air furnace followed by cooling the furnace to RT overnight.

2.2. Characterization and Measurements

The crystal structure identification of doped and pure SnO2 was evaluated using
a high-resolution X-ray diffractometer PANalytical X’Pert Pro system, Holland. This
was done using CuKα radiation of wavelength λ = 1.5406 Å with a step of 0.02◦ and
operated at 42 kV and 32 mA. The patterns were recorded in the range of 4–70◦ on the
2θ-scale. The films’ surface morphology, thickness, and root mean square roughness
(Rrms) were determined by means of atomic force microscope (AFM), the PARK SYSTEM,
and XE-100E, respectively. Fourier transform infrared spectroscopy (FTIR) was used to
investigate the films’ functional groups, utilizing FT/IR-6200 (Jasco Co., Tokyo, Japan),
in a wavelength range 400–4000 cm−1. The absorbance spectra (Abs) were recorded in
a wavelength range of 200–1000 nm using a UV/VIS/NIR 3700 (Shimadzu, Columbia,
MD 21046 USA) double beam Shimadzu spectrophotometer. The absorption coefficient
α = 2.303 Abs./ f ilm thickness (d) was used in calculating the direct optical Eg of the
samples. All these investigations were performed at RT. The photoelectrochemical water
splitting measurements were performed using 100 mL of 0.5 M HCl, NaOH, or Na2SO4
solutions at RT (25 ◦C) with a sweep rate of 1 mV/s. Only the temperature effect was
investigated using a 0.1 M HCl solution. In the water-splitting test reaction, a two-electrode
cell was used, with the photocathode being a nanocomposite electrode with a 1 cm2 surface
area and the counter electrode being a Pt electrode. The artificial light was incident on the
electrode surface with standard white light illumination of 100 mW·cm−2 provided by a
500 W Xenon lamp (Newport, 66142-500HX-R07, Newport, UK). The effects of incident
wavelength (307–636 nm), temperature reaction (25–85 ◦C), and time stability on water
splitting were investigated.

3. Results and Discussion
3.1. X-ray Diffraction and AFM Analysis

Figure 1a shows X-ray diffractometer (XRD) charts of doped and pure films. The
patterns are composed of well-defined peaks with orientations in the (1 1 0), (1 0 1), (2
0 0), (2 1 1), (2 2 0), and (0 0 2) planes that match the standard data for a rutile phase of
cassiterite SnO2 with a tetragonal structure, JCPDS no. 72-1147, and space group P42/mnm.
Among them, the (1 1 0) peak exhibits the highest intensity, and this direction has the
least surface energy, and so is thermodynamically and electrostatically the most stable [21].
Moreover, the crystal growth in the (2 0 0) and (2 1 1) directions means that all films are
polycrystalline and composed of randomly oriented crystals. No IrOx or NiO phases are
observed in the spectra under the resolution limit of XRD. A similar result was reported for
hydrothermally prepared graphene-loaded SnO2 NPs [10]. Figure 1b illustrates that the
positions of (1 0 1) and (2 0 0) are influenced by doping, where the peaks are right-shifted
with an increasing Ni doping ratio. These peaks’ shift confirms that the Ir/Ni ions were
introduced substitutionally and/or interstitially inside the SnO2 lattice [22]. Right-shifted
diffraction peaks were also noticed in the XRD of spin-coated SnO2 after loading with
Co [3]. Additionally, the introduction of Zn2+ (0.74 Å radius) and F ions (1.33 Å radius)
caused lattice expansion for the spray-deposited SnO2 films [23].
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The crystallite size (D) and lattice parameters (a,c) were determined from Scherrer’s
equation, D = 0.9λ/(β1/2cosθ), and the following formula [22]:

1
dhkl

=
2 sinθ

λ
=

√
(h2 + k2)

a2 +
l2

c2 (1)

where β1/2 is the full width at half maximum intensity, d is the inter-planar distance, and
(hkl) is Miller’s indices. The calculated values of a, c, and the volume of the unit cell
(V = a2c), as well as the crystallite size (Dav), are tabulated in Table 1. As apparent from
Figure 1, the peaks’ intensity reduced with an increasing dopant concentration, indicating
the decrease in the crystallinity of the films. The value of Dav was calculated from the most
three intense peaks; (1 1 0), (1 0 1), and (2 1 1). Dav slightly increased from 29.62 to 30.43 nm
after 3.0% Ir doping but decreased to 24.23 nm after 4.5% Ni loading. This means that
Ir doping improved the film’s crystallinity. The decrease in Dav of SnO2 with increasing
dopant contents may be attributed to the formation of a large number of nucleation centers
causing the formation of smaller nanocrystals [24]. The greater the density of centers
of nucleation, the smaller Dav will be, and vice versa [25]. Similarly, Dav decreased from
28.3 nm for pure SnO2 nanorods to 6.2 nm after 5.0% Ni doping [16]. As listed in Table 1, the
calculated values of a, c, and V of pure SnO2 are 4.747 Å, 3.189 Å, and 71.86 Å3, respectively.
These values are close to those reported by Bouznit and Henni [9], a = 4.75 Å and c = 3.18 Å
for the spray-deposited SnO2 film. Additionally, the parameters of the prepared samples
are influenced by the dopant type and its content inside the SnO2 film. When increasing
the Ni content from 1.5% to 4.5%, the a, c and V are decreased from 4.741 Å, 3.182 Å, and
71.52 Å3 to 4.712 Å, 3.173 Å, and 70.45 Å3, respectively. The decrease in these parameters is
attributed to the replacement of the Sn4+ ion (radius ~0.72 Å) with smaller sized ions (Ir3+,
0.68 Å; Ni2+, 0.62 Å), as well as the associated interfacial effects at the dopant sites, such as
charge redistribution and valence state regulation [26,27]. This also may be related to the
nanoparticle size effect, whereas the lattice parameter contraction is proportional to the
diameter of the nanoparticle. Singh et al. [2] reported a reduction in Dav and an increase in
V of the co-precipitated SnO2 NPs due to doping with Er at 1.0–5.0% ratios.
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Table 1. Films’ thicknesses, XRD data (lattice parameters a and c and volume of the unit cell V), and
crystallite size Dav. AFM measurements (grain size, Gs, and roughness, Rrms) and the direct optical
bandgap (Eg) of the films) are also shown.

Film’s Composition Thickness
(nm)

Lattice Parameter
Dav (nm)

AFM
Eg (eV)

a (Å) c (Å) V (Å3) Gs (nm) Rrms (nm)

SnO2 222 4.747 3.189 71.86 29.62 33.12 17.25 3.50
SnO2:Ir 219 4.742 3.191 71.75 30.43 35.07 15.36 3.70

SnO2: 1.5% Ni,Ir 225 4.741 3.182 71.52 27.57 29.37 19.17 2.77
SnO2: 3.0% Ni,Ir 217 4.735 3.178 71.25 23.91 26.92 14.23 2.70
SnO2: 4.5% Ni,Ir 215 4.712 3.173 70.45 24.23 23.81 11.64 2.75

Figure 2 shows 3D and 2D AFM images for the doped and pure SnO2 films. As
noted, the substrates are well-covered with the material, and films are homogeneous,
compact, and crack-free with a granular or particulate character. The surface morphology
slightly changed after Ir loading, but depends on the Ni doping level. The white spots are
nanocrystal islands with heights exceeding 6 nm in SnO2 film and 10 nm in the Ni-doped
IrSnO2 films. Notably, 3.0% Ni loading changes the surface of SnO2:Ir to a 1D tubular
nanostructure, which is attractive for solar conversion via offering direct pathways for the
charge carrier transport [6]. The films’ thickness is in the range of 215–225 nm, as listed
in Table 1, i.e., the average of this range is ~220 nm. The grain size (Gs) and root mean
square roughness (Rrms) of all films are listed in Table 1. The Gs marginally increased after
introducing Ir3+, due to its comparable radius with that of the host (Sn4+). Then, the Gs
decreases from 35.07 nm for SnO2:Ir film to 23.81 nm with an increasing Ni doping ratio
from 0 to 4.5%. The difference in radii between host Sn4+ and dopant Ni2+ may account for
the decrease in Gs caused by increasing the Ni doping level. This behavior is consistent
with the data obtained from XRD analysis, peak shift, lattice parameters, and unit cell
volume. Previously, it was mentioned in [17] that Ni is a grain growth inhibitor within the
SnO2 matrix. This result is consistent with XRD data. However, as AFM measures Gs as
the apparent distance between two adjacent grains, and as one grain may consist of more
than one crystallite, Gs is thus found to be greater than Dav. Moreover, the Rrms of SnO2
decreased from 17.25 to 15.36 nm after doping with 3.0% Ir, then increased to 19.17 nm after
co-doping with 1.5% Ni. Finally, it decreased to 11.64 nm with an increased Ni doping ratio.
Similar results were reported for the sol-gel dip-coated (Fe, Ni)-doped SnO2 films [28]. In
that paper, Benkara et al. illustrated that the Rrms strongly depends on the preparation
and dipping conditions as well as the different kinetics of Fe and Ni needed for the
growth of SnO2 nanoparticles. It is well-known that low Rrms reduces the carrier scattering
inside the films, ensuring the high performance of TFTs [8]. Additional morphological
investigation was carried out by taking cross-sectional images for the films, as shown in
Figure S1 (Supplementary Materials). These images confirm the tubular structures of the
prepared films after the insertion of Ni and Ir as dopant materials. Surface morphology, it
is believed, plays an important role in improving the material’s PEC performance. As a
result, Ni and Ir doping is expected to encourage the use of these films as photoanodes in
electrochemical applications.
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3.2. FTIR and UV-Vis Spectroscopy

In the absorbance mode, the FTIR spectra of SnO2, SnO2:Ir, and SnO2:Ni,Ir samples are
displayed in Figure 3. The absorption band at 445 cm−1 is owing to the symmetric Sn–O–Sn
vibration. The band at 604 cm−1 is attributed to the antisymmetric Sn–O–Sn/O–Sn–O
bridge groups of SnO2 [26]. Doping with Ni/Ir results in a slight decrease for the first
band and a slight increase for the second one. The SnO2 lattice mode appears at 688 cm−1,
and this band is also influenced by foreign atoms [22]. The observed bands are similar to
those reported by Kuantama et al. [29] for nanoporous F: SnO2 prepared by the sol-gel
combustion route. The very strong infra-red (IR) absorption that occurs at ~905 cm−1 was
assigned to Sn–OH vibration [30]. Besides the reduction in intensity with doping, this band
is also slightly shifted to lower energies. Moreover, the IR spectrum of SnO2 film displays a
broad peak around 3410 cm−1, indicating the presence of O–H on the film surface. The IR
absorption spectrum is size- and morphology-dependent [28]. The film doped with 3.0%
Ni shows more intensive absorption bands compared with the films doped with 1.5 and
4.5% Ni. This is due to the small crystallites size at this doping ratio (23.91 nm) and the
change to one-dimensional (ID) tubular morphology, as seen in Figure 2. The observed
red-shift and decrease in peaks’ intensity due to the Ni/Ir doping are powerful pieces of
evidence of the Ir and Ni introducing into the SnO2 cassiterite lattice. The observed peaks
related to the presence of OH indicate the films’ ability to be used in aqueous solutions for
electrochemical applications.
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UV-vis spectra of the films are shown in Figure 4a. As seen, although Ir incorporation
reduced Abs, there is a significant increase in Abs after introducing Ni into the IrSnO2 ma-
trix. Ni-doped films show an absorption band around 255 nm, shifted to lower wavelengths
for SnO2 and SnO2:Ir films. This band is due to the photoexcitation of electrons from the
valence band (VB) to the conduction band (CB) [15]. Moreover, the absorption edge is
shifted from 380 nm for the pure film to longer wavelengths after doping with Ni. Similarly,
compared to the electro-spun SnO2 nanotubes (NTs), the SnO2/SnS2 showed an absorption
edge that red-shifted combined with an enhanced absorption intensity [31]. Since visible
light represents a large portion of the solar spectrum, photoanodes with strong absorption
for the visible light (i.e., Ni-doped films) should have higher PEC-WS performance.
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Figure 4b shows (αhν)2 vs. hν, the Tauc plots for determination of Eg, which are
obtained by linear extrapolation to the abscissa axis. As given in Table 1, the Eg of pure
SnO2 is ~3.5 eV, and 3.0% Ir incorporation resulted in a blue-shift for Eg to 3.7 eV, whereas
a red-shift to 2.70 eV is caused by Ni loading. This is consistent with the introduction of
electronic states in the bulk and the oxygen defects associated with the doping. Although
the Eg of the pure film is smaller than that reported in the literature, Mohammad et al. [5]
reported an Eg of ~3.19 eV for the hydrothermally prepared SnO2 film, and Li et al. [31]
reported an Eg of ~3.37 eV for SnO2 nanotubes fabricated by the electrospinning technique.
The Burstein–Moss effect could explain the widening in Eg due to Ir doping. The narrowing
in Eg with Ni doping may be related to the random distribution of Ni impurities and
formation of the density of states tails at the edges of the bands, which result in an increased
number of band-to-tail and tail-to-tail transitions [23]. In other words, this is due to the
sp-d spin-exchange interactions between the localized d electrons of Ni ion substituting the
cation and the band electrons. This result suggests that Ir/Ni co-doping could be used to
tune the Eg of SnO2 for specific applications.

In the literature, the Eg of SnO2 reduced from 3.87 to 3.79 eV after doping with 10%
Sb [7] and decreased from 3.6 to 3.28 eV after doping with Cr at ratios ≤ 5 wt% [13].
Moreover, according to Othmen et al. [14], the incorporation of Fe (5–20%) decreased
the allowed and forbidden direct Eg of spin-coated SnO2. Ni doping can alter the Eg of
SnO2 NPs from 4 to 3.85 eV [15]. Additionally, Ni doping at 5.0% reduced the Eg of SnO2
nanorods, prepared by a hydrothermal method, from 3.85 to 3.65 eV [16]. According to
Salameh et al. [23], the Eg of SnO2 decreased from 3.97 to 3.53 eV after Zn loading but
increased to 4.45 eV after co-doping with F. Han et al. were also able to reduce the energy
gap of sol-gel-prepared SnO2 films from 3.8 to 3.1 eV by using Ti alloying and the oxygen
vacancies created [32]. In contrast to our results, Ren et al. [8] found that the Eg of SnO2 was
3.87 eV and was not changed even after doping with 10–50% Ga. Additionally, Ni doping
was found to increase the Eg of the spray-deposited SnO2 films from 4.03 to 4.09 eV [17].
Guo et al. obtained SnO2 electrode with an energy gap of 1.74 V after (Ni, S)-co-doping [33].
Additionally, Matussin et al. reduced the band gap energy from 3.33 eV for SnO2 to 2.08 eV
for 10at% (Co, Ni)- SnO2 [34]. Moreover, Jasim et al. reported the reduction in the Eg of
SnO2 from 3.7 to 2.5 eV for SnO2:Co: Cu–H nanoparticles [35]



Nanomaterials 2022, 12, 453 9 of 24

3.3. Photoelectrochemical H2 Generation
3.3.1. Influence of the Used Electrolyte

One of the significant parameters that affect the PEC performance of the photocatalyst
is the PEC cell electrolyte. Any alteration in the conditions of the electrolytes will cause
several differences in the photocatalytic interfaces. Electrolyte choices need to be consistent
with the applied PEC catalyst. Electrolytes must not have electrochemical reactions with
the used photocatalysts, and their optical absorption bands cannot overlay with that of
photocatalysts. The structure of electrolytes has a major influence on the PEC H2 generation
rate, which affects the diffusion of ions and thus changes the conductivity of electrolytes.
The H2 generation rate and PEC catalytic efficiency depend on the pH values and the
conductivity of the electrolytes [36]. Conductivity is an essential property for selecting
electrolytes to allow the transport of charges in the PEC process. The addition of active
cations/anions (such as Na+/SO4

2− or OH−) with sufficient concentrations will reduce
the electrolyte impedance and promotes band bending. Dissimilar electrolytes of the same
concentration (0.5 M)—a strong acid (HCl, pH = 0.3), a strong base (NaOH, pH = 13.69),
and neutral salt (Na2SO4)—were employed to identify the major variations in the PEC
performances of the studied photocathodes. The PEC measurements of the photoelectrodes
were taken in 100 mL of each electrolyte at 25 ◦C (RT) with increment 1 mV/s. During PEC
measurements, a working 1 cm2 electrode and a counter 1 cm2 Pt electrode were used. The
measurement of photocurrent density–voltage (Jph–V) curves was performed in standard
white light illumination of 100 mW.cm−2 provided by a 500 W Xenon lamp, as shown in
Figure 5a–c. The Jph’s value rose as the used bias increased and, surprisingly, the current
density increased following the order: Jph(HCl) > Jph(NaOH) > Jph(Na2SO4). The maximum
Jph value is 46.38 mA/cm2 in HCl, 18.54 mA/cm2 in NaOH, and 14.95 mA/cm2 in Na2SO4
solution. So, HCl is the best electrolyte for the PEC process utilizing the 3.0% Ni-doped
SnO2:Ir photoelectrode. Similar behavior was reported for F-doped and In-doped SnO2 [37].
This could be due to a slightly low pH value (0.30) that enhances the PEC reaction in an
acidic medium with a high density of H+ ions [38]. The obtained Jph value for 3.0% Ni-
doped SnO2:Ir photoelectrode is higher than that obtained for 1.5% Ni-doped SnO2:Ir,
4.5% Ni-doped SnO2:Ir, SnO2:Ir, and SnO2 under exposure to light. So, the optimized
photocathode is 3.0% Ni-doped SnO2:Ir, which gives the maximum photocurrent density
in the HCl electrolyte.

On the other hand, the observed anodic current especially in the HCl electrolyte
(Figure 5d) is ascribed to the oxygen and chlorine evolution reactions (OER and CER) in the
HCl electrolyte (Peak I and Peak II) for SnO2 and SnO2:Ir electrodes and only OER (Peak
I) for 1.5% Ni-doped SnO2:Ir and 3.0% Ni-doped SnO2:Ir electrodes. The current density
and voltage position of peaks I and II are shown in Table S1 (Supplementary Materials).
For Na2SO4 (Figure 5b), the anodic current at a voltage > 0.5 V is ascribed to the OER only.
It is noted that the use of NaOH (Figure 5c) decreased the OER efficiency of the SnO2:3%
Ni,Ir sample, which was found to occur because OH− ions fight for adsorption sites and
the kinetics of the reaction may be deaccelerated. Therefore, in the different electrolytes,
the recorded anodic currents were predominantly due to oxygen evolution depending
on the electrolyte, and not to SnO2:Ni,Ir dissolution. Hence, in the various electrolytes,
the observed anodic currents were mainly caused by oxygen evolution depending on
the electrolyte, and not SnO2:Ni,Ir dissolution [39]. So, under OER conditions, Ni and Ir
co-doping could help to improve PEC stability, as we will discuss later. It was previously
stated that the band bending at a high doping level increased with anodic current density,
resulting in a monotonic current density increase at pH ≤ 1 due to the driven electron flow
through the band bending and ionization of the deep donor levels of oxygen vacancies [40].
Electron tunneling is considered the principal mechanism of anodic current density at low
doping percentages [41].
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3.3.2. PEC Behavior of the 3.0% Ni-Doped SnO2:Ir Photocathode

Figure 6a shows the PEC characteristics of the 3.0% Ni-doped SnO2:Ir photoelectrode
utilizing 0.5M HCl in the dark and under the standard white light of 0.1 W/cm2 illumina-
tions utilizing a Keithley 2400 source measure unit. As shown, the current density increased
with an increasing voltage to reach −5.27 and −46.38 mA.cm−2 at −1V in the dark and
when subjected to white light, respectively. The significant dark currents are caused by the
transfer of charges supported by ionic currents that come from the HCl electrolyte. Under
the visible light illumination, the sharp increase in Jph with a negative potential indicates
that this electrode acts as a photocathode. Remarkably, this PEC electrode displays a current
density of ∼−432 µA/cm2 at zero V and photocurrent onset at >−0.196 V. The high value of
the photogenerated current density in light is a pre-indicator for the high-performance PEC
water-splitting. This could be due to the extension of Eg to the visible light region (2.7 eV)
and the robust absorption of Vis/IR by Ni and Ir co-doping, in addition to the observed
1D nanotubular morphology, which speeds up the redox reaction rate and thus promotes
the PEC reaction in addition to enhancing the tunneling activity of the photogenerated
carriers [42,43].

The analysis of the PEC (Jph–V) curve was performed under visible light for 12 runs to
investigate its ability to be reproduced and the reusability of 3.0% Ni-doped SnO2:Ir photo-
electrode. These results are shown in Figure 6b. The successive repeated measurements led
to a decrement in the photocurrent density from −46.38 to 44.04 mA cm−2 after 12 sequent
runs at −1 V in 0.5M HCl. Therefore, after 12 runs of the ruse, this electrode conserves
almost 94.95% of its initial PEC performance, which indicates high stability and reusability.
The PEC stability of the 3.0% Ni-doped SnO2:Ir photocathode was studied for a long time
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in 0.5M HCl under standard visible light illumination and −1V between the Pt counter
electrode and this photocathode. The dependence of J on time is depicted in Figure 6c. As
seen, the Jph sharply decreased within the first 2 s to ~3.23 mA·cm−2. This rapid fall in Jph
could be due to limited photocorrosion occurring between the redox electrolyte and this
photoelectrode [43]. After that, a small decrease in Jph is seen before reaching −1.28 mA
cm−2, as a constant value, for a time of >300 s, i.e., the current density decreases until a
minimum is reached, illustrating the continuous accumulation of uncompensated ionic
space charge at the two electrodes until beginning the injection of electronic charge. This
shows that the 3.0% Ni-doped SnO2:Ir is photochemically stable and has a long service life
for H2 generation through the PEC water splitting. Moreover, the photocurrent density
was measured under pulsed light utilizing the chronoamperometry technique.
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Figure 6. The dependence of Jph on the applied voltage of the 3.0% Ni-doped SnO2:Ir photoelectrode
(a) in the dark and under white light and (b) for 12 runs of reusability under white light illumination
at room temperature; (c) Jph versus exposure time and (d) the number of H2 moles at time of
generation for the 3.0% Ni-doped SnO2:Ir photocathode at −1V and room temperature. The insets of
(b,c) showed magnified parts of the curves.

Figure 7a shows the variability in the photocurrent density versus the elapsed time
during the on/off light switching for the 3.0% Ni-doped SnO2:Ir electrode. Figure 7a shows
the time required to reach a current density of 6.3 mA/cm2 for 15 successive on/off cycles
of light. This current/time behavior was measured at −0.53 V. Additionally, the variation
of the detection time with the number of runs is provided in Figure 7b. For runs from 1 to
15, the time required to reach 6.3 mA/cm2 increased from 117 to 192 s. The photocurrent
density decreases in the first two cycles and then reaches a steady and quasi-reproducible
state after several on/off cycles of light, with no over-shooting at the beginning or end
of the on/off cycle, as shown in Figure S2 (Supplementary Materials). The duration of
Figure S2 is 35 s, which represents the electrode’s holding time in the light. This suggests
that the electron’s diffusion path is free from grain boundaries, which can introduce traps
to impede electron movement and slow down the photocurrent generation [42]. The
stability test of the 3.0% Ni-doped SnO2:Ir electrode under successive on/off illumination
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cycles was carried out for 5 h to ensure long-term PEC stability, as shown in Figure S3
(Supplementary Materials).
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Theoretically, the calculated number of generated hydrogen moles from the water
splitting through the PEC process using Faraday’s law is represented by Equation (2) [44]:

H2(moles) =
∫ t

0

Jphdt
F

(2)

where F = 9.65 × 104 C/mol (the Faraday constant) and t is the time of generation. From
the recorded Jph–time data (Figure 6c), the number of produced H2 moles as a function
of the time is presented in Figure 6d. The calculated hydrogen output rate for the 3.0%
Ni/IrSnO2 electrode is 52.22 mmol h−1cm−2, while practically it was 35.03 mmol h−1cm−2.
The Faraday efficiency is thus 67.1% for 3.0% Ni/IrSnO2.

3.3.3. Effect of Temperature and Thermodynamic Paramters

Figure 8a illustrates the influence of heating in the RT–85 ◦C range on the PEC Jph–
voltage of the 3.0% Ni-doped SnO2:Ir photoelectrode in 50 mL of 0.1M HCl electrolyte. One
can see in this figure that Jph is increased from −13.29 to −46.07 mA cm−2 by increasing T to
85 ◦C. The increase in Jph with the increase in T may be due to: (i) increasing T of the photo-
induced carriers enhancing the number of electrons in the CB and holes in the VB, thus
improving the rate of redox reactions and Jph; (ii) increasing T leading to an increase in the
charge carrier’s mobility and thus the carrier’s lifetime, following the relation µ= qτn /m*,
where µ indicates the carrier’s mobility, and m* is the carrier’s effective mass. This results
in a decrement in the rate of recombination of the produced carriers, which increases the
rate of hydrogen generation; and (iii) the improvement of the minority carrier diffusion
length and hence the photocurrent density, which is directly proportional to the square root

of the absolute T according to the relation Jph α Ldiff =
√

µ kBT
q τn [45].

In addition, it is necessary to evaluate thermodynamic parameters such as activation
energy (Ea), enthalpy (∆H*), and entropy (∆s*). The relationship between the reciprocal of
the absolute T (1/T) and Jph (rate of reaction) for the 3.0% Ni/IrSnO2 electrode is depicted
in Figure 8b. The Ea value is calculated from the linear fitting slope of Figure 8b based on
the Arrhenius equation [46]:

Ln
(

Jph

)
= −Ea

R
[
1
T
] (3)

where R = 8.314 J.K−1.mol−1, the universal gas constant. From Figure 8b, slope = −Ea/R
and the Ea value for the 3.0% Ni/IrSnO2 electrode is 17.598 kJ.mol−1. Additionally, the
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values of ∆H* and ∆S* for the H2 generation reaction are calculated based on the Eyring
equation. The Ln (Jph/T) versus (1/T) is displayed in Figure 8c. This equation takes the
form [46]:

Ln
Jph

T
= −∆H∗

R
· 1

T
+ Ln

(
kB
h

)
+

∆S∗

R
(4)

where kB = 1.38×10−23 J.K−1 (Boltzmann’s constant) and h = 6.626×10−34 J.s (Planck’s
constant). From the slope of the linear fitting, the ∆H* value for 3.0% Ni/IrSnO2 is equal
to 20.31 kJ.mol−1. Additionally, from the intercept, the ∆S* value is ~−107.91 Jmol−1K−1.
For comparison, the thermodynamic parameters are also estimated for SnO2 and SnO2:Ir
electrodes using Figure S4 and Figure S5 (Supplementary data). For the SnO2 electrode, the
Ea, ∆H*, and ∆S* values are ~14.308 kJ.mol−1, 13.685 kJ.mol−1, and −66.189 Jmol−1K−1,
respectively. For the SnO2:Ir electrode, these values are changed to 16.971 kJ.mol−1,
23.83 kJ.mol−1, and −637.68 Jmol−1K−1, respectively.
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3.3.4. Effect of Monochromatic Light Illumination and Conversion Efficiencies

Figure 9a shows Jph versus the applied voltage under the monochromatic light illumi-
nation for the 3.0% Ni-doped SnO2:Ir photocathode in 0.5M HCl solution at RT. A set of
bandpass filters with wavelengths from 307 to 636 ± 10 nm were used. From the inset of
Figure 9a, the highest photocurrent occurred at 307 nm with Jph = 38.25 mA/cm2. The least
current was created at 470 nm with Jph = 30.41 mA cm−2. This Jph–wavelength dependence
may be correlated with the absorption behavior of the 3.0% Ni/IrSnO2 photocathode at each
wavelength and supports the photoelectrocatalytic response of the optimized photoelec-
trode for the H2 generation process. Generally, this behavior confirms the comprehensive
response of the 3.0% Ni/IrSnO2 photoelectrode and its capacity to absorb a large portion of
the solar spectrum in UV/visible regions.
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Figure 9. (a) Jph–voltage characteristics of 3.0% Ni-doped SnO2:Ir photoelectrode under monochro-
matic light illumination at RT in 0.5M HCl, (b) IPCE%, (c) ABCE% (λ) at −1 V versus the incident
λ, and (d) ABPE% as a function of the applied V at different λ. The inset of (a) shows the effect of
wavelength on the Jph–voltage at high potential window.

The enhanced solar absorption of the 3.0% Ni-doped SnO2:Ir photoelectrode and its
application for efficient H2 production from H2O splitting is further ensured by calculating
the incident photon-to-current conversion efficiency (IPCE) at diverse wavelengths (λ). The
IPCE% is calculated at a fixed applied voltage (−1 V) by Equation (5) [44]:

IPCE% = 1240·
Jph

λ·ρ · 100 (5)

where ρ is the illuminating light power density of the xenon lamp (Newport, 66142-500HX-
R07, Newport, UK) as a function of the monochromatic light wavelength—see Supplemen-
tary Data, Figure S6 and Table S2. The variation of IPCE% with λ is signified in Figure 9b.
The maximum IPCE% for the 3.0% Ni-doped SnO2:Ir photoelectrode is ~17.43% at 307 nm,
which matches the maximum absorption of the optimized electrode.

The optical loss effects, including the incident photon transmission (Tr) or reflection (R),
were ignored in the IPCE calculations. To measure the internal quantum efficiency, which is
often called the absorbed photon-to-current conversion efficiency (APCE) to correct optical
losses, APCE%, the number of PEC generated carriers which contribute to the generated
photocurrent/absorbed photon is determined using Equation (6) [47]:

APCE(λ) =
IPCE(λ)

A(λ)
=

IPCE(λ)
1 − R − Tr

(6)

where A(λ) refers to the optical absorption. Figure 9c illustrates the variation of APCE% as
a function of the incident λ. Two featured values are observed in this figure for APCE%:
18.45% at ~307 nm and 15.2% around 430 nm. These results agree well with the observation
from Figure 4, whereas two absorption peaks and two optical bandgaps are observed for
the 3.0% Ni/IrSnO2 photoelectrode.
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When applying a small external voltage to the PEC cell, the added electric energy
to the system must be deducted to determine electrode photocatalytic efficiency. For this
purpose, ABPE% (the applied bias photon-to-current efficiency) can be used. The ABPE%
values for the designed photocathode are calculated by Equation (7) [48]:

ABPE% = Jph

(
1.23 − Vapp

)
ρ

× 100, (7)

where 1.23 is the standard state reversible potential of H2O and Vapp is the external voltage.
Figure 9d illustrates the ABPE% values versus voltage at different wavelengths. Table S3
(Supplementary Materials) shows the maximum values of ABPE% and corresponding
voltage (E) at different monochromatic light levels for the H2 evolution reaction (HER) and
the oxygen evolution reaction (OER). Figure S7 (Supplementary Materials) illustrates the
ABPE% values as a function of applied voltage at different λ for OER. The maximum value
of ABPE% is 1.038% at −0.839V and 307 nm for HER. Additionally, this photoelectrode
shows an offset ABPE% of 0.391% at 307 nm and 0 V. This illustrates the decrease in
the interfacial transport resistance and enhances the PEC performance. Moreover, two
maximum ABPE% values are observed for OER (Table S3 and Figure S7): 0.433% at 0.166 V
and 0.430% at 0.297 V at 307 nm. Note that the potential position of OER1 and OER2 shifts
from 0.0653 to 1.66 V and from 0.351 to 0.297 V by decreasing the wavelength to 307 nm
(Table S3). The high performance of the photoelectrode at relatively low potential could be
advantageous for PEC cell setup.

The benchmark efficiency, or solar to hydrogen efficiency (STH), is the ratio between
the total H2 energy generated and the total energy of sunlight (AM 1.5 G, 0.1 W/cm−2).
STH% can be measured utilizing Equation (8) [49]:

STH = [ (H2/S)×
(

2.37 × 105 J/mol
)
]/[ A × Ptotal] (8)

where Ptotal and A are the power density of the illuminating light in mW/cm2, and the area
of the illuminated part of the photoelectrode in cm2, respectively, and H2/S is the rate of
the hydrogen moles production in mmol/s. Then, the calculated STH value is 12.72% for
the 3.0% Ni-doped SnO2:Ir photocathode.

In this study, the optimized 3.0% Ni-doped SnO2:Ir photocathode showed higher Jph
and conversion efficiency than previously reported SnO2-based PEC electrodes [50–58],
as given in Table 2. Previous reports showed that the PEC Jph of a graphene/SnO2–TiO2

heterostructure and FTO/BiVO4/SnO2/WO3 was Jph = 5.6 mA·cm–2 at 1.23VRHE in 0.25 M
Na2S and 0.35 M Na2SO3 and Jph = 4.15 mA·cm–2 at 1.23VRHE in 0.1 M KHCO3, respec-
tively [50,57]. For a F-doped SnO2/CuWO4 (4 cycles) IO photocatalyst, the IPCE = 9.4%
at 315 nm and 7.45% at 390 nm in 0.5 M Na2SO4 [55]. Additionally, an STH of 3.5% was
reported for BiVO4/WO3/SnO2 triple layers [56]. The results demonstrate that the nanos-
tructured 3.0% Ni-doped SnO2:Ir has high light-harvesting capabilities, high conversion
efficiencies, and enhanced nanomorphological and nanostructural properties, which are
highly favorable for practical applications.

Table 2. Values of Jph and conversion efficiency of the optimized 3.0% Ni/IrSnO2 photoelectrode
relative to the previously reported SnO2-based PEC electrodes for H2O splitting.

Photoelectrode Photoelectrode Electrolyte PEC Performance Ref

3.0% Ni-doped SnO2:Ir 0.5M HCl
Jph = 46.38 mA·cm−2 at −1V, IPCE = 17.43% and

APCE% = 18.46% at 307 nm, 52.22 mmol h−1

cm−2 at −1 V
This work

SnO2-TiO2 heterostructure 0.25 M Na2S and 0.35
M Na2SO3 (pH ∼13)

Jph = 4.7 mA/cm2

[50]
Graphene/ SnO2–TiO2 heterostructure Jph = 5.6 mA cm−2
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Table 2. Cont.

Photoelectrode Photoelectrode Electrolyte PEC Performance Ref

Pt/SnO2/RuO2 0.1 M H2SO4 Rate of H2 production = 3.75 × 10−5 mol dm−3 [51]

FTO/SnO2 /W:BiVO4 0.15 M K2SO4 (pH 7) 1.4 mA/cm2 [52]

FTO/SnO2/W:BiVO4 /Co-Pi 0.1 M KPi (pH 7) 2.3 mA/cm2 [53,54]

Fluorine-Doped SnO2 Inverse Opal(IO)

0.5 M Na2SO4

Jph = 0.14 mA/cm2 at 1.23 VRHE, IPCE = 3.42%
at 315 nm

[55]
F-Doped SnO2 /CuWO4 (4 cycles)

IO film
Jph = 0.42 mA/cm2 at 1.23 VRHE, IPCE = 9.4% at

315 nm and 7.45% at 390 nm

BiVO4/WO3/SnO2 triple layers
0.5 M phosphate
buffer electrolyte

(pH 7)
Jph = 3.1 mA/cm2 at 1.23 VRHE, STH = 3.5% [56]

FTO/BiVO4 /SnO2 /WO3
(double stacked) 0.1 M KHCO3 (pH 8) Jph = 4.15 mA/cm2 at 1.23 VRHE [57]

Ti/IrO2/Sb-SnO2 electrode 0.5 M Na2SO4 Jph = 0.4 mA/cm2 at 3 V [58]

3.4. Corrosion, Tafel Parameters, and Electrochemical Surface Area

The combined anodic and cathodic Tafel curves are presented based on the Tafel
relation, V = β log(Jph) + c, to outline the HER mechanism and the rate-limiting phase [59].
Perfect PEC catalysts have low Tafel slopes, high current exchange rates, and therefore,
good HER efficiency. However, this is not a constant rule, where some photocatalysts
with higher Tafel slopes and higher current conversion rates, and vice versa, exist [60].
Figure 10a illustrates combined anodic and cathodic Tafel plots of the electrodes under
analysis (potentiodynamic polarization curves). Figure 10b presents the key characteristic
parameters for the electrodes; corrosion potential (Ecorr), corrosion current (Icorr), anodic
and cathodic Tafel slopes (βa and βc). For the electrodes under analysis, the βa and βc
values are determined from the slopes of the linear segments of the curves, as seen in
Figure 10c,d [46,61].

For all electrodes, the determined values of Ecorr, Icorr, βa, and βc are listed in Table 3.
The βa and βc values are raised by adding 3% Ir to reach 125.2 and 95.9 mV/dec and
then decreased by co-doping with 1.5% Ni to 90.4 and 50.4 mV/dec, respectively, whereas
their values are increased to 105.8 and 104.1 mV/dec, respectively, by increasing the Ni
content to 4.5%. Tafel PEC slopes clarify what the reactions mechanisms and rate-limiting
stages are in the PEC process. That is, the Volmer–Tafel mechanism is dominant when
the recombination stage is rate-limiting, and the Tafel slope is ~30 mV/decade. The
Volmer–Heyrovsky hydrogen evolution mechanism can be presumed dominant when
PEC desorption is rate-limiting, and the Tafel slope is ~40 mV/decade. If the slope of
the Tafel is ~120 mV/decade, the reaction paths depend on the surface imbued with
adsorbed hydrogen. The βc value demonstrates the over-potential needed to boost the
hydrogen generation reaction (HGR) rate by a factor of 10 [46,61]. For the photoelectrodes
under study, low Tafel slopes of the co-doped photoelectrodes and the low energy of the
bandgaps resulted in low overpotentials. This is owing to the small amount of energy
needed to improve the HGR performance and vice versa. Hence, the best values of βc
and βa are obtained up to 3% co-doping. This explains the high PEC performance of our
photoelectrode compared to the other photoelectrodes.
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Table 3. Values of corrosion and Tafel parameters, and ECSA of our photoelectrodes.

Sample ECorr
(mV)

ICorr
(µA cm−2) βa (mV dec−1) R2 Bc

(mV dec−1) R2 Rp
(Ohm/cm−2)

Corr Rate
(nm year−1)

ECSA
(m2 g−1)

SnO2 −296 480.84 102.1 ± 4.4 0.9999 93.16 ± 0.23 0.9723 58.90 6.18 44.69

SnO2:Ir −311 527.23 125.2 ± 5.3 0.9993 95.86 ± 0.64 0.9851 72.94 5.56 36.90

1.5% Ni doping −282 163.29 90.4 ± 2.4 0.9983 50.35 ± 0.52 0.9943 142.82 1.69 16.02

3.0% Ni doping −265 394.91 103.0 ± 6.1 0.9987 70.26 ± 1.03 0.9682 57.11 5.46 65.10

4.5% Ni doping −306 517.13 105.8 ± 8.4 0.9995 104.09 ± 0.57 0.9530 73.31 5.35 41.34

The information about the solution’s corrosion tendency can be obtained from Ecorr,
whereas the corrosion rate is directly proportional to Icorr. It can be observed from Table 3
that the 3.0% Ni-doped SnO2:Ir photoelectrode showed better behavior with an Ecorr of
−265 mV and an electrochemical surface area (ECSA) of 65.10 m2/g. The 3.0% Ni-doped
SnO2:Ir has a higher Ecorr (311 mV) in comparison with the 1.5% Ni-doped SnO2:Ir and
3.0% Ni-doped SnO2:Ir. Relative to the pure SnO2, the corrosion potential of 3.0% Ni-doped
SnO2:Ir is moved towards the positive direction by 31 mV. Generally, the reported Ecorr
values are shifted to better behavior compared to that of the commercial SnO2. Moreover,
they are more positive than any reported data for photoelectrodes based on SnO2 [62,63].

The values of Icorr, corrosion rate (CR), and polarization resistance (RP) can be used to
determine the photoelectrode’s relative capability to resist corrosion. The CR is directly
proportional to the kinetic value of Icorr, and Rp is inversely proportional to the kinetic
value of Icorr. As seen from Table 3, the incorporation of 3% Ir decreases the Icorr of the
pure SnO2 from 359.6 to 323.6 µA/cm2. Additionally, the insertion of 1.5% Ni decreases
the Icorr of SnO2:Ir to 98.5 µA·cm−2. The increment of Ni content, however, increased the
Icorr to 318.0 µA·cm−2 at 3% Ni, but this is still much smaller than the corrosion current of
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pure photoelectrodes. The polarization resistance (Rp in Ohm/cm−2) was estimated from
the relation; Rp = βc βa / [2.303 Icorr (βc + βa)] utilizing the Stern–Geary equation and the
straight segment of the curves, close to Ecorr. CR was also determined (in nm/year) using
CR = 3272 Icorr[EW/d.A], where d, A and EW are the density (g/cm3), area (cm2), and the
equivalent weight (g/eq), respectively. For all of our electrodes, the determined values of
CR and Rp are given in Table 3. The value of Rp increases from 58.90 to 142.82 Ω.cm2 and
CR is reduced from 6.18 to 1.69 nm/year by incorporating 1.5% Ni/3% Ir to the pure SnO2
photoelectrode. By increasing the co-doping ratio to 4.5%, the CR is raised marginally to
5.35 nm/year. The values of the corrosion parameters mentioned indicate the considerable
enhancement of the corrosion resistance through the implementation of optimized Ni/Ir
co-doping into the photoelectrodes. This further demonstrates the essential role of the
Ni/Ir co-doping in improving the electrode’s stability. Our obtained values of CR are better
than any previously reported SnO2-based photoelectrode values [64,65]. Therefore, the
corrosion parameters in Table 3 highlight the corrosion inhibition effects of 1.5% Ni-doped
SnO2:Ir, and the Tafel slopes of this photoelectrode also demonstrate a decrease in system
dissolution reactions. This can be attributed to the more compact structure at this co-doping
ratio due to the decrease in grain size and crystallite size and the development of a high
density of smaller nanocrystals (XRD), in addition to the decrease in Rrms, which decreases
the scattering of the carrier inside the electrode and electrochemical surface area and thus
hinders corrosion.. This can thus be attributed to a more compact structure, a lower porosity,
and a smoother surface. However, the increase in Ni to 3% changes the surface morphology
of SnO2:Ir from nanocrystals islands with heights ≤ 10 nm to a 1D tubular nanostructure,
which is attractive for solar conversion by offering direct pathways for the charge carrier
transport, the highest electrochemical surface area (65.1 m2/g), and the lowest optical band
gap (2.70 eV) due to the insertion of electronic states in the bulk SnO2 and co-doping-related
oxygen defects.

The electrochemical surface areas (ECSAs) of the prepared photocatalytic electrodes
are obtained using the Randles–Sevcik relation, ECSA = I(Rg T)1/2 (Ca N Fc)−3/2(v Da)-
1/2/0.4463, wherever Rg, Ca, Fc, Da, and N indicate to the gas-molar constant, analyte
concentration, and number of the electrons in the redox reaction (N = 1 in this study),
respectively [46]. Utilizing Figure 5a, the ECSAs of the electrodes under analysis are
calculated from ECSA = QH. mc−1. Cm−1, where QH, Cm, and mc are the negative-scan-
hydrogen-adsorption charges after double-layered charge adjustment, the full charge of
electrode-covering monolayer H-atoms, and catalyst mass, respectively [46]. The values
of QH are determined from the integration of each photoelectrode’s curve divided by the
measurement-scanning rate (10 mV) in Figure 5a. The obtained ECSAs are illustrated in
Table 3. For the pure and 3.0% Ni/IrSnO2, the ECSA values are 44.69 and 65.1 m2 g−1,
respectively. The high ECSA indicate the high PEC performance of the 3.0% Ni-doped
SnO2:Ir photoelectrode compared to the other photoelectrodes [61].

3.5. PEC Impedance Spectroscopy (PEC-IS)

The impedance of the photoelectrochemical system depends on the charge transfer
between the active electrode and the electrolyte interface. PEC-IS measurements were
carried out at RT utilizing an electrochemical workstation (CH Instruments CHI660E) to ex-
amine the charge carrier dynamics of the optimized 3.0% Ni-doped SnO2:Ir photoelectrode.
The PEC-IS measurements were performed in a frequency (f) range of 10−2–105 Hz at 0 V
(vs. Ag/AgCl) under illumination. Figure 11a shows a Nyquist plot of 3.0% Ni/IrSnO2
immersed in 0.5M HCl. The obtained results are also presented in Bode plots (Figure 11b,c).
The Nyquist plot of 3.0% Ni-doped SnO2:Ir photoelectrode shows that there is a small
semicircle with a small diameter in the high-f side, indicating the redox reaction [66],
followed by a linear stage covering the region of middle/low fs. These PEC-IS spectra dis-
played mixed diffusion/kinetic controlled routes. To understand the PEC-IS measurements
through HER (Figure 11), the obtained spectra are fitted to a simple Randle equivalent
circuit (REC). Figure 11a’s inset displays the REC that was used to model the PEC-IS spectra
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utilizing the ZSimpWin software. This equivalent circuit consists of electrolyte resistance
(Rs = 2.76 Ω) obtainable at high fs from Nyquist plot intercepts, charge transfer resistance
(Rct = 3.87 Ω) equal to the semicircle diameter in the Nyquist plot, double-layer capacitance
(Cdl = 19.63 mF) and Warburg impedance (W = 0.9). Then, the charge transfer process
(CTP) is the main regulator of the HER, which is guaranteed by the uni-loop of the Nyquist
plot. Although Rct shows a higher value relative to the other elements of the equivalent
circuit, this Rct value is much smaller than most of the literature values for SnO2-based PEC
electrodes [55,67]. For example, F-doped SnO2 IO and F-doped SnO2/CuWO4 IO showed
significantly higher Rct values of 18890 Ω and 8000–10000 Ω, respectively [55]. To the best
of our knowledge, only the Ti/IrO2/Sb-SnO2 electrode showed an Rct value of the same
order (1.65 Ω), but with much smaller Jph than our 3.0% Ni-doped SnO2:Ir electrode [58].
The small value of Rct, which represents the kinetic or charge transfer resistance to the ion
transfer and is equal to the diameter of the depressed capacitive semicircle in the inset of
Figure 11a, refers to enhanced ionic conduction and electrolyte diffusion over the electrode
nanoporous structure [68]. Then, the optimized electrode can produce a large amount of
H2. Besides the charge transfer process (CTP), the e/h recombination is mostly used to
control the HER. The reordered value of Rct is very small, which means that the charge
recombination on the electrode/electrolyte interface was highly reduced, which supports
the improved HET [69].
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value for pure SnO2 (0.35 ms) [71]. Then, the determined parameters from Figure 11 indi-
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with f, and Figure 11c illustrates the variation of phase with f. This figure shows resistive
regimes at low and very high frequencies, in addition to capacitive contribution in between.
The low-frequency regime is correlated with the charge transfer resistance (Rct) and the
double-layered capacitance (Cdl) of the electrode. The very high-f regime may be related to
the formation of a partially protective layer on the surface of the electrode. The maximum
phase shift (θmax= 16.4◦) is detected at 14.68 Hz. The lifetime of the charge carriers can be
estimated from Figure 11c by the relation τn = 1/2π ƒmax [70]. The calculated lifetime for
the optimized electrode is 10.85 ms. This value is almost 31 times the reported value for
pure SnO2 (0.35 ms) [71]. Then, the determined parameters from Figure 11 indicate a great
reduction in the charge recombination at the electrolyte/photoelectrode interfaces. This
also refers to a kinetically facile PEC system, improved ionic conductivity, and electrolyte
diffusion through the 3.0% Ni-doped SnO2:Ir photoelectrode.

3.6. Sample Purity after Photoelectrochemical Measurements

XRD was measured for the optimized electrode, 3.0% Ni-doped SnO2:Ir, after PEC
measurements and is presented in Figure 12 relative to its XRD chart before PEC measure-
ment. As seen, the (1 1 0), (101), and (2 0 0) peaks are slightly shifted to lower 2θ angles,
indicating a marginal increase in d-spacing of the sample. The diffraction peaks became
broader with reduced intensity, except for (2 0 0). The Dav decreased to 18.2 nm after PEC
measurements. Only one small unknown peak is observed at 2θ = 44.03◦. This result
illustrates the high purity of the 3.0% Ni-doped SnO2:Ir photoelectrode.
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4. Conclusions

SnO2, SnO2:Ir, and (1.5–4.5%) Ni-doped SnO2:Ir films were deposited on a glass
substrate using the spin-coating method. The results of XRD illustrate that all samples are
polycrystalline structures with a rutile phase. The peak shift in XRD patterns and FTIR
spectra confirmed the formation of homogenous composites. XRD and AFM showed that
the films were compact, had granular structures, and that D (and GS) decreased from
30.43 nm (33.12 nm) to 24.23 nm (23.81 nm) with increasing Ni loading. Additionally,
Rrms decreased from 17.25 to 11.64 nm. Ni-doped films show an absorption band at
~255 nm that shifted to lower wavelengths for pure and SnO2:Ir films. Additionally, the
direct Eg blue-shifted to 3.70 eV at 3.0% Ir doping, and then red-shifted to 2.7 eV for the
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Sn0.94Ir0.03Ni0.03O2 composition. The tendency of these films to form Sn–OH bonds, the
decrease in Rrms, and Eg red-shifting to 2.7 eV are encouraging factors for H2 generation
from water. The key PEC factors for performance for pure, 3% Ir-doped, and Ni/Ir-
co-doped electrodes were explored and improved for effective H2 generation utilizing
sunlight. Amongst the investigated PEC electrodes, the 3.0% Ni-doped SnO2:Ir displays
the highest photocurrent density of 46.38 mA/cm2 and the highest PEC H2 generation rate
of 52.22 mmol h−1cm−2 at −1V with an IPCE% of ~17.43% at 307 nm. Additionally, this
electrode showed an ABPE of 1.038% at −0.839 V and a surprisingly offset value of 0.391%
at 0 V and 307 nm for HER, which are the highest values yet for SnO2-based PEC catalysts.
Moreover, this photoelectrode displays a photogenerated current density of −432 µA/cm2

at 0 V and photocurrent onset over −0.196 V. The effect of the electrolyte type was studied,
the current density was ranked as follows: Jph(HCl) > Jph(NaOH) > Jph(Na2SO4). The βa and
βc values are raised by adding 3% Ir to reach 125.2 and 95.9 mV/dec and then decreased by
co-doping with 1.5% Ni to 90.4 and 50.4 mV/dec, respectively. As the T of the PEC process
increases to 85 ◦C, the current density displays ~3.5-fold enhancement.

The thermodynamic factors have been obtained using the 3.0% Ni-doped SnO2:Ir elec-
trode; activation energy= 17.598 kJ/mol, entropy =107.91 J/mol.K, and enthalpy = 20.31 kJ/mol.
Additionally, this electrode demonstrated a higher electrochemical surface area (~ 1.8 times)
and lower Tafel slopes (103.0 and 70.26 mv/dec) relative to the 3% Ir-doped photoelectrode.
Moreover, the rate of corrosion changes from 6.18 to 1.69 nm year−1 with the incorporation
of 1.5% Ni/3% Ir co-dopants in the pure SnO2 electrode. All of the key parameters demon-
strated a significant decrease in charge recombination at the electrode/electrolyte interface,
which was used to pinpoint the PEC H2 generation mechanism.. From the stability study
and after 12 runs of reusability at −1 V, the optimized photoelectrode preserved ~94.95% of
its initial PEC performance. This work provided a new doping strategy to develop a new
collection of highly active SnO2-based photoelectrodes for sustainable PEC hydrogen fuel
production under sunlight illumination.
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