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Abstract

Background: Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized
by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is
usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene
expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to
be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes,
also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role.
However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial.

Methods: In the current study, we applied whole transcriptome analysis using RNA-seq to gain insight into
molecular pathways in microglia that might be dysregulated during the transition, in female mice heterozygous for
an Mecp2-null allele (/\/Iecp2+/‘; Het), from the pre-phenotypic (5 weeks) to the phenotypic phases (24 weeks).

Results: We found a significant overlap in differentially expressed genes (DEGs) with genes involved in regulating
the extracellular matrix, and those that are activated or inhibited when macrophages and microglia are stimulated
towards the M1 and M2 activation states. However, the M1- and M2-associated genes were different in the 5- and
24-week samples. In addition, a substantial decrease in the expression of nine members of the heat shock protein
(HSP) family was found in the 5-week samples, but not at 24 weeks.

Conclusions: These findings suggest that microglia from pre-phenotypic and phenotypic female mice are activated
in a manner different from controls and that pre-phenotypic female mice may have alterations in their capacity to
response to heat stress and other stressors that function through the HSP pathway.
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Background

Rett syndrome (RTT) is characterized by a progressive
loss of cognitive, social, and motor skills after a relatively
brief period of typical development. It is found in ~1/
10,000-1/15,000 female births and is usually due to de
novo loss of function mutations in the X-linked gene,
MeCP2, which codes for methyl-CpG binding protein 2
(MeCP2) [1]. MeCP2 binds to methylated cytosine at
CpG islands, which are the canonical DNA methylation
sites, as well as to non-CpG cytosine residues, and 5-
hydroxymethylcytosine [2—4]. It has also recently been
found to inhibit microRNA processing [5]. Although se-
vere loss of function mutations are usually male-lethal,
hypomorphic MeCP2 variants have been found in males
with intellectual disability and behavioral deficits [6, 7].

Rarely, mutations in CDKLS, SHANK3, FOXGI,
ANKRD31, and CHRNAS cause a RTT-like
phenotype [8-10].

One of the more perplexing aspects of RTT is the loss
of previously acquired developmental milestones, which
occurs after ~6-18 months of age. Regression is charac-
terized by loss of language skills, reduced brain growth,
repetitive stereotyped hand movements, and impaired
motor skills [1, 2]. Following this period of regression,
the clinical picture stabilizes for a while, but ultimately,
motor deterioration, autistic features, seizures, growth
failure, autonomic dysfunction, and gastrointestinal dis-
turbances emerge.

In addition to RTT, de novo mutations in MeCP2 can
contribute to schizophrenia (SZ) risk in a small sub-
group of individuals [11]. And a recent genome wide as-
sociation study (GWAS) carried out in a Han Chinese
cohort suggests that common variants in MeCP2 might
also play a role in this condition [12].

Although Mecp2 is ubiquitously expressed, most stud-
ies point to neuronal dysfunction as a primary cause.
For example, a number of different neuron-specific
Mecp2 KO mice show functional abnormalities [13-15].
In addition, restoring Mecp2 expression in neurons nor-
malizes brain weight and activity and extends lifespan
[16]. An increase in cell packing density and a reduction
in the complexity of neuronal dendritic branching have
also been found, as well as alterations in dendritic spine
numbers and synaptic architecture [17, 18]. Selective
loss of Mecp2 in gamma-aminobutyric acid-ergic
(GABAergic) inhibitory interneurons recapitulates most
of the RTT phenotype [19]. However, some RTT features
are also seen when selective loss of expression is induced
in excitatory glutamatergic neurons [20]. In addition, the
absence of Mecp2 has been found to cause a decrease in
excitatory synapses and to impair long-term potenti-
ation, an effect that was found in severely phenotypic,
but not pre-phenotypic mice [21]. Interestingly, MeCP2
duplications also cause neurodevelopmental problems in
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humans and mice and are associated with increased syn-
aptogenesis and dendritic complexity in vitro [2, 22, 23].

Although a primary neuronal dysfunction is clearly im-
portant in RTT, neurogenesis and synaptic function are
modulated by other cell types in the brain—astrocytes
and microglia, for example—and loss of function abnor-
malities in MECP2 in these cells could conceivably play
a role in some aspects of the RTT phenotype. This idea
is supported by several studies. For example, reduced
Mecp2 expression in astrocytes negatively influences
neuronal function, and reexpression improves locomo-
tion and anxiety symptoms, restores respiratory abnor-
malities and dendritic morphology, and increases
lifespan [24]. In addition, Mecp2-deficient astrocytes and
conditioned medium from these cells failed to support
normal dendritic morphology of wild-type (WT) and
Mecp2-deficient hippocampal neurons. Also, mice with
oligodendrocyte lineage-specific reduction of Mecp2 de-
velop severe hindlimb clasping phenotypes, and restor-
ation in an RTT model improved locomotor deficits and
hindlimb clasping in both male and female mice, and re-
stored body weight in males [25].

Finally, microglia have been implicated in RTT. Jin
et al, for example, found that an increase in the
expression of Slc38al (which codes for a glutamine
transporter) caused by Mecp2 deficiency results in a
glutamine-dependent decrease in microglia viability
and a reduction in brain microglial number through
the production of reactive oxygen species (ROS),
which causes mitochondrial dysfunction and neurotox-
icity [26]. In addition, a defect in microglial phagocyt-
osis, which is a key homeostatic process in maintaining
normal synaptic architecture, has been found in an RTT
model [27]. Remarkably, phagocytic activity restored
by a peripheral bone marrow transplant from WT
mice, which led to the engraftment of phagocytic cells
in the brain, rescued many aspects of the RTT
phenotype in a mouse model; an increase in body
weight and locomotor activity occurred, and breathing
patterns were normalized [27]. Wang et al., however,
were unable to replicate this finding, casting some
doubt on the role of microglia in RTT [28]. In
addition, Schafer et al. recently found that while
microglia may contribute to the RTT phenotype by
enhancing engulfment and elimination of presynaptic
inputs at the end stages of disease, specific loss or
gain of Mecp2 expression in microglia were not pri-
mary event [29].

To further address the potential role of microglia in
RTT, we now report a transcriptome analysis in female
Het mice. Transcriptomes were assessed during the
transition from the RTT pre-phenotypic to the pheno-
typic stages (5 and 24 weeks, respectively). This time
course models the natural progression of clinical RTT.
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In addition, our study is relevant in that, we used female
mice; studies with mouse models of RTT rarely use fe-
males because symptoms occur earlier and are more se-
vere in males, yet females account for nearly all RTT
cases.

Methods

Rett mouse model

The B6.129P2(C)-Mecp2™ 1574/} mouse model devel-
oped in the Adrian Bird lab [30] was used for these ex-
periments. They were obtained from The Jackson
Laboratory (Bar Harbor, Maine; stock number 003890).
C57BL/6 mice were used as controls (stock no: 000664).
The protocol for generating the KO strain is described
at https://www .jax.org/strain/003890 and in the original
paper [30]. Briefly, a targeting vector was designed to in-
sert loxP sites around Mecp2 exons 3 and 4. The con-
struct was transfected into 129P2/OlaHsd-derived
E14TG2a embryonic stem (ES) cells. The engineered ES
cells were injected into C57BL/6 blastocysts. Chimeric
offspring were bred to C57BL/6 mice to produce hetero-
zygous floxed females. The floxed line was bred to
homozygosity. Homozygous floxed female mice were
crossed with male CMV-Cre mice to generate heterozy-
gous Het females.

The mice were housed at the Albert Einstein College
of Medicine in our central AAALAC-accredited animal
facility on a 14-h day and 10 night light cycle, and were
fed a regular diet. All animals were sacrificed in the
morning within a 1-h window to avoid potential circa-
dian differences in gene expression. Heterozygosity for
the KO allele was confirmed by PCR using primers 9875
(aaattgggttacaccgctga); 9877 (ccacctagectgectgtact); and
oimr7172 (ctgtatccttgggtcaagetg), according to the
protocol recommended by The Jackson Laboratory
(https://www2.jax.org/protocolsdb/f?p=116:5:0::NO:5:
P5_MASTER_PROTOCOL_ID,P5_JRS_CODE:8898,003
890). Three RTT mice and three controls were used
at each time point (total of 12).

The 24-week Het female mice displayed a classic hind-
limb clasping phenotype, a response indicative of general
neurological pathology that is observed in the mouse
model of RTT [25, 31]. Mice were scored on 3 consecu-
tive days after beginning to show the reflex between
weeks 23—24. They were rated based on severity of hind-
limb clasping on a 0-3 scale [31]. The mice were sus-
pended by the base of their tail and video recorded for
10-15 s. At 24 weeks, all mice scored 3 (most severe)
with hindlimbs completely retracted inwards towards
the abdomen for more than 50% of the recorded time.

Microglial isolation
Microglia were isolated from whole brains using the Mil-
tenyi MACS® (Magnetic Cell Isolation and Cell
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Separation) protocol, which contains the Neural Dissoci-
ation kit (P), Mylein Removal Beads II, and CD11b anti-
body bound to Microbeads, along with the gentleMACS
Dissociator, according to the manufacturer’s protocol.
Briefly, the entire brain was isolated and the meninges
were removed by manual dissection. The brain was
roughly chopped and subsequently processed using the
Neural Tissue Dissociation kit (P) protocol for the gen-
tleMACS  Dissociator  (programs  m_brain_01_02,
m_brain_02_02, and m_brain_03_01). Samples were
then further processed for myelin removal and the
isolation of CD11b-positive cells. Microglial isolation
was confirmed by FACS with a monoclonal CD11b
antibody conjugated to PE (Miltenyi). The microglial
isolation protocol typically results in a population of
cells that contain ~80% microglia (Additional file 1:
Figure S1).

RNA extraction

Total RNA was extracted using a miRNeasy Kit accord-
ing to the manufacturer’s instructions (Qiagen). An add-
itional treatment with DNasel (Qiagen, Valencia, CA)
was included to remove genomic DNA. Reverse tran-
scribed PCR (RT-PCR) was performed using a OneStep
RT-PCR Kit (Qiagen, Valencia, CA) according to the
manufacturer’s instructions.

RNA-seq

After passing quality control, high-throughput sequen-
cing libraries were prepared by the Einstein Epigenomics
and Genomics Shared Facility following the standard
protocol established for RNA-seq on the Illumina plat-
form. We obtained 101 bp paired-end RNA-seq reads
from an Illumina HiSeq 2500 instrument. Adapters and
low-quality bases in reads were trimmed by trim_galore
(http://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/). RNA-seq reads were aligned to the mouse refer-
ence genome (GRCm38/mm10) using Tophat (v2.0.13) in
a strand-specific manner (-library-type fr-firststrand) [32].
Uniquely, mapped reads were counted for each gene
using “htseq-count” in HTSeq package (v0.6.1) with
gene models from Ensembl release 75 (—stranded=re-
verse —minaqual=10 —type=exon -idattr=gene_id
—mode=union) [33]. DESeq2 was used to identify dif-
ferentially expressed genes (DEGs) (adjusted p value
<0.05) [34]. The ToppGene suite was used with de-
fault settings to identify functional enrichment in the
DEG lists (http://toppgene.cchmc.org) [35]. ToppGene
assesses gene lists for functional enrichment based on
transcriptome studies, gene ontologies (GO, pathway),
human diseases and mouse phenotypes, and literature
citation.


https://www.jax.org/strain/003890
https://www2.jax.org/protocolsdb/f?p=116:5:0::NO:5:P5_MASTER_PROTOCOL_ID,P5_JRS_CODE:8898,003890
https://www2.jax.org/protocolsdb/f?p=116:5:0::NO:5:P5_MASTER_PROTOCOL_ID,P5_JRS_CODE:8898,003890
https://www2.jax.org/protocolsdb/f?p=116:5:0::NO:5:P5_MASTER_PROTOCOL_ID,P5_JRS_CODE:8898,003890
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://toppgene.cchmc.org/
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Microarray analysis

Our DEG lists were compared with genes activated in
mouse macrophage during the transition from the MO
to the M1 and M2 activation states. The normalized ex-
pression values were downloaded from the GEO data-
base (GSE69607), which was generated by the original
authors with the RMA algorithm [36]. As the authors
did not provide their lists of DEGs, we applied the
limma package ver. 3.26.8 to detect DEGs [37]. Using
fold change >2 and adjusted p values <0.05 and the BH
method [38], we obtained 1780 genes that changed dur-
ing M1 or M2 activation. Of the 146 down-regulated
and 82 up-regulated genes that were shared between the
M1 and M2 activation states provided in the original
paper [36], 113 and 74 were also identified as differen-
tially expressed in our reanalysis, respectively, indicating
that our analysis obtained similar results.

Quantitative real-time PCR (qPCR)

Quantitative real-time PCR (qPCR) was carried out as
previously described using the 2-**“* method to calcu-
late relative expression levels, with P2-microglobulin
(2M) and G6PD as reference genes [39, 40]. Briefly,
c¢DNA was generated using iScript cDNA Synthesis Kit
(Bio-Rad). qPCR was carried out using the ABI 7900HT
Real-Time PCR System (Applied Biosystems, Foster City,
CA). Each reaction consisted of ¢cDNA, primers, and
Power SYBR Green PCR Master Mix (Applied Biosys-
tems, Foster City, CA) in an 8 pl volume. Melting curve
analysis of target sequences showed that all primers used
in this study generated amplicons that had a single peak,
without primer-dimer artifacts. Primer concentrations
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were optimized prior to use in qPCR experiments. Each
qPCR was carried out in duplicate, with each data point
repeated three times. The primers used for qPCR in-
cluded (forward and reverse, respectively): G6PD
atcatgggtgcatcggtgag and agcacctgtgatggtccaag; B2M
tgccaaaccctetgtacttc and gctaagcattgggcacagtg; Hspalb
tggtgctgacgaagatgaag and ccgctgagagtcgttgaagt; Hspa8-
tggagaaagtctgcaacccta and tgaagaagcaccaccagatg; Hspala
gctcgaatectatgecttca and  atgacctcetggceacttgte; Mecp2
gtccacccttggtgagaaaa and ccttcttaggtggggaggag; Hsphl
cacgctgggatcagaatctt and acaaccacagccacacacat; Dnajal
cggagaggaaaactgactgc and tgcccccttagttgacaatc; ¢d180
cccaacagagaagctgaagg and ggctcagattagtggcettge. Signifi-
cant differences in gene expression were assessed using
a two-tailed Student’s ¢ test.

Results

Microglia were isolated from 5-week-old Het female
mice who did not exhibit overt neurological signs and
24-week Het female mice who exhibited a significantly
increased hindlimb clasping reflex (p =7.4E-08, Fig. 1).
Microglia were also isolated at the same time points
from age-matched female WT controls. Cells were im-
mediately frozen at —-80 °C. RNA was subsequently ex-
tracted and sequenced by a strand-specific protocol
(RNA-seq). The 5-week samples (Het and WT) were se-
quenced together in a single lane by multiplexing. The
24-week samples were similarly handled. RNA-seq reads
ranged from 49,135,314-98,691,394 in the week 5 sam-
ples to 25,463,864—31,288,101 in the week 24 samples
(Additional file 2: Table S1). As seen in the file, the
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Fig. 1 Left panel. Hindlimb clasping score. Het female mice were tested biweekly for the hindlimb clasping reflex and scored on a scale of 0-3 as
described in the Methods section. All mice began to show the reflex after week 23. They were then scored over 3 consecutive days, and the
results for each mouse were pooled. There was a significant increase in the score in the Het mice (denoted by asterisk, 74E—08, Student's t test).
Right upper panel WT mice consistently showed a lack of hindlimb clasping (outward hindlimbs) while the Het mice showed an abnormal
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number of mapped reads exceeded 90% for all samples
and all samples passed similar quality controls.

DEGs comparing WT and Het samples were identified
using the DESeq2 software package and adjusted p
values (padj) <0.05. A total of 464 DEGs were identified
at 5 weeks; 78 increased in the Het samples, while 386
decreased (Additional file 3: Table S2). This was some-
what unexpected since Mecp2 is generally viewed as a
transcriptional repressor, although it certainly can act as
a transcriptional activator as well [41]. For the 24-week
samples, 79 DEGs were found at the padj <0.05 level (42 in-
creased in the Het samples, 37 decreased). The DEGs sepa-
rated the WT (Mecp2™'*) and Het samples (Mecp2*'") into
two groups, as seen in the heat map (Fig. 2). In addition,
Principle component analysis (PCA) using the top
5000 most variable genes, as defined by DESeq2
showed the samples could be separated, although one
of the week 24 samples (Het2) showed increased vari-
ation from the other two biological replicates (Add-
itional file 4: Figure S2).

It should be noted that the greater number of DEGs in
the 5-week than 24-week samples is unlikely due to
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deeper sequencing depth since a similar number of week
5 DEGs were obtained using half of the reads for ana-
lysis. After randomly sampling reads from the 5-week
samples five times to match the read depth of the week
24 samples, we identified between 27 and 33 up-
regulated and between 224 and 257 down-regulated
genes in the down-sized 5-week samples, with the same
statistical thresholds (Additional file 3: Table S2). Al-
though these numbers are smaller than those obtained
with the full data set, they are still much larger than the
total number of week 24 DGEs (n=79), strongly sug-
gesting that read depth is not a factor causing few DEGs
in week 24 samples. Additionally, we examined the ex-
pression level of all week 5 DEGs in the week 24 sam-
ples and found that these genes exhibited similar levels
of expression in the week 4 and week 24 samples (Add-
itional file 5: Figure S3).

Among the top DEGs in the 24-week samples were
Mecp2 (padj =0.0001). In the 5-week samples, the de-
crease of Mecp2 mRNA was nominally significant (p =
0.002), with the adjusted p value falling just short of sig-
nificance (0.058) (Additional file 3: Table S2).

A Week 5 B
o~ feckS
- [ MHC class ll-associated proteins in B-cell exosomes and
potential functional implications for exosome biogenesis.
» Ligase activity, forming aminoacyl-tRNA and related compounds
1 = 8 Aminoacyl-tRNA ligase activity
Dé_ Ligase activity, forming carbon-oxygen bonds
0 =} | L-amino acid transmembrane transporter activity
:l Oxidoreductase activity, acting on the CH-NH
-1 ‘ roup of donors, NAD or NADP as acceptor
| I Extracellular matrix organization
Z-score ] | Cell projection organization
relative 4 Circulatory system development
expres- s Cell adhesion
sion 9]
8] Movement of cell or subcellular component
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0 5 10 15
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Week 24 Genes down-regulated in comparison of unstimulated
| macrophage cells versus macrophage cells stimulated
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Fig. 2 Heat map and summary of GO terms and pathways. a, ¢ Heat maps showing differentially expressed genes in microglia between Het and
WT at 5 and 24 weeks. b, d Enriched GO terms and pathways determined by the software ToppGene. The terms shown are the top enrichment
terms for various categories in the DEG lists. These included gene ontology (GO) (molecular function [MF] and biological process [BP]), mouse
phenotype, protein domain, co-expression, and PubMed references. All enriched terms are included in Additional file 6: Table S3
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In the 5-week samples, 24 of the top 25 DEGs were
down-regulated in the Het samples. The top five were
Sema3b, Nov, Dnajal, Vcaml, and Mgp, three of which
(Sema3b, Nov, and Vcaml) code for cell-cell adhesion
proteins or extracellular matrix (ECM) components.
This is supported by the gene list enrichment analysis
using the ToppGene suite [35], which reported a signifi-
cant enrichment of genes associated with the ECM
among down-regulated genes, resulting in ECM being
the top Biological Process GO term and cell adhesion
being the third (Fig. 2; see Additional file 6: Table S3 for
complete enrichment analysis).

Dnajal codes for a member of the heat shock protein
(HSP) family of co-chaperones and is one of nine HSP-
related genes that were significantly decreased in the 5-
week Rett samples (Table 1). These findings were
validated by qPCR (Fig. 3). According to the ToppGene
enrichment analysis, genes coding for HSPs were the top
protein domain detected among the down-regulated
DEGs (Additional file 6: Table S3). In addition, gPCR ana-
lysis carried out on the CD11b-negative (non-microglia)
fraction showed that at 5 weeks, Hspalb was only one of
the 5 HSP genes assayed that significantly decreased and a
significant increase in HSPA8 gene expression was de-
tected. By contrast, HSP genes were not differentially
expressed in the 24-week samples in either the microglia
or non-microglia fractions (Fig. 3; Additional file 6:
Table S3).

The top up-regulated genes in the 5-week samples
were C130026121Rik, CbIn3, Gm10800, Retnla, and
Rnf17. Of these, Retnla is the most interesting because it
is a marker of M2 macrophage/microglial activation
[42]. The M1 and M2 activation states regulate pro-
inflammatory and anti-inflammatory balance, respect-
ively, in the brain and immune system, dysregulation of

Table 1 Differentially expressed heat shock genes in 5-week

RTT microglia

5 weeks 24 weeks
Gene FC p value padj FC p value padj
Dnajal -088 7.20E-14 378E-10 —-002 858E-01 9.92E-01
Hspa8 —058 148E-11 259E-08 008  566E-01 945E-01
Dnajb1 -070 201E-11 288E-08 002  888E-01 993E-01
Hspb8 —-096 5.09E-09 267E-06 0.08 566E-01 945E-01
Hsph1 —-090 1.64E-06 290E-04 0.00 NA NA
Hspalb -0.73 180E-05 208E-03 -002 7.89E-01 9.86E-01
Hspa2 —-054 392E-05 3.89E-03 0.15 267E-01  850E-01
Hspal2b  —-067 4.09E-05 398E-03 -0.14 3.37E-01 8.78E-01
Hsp90aal —043 430E-04 227E-02 -0.12 3.00E-01 859E-01

FC is log2(fold change of RTT/WT); p value indicates nominally significant
differences, padj is the p value adjusted for multiple testing using the
Benjamini-Hochberg method [37].
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which has been implicated in ASD in patients and ani-
mal models (see below) [42—45].

There were fewer DEGs that showed an increase in
expression in the 5-week samples, so the pathway
analysis was less revealing. The top molecular func-
tion GO term was aminoacyl-tRNA ligase activity,
which included the genes Iars, Yars, and Mars, one of
which (Yars) has been implicated in developmental
delay [46] (Additional file 3: Table S2). MHC class II
was the top term based on the ToppGene analysis of
PubMed literature, consistent with an effect on innate
immunity (discussed below).

In the 24-week samples, the top protein-coding
DEGs (up- or down-regulated) were Cuass4, Ifit2,
Nfkbid, Rian, and Lspl (Additional file 3: Table S2).
Ifit2 codes for an interferon-inducible gene that inhibits
virus replication [47]. Cass4 codes for a scaffolding protein
that has been implicated in Alzheimer’s disease, possibly
through the toxic effects of Tau [48, 49]. Nfkbid codes for
an NF-«B inhibitor [50]. Interestingly, the blood level of
NFKBID RNA has been proposed as a biomarker in the
differential response children with ASD to have atypical
antipsychotic medications [51]. RIAN (MEGS8 in humans)
is a non-coding RNA that maps to the human imprinted
locus on 14q32. And Lsp1 (lymphocyte-specific protein 1)
codes for an intracellular F-actin binding protein that reg-
ulates neutrophil chemotaxis [52]. It is one of the few
DEGs found in both the 5- and 24-week samples
(increased expression in the Het samples for both). In
addition to Lspl, Lpl (lipoprotein lipase) was also
differentially expressed at both 5 and 24 weeks. How-
ever, although LspI expression is lower in the Het
samples at weeks 5 and 24, Lpl expression is higher in
the Het samples at 5 weeks but lower at 24 weeks.
Interestingly, reducing Lpl expression in BV2 microglia
and primary microglial cells reduces microglial phago-
cytosis of fibrillar p-amyloid [53]. Correspondingly,
reduced Lpl immunoreactivity has been found in
granule cells of the dentate gyrus and the associated
synaptic network in Alzheimer’s disease postmortem
samples compared to control tissue [54]. The altered
expression of Lpl in both sets of samples, and its
differential expression between the 5- and 24-weeks
samples, supports the idea that microglial phagocytosis
could be disrupted in the RTT, as suggested in other
studies [27, 55].

Because of the small number of DEGs, the ToppGene
enrichment analysis for the 24-week DEGs should be
viewed with caution. Nevertheless, several GO terms
stand out. Notably, the top molecular function GO
term enriched for DEGs that increased in the Het
samples was glucocorticoid receptor binding, and
abnormal innate immunity was the top mouse
phenotype (Additional file 6: Table S3). This is
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consistent with a recent study showing that Mecp2
deficiency leads to dysregulation of inflammatory
responses in microglia and macrophages and to ab-
normalities in genes induced by glucocorticoids [56].

Similarly, the top terms for co-expression genes
enriched with DEGs were related to aspects of innate
immunity, including genes down-regulated in macro-
phage cells stimulated with LPS, a TLR4 agonist, and
genes regulated by NF-kB in response to TNF.

Comparison of DEGs with M1 and M2 activation states
Based on the finding that Retnla was a top up-regulated
DEG in the 5-week samples and the enrichment of genes
involved in innate immunity in the 24-week up-
regulated DEGs, we examined our DEG lists systematic-
ally for markers of M1 and M2 activation.

For this assessment, we examined transcriptomes ob-
tained from mouse macrophages that were stimulated
towards both M1 and M2 pathways (GEO accession
number GSE90736) [36]. We reanalyzed the microarray
data and obtained 1780 DEGs that changed expression
in activated M1 or M2 macrophages. A significant de-
gree of overlap was found for genes associated with both
the M1 and M2 activation states among the 5- and 24-
week DEGs (Table 2; Additional file 7: Table S4). The
smaller number of M1- and M2-activated genes among
the 24-week DEGs compared to week 5 reflects the
lower number of DEGs found at 24 weeks, as noted
above. This does not appear to be due to differences in
the depth of sequencing. We analyzed the 76 M1/M2
genes that were only differentially expressed in week 5
and found that the normalized read counts for these
genes were very similar between week 5 and week 24
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Table 2 Comparison of DEGs with genes activated in M1 and
M2 macrophages

Mecp2 DEGs M1/M2 expression Shared genes p value

5 week (n =464) M1 down 28 1.83E-04
M1 up 28 1.34E-05
M2 down 13 3.218-02
M2 up 34 1.86E-12

24 week (n=79) M1 down 8 2.10E-03
M1 up 6 1.44E-02
M2 down 7 2.68E-04
M2 up 8 7.90E-05

DEGs in 5- and 24-week microglia identified in this study were compared with
genes activated to produce M1 and M2 macrophages from a baseline state
(MO) in mouse [55]. The p values for the gene overlaps were determined by
Fisher's exact test

WT samples (Additional file 7: Table S4). This indicates
that the lack of expression changes in week 24 between
the Het and WT samples is unlikely affected by the
lower sequencing depth.

It should be pointed out, however, that despite the sig-
nificant overlap, there was no correlation with the direc-
tion of change in our samples (e.g., many genes that
were up-regulated in RTT microglia were down-
regulated in M1 and M2 macrophages). This suggests
that the M1 and M2 activation states in RTT microglia
may be disrupted by Mecp2 deficiency in both pre-
phenotypic and phenotypic female mice. The findings,
however, do not address whether altered expression of
M1- and M2-associated genes is a primary event or sec-
ondary to neuronal dysfunction that is triggering micro-
glial activation.

These findings are again consistent with some of the
findings described by Cronk et al, who showed that
Mecp?2 deficiency leads to dysregulation of inflammatory
responses in microglia and macrophage [56].

Discussion

The role of microglia in ASD in general and RTT in par-
ticular is an intriguing pathophysiological perspective to
consider. Several transcriptome studies show that micro-
glia- and immune/inflammatory-associated genes are
among the top DEGs in comparisons made between the
ASD and control brains [45, 57, 58]. However, a key
question is whether this activation is a primary or sec-
ondary phenomenon. The existing evidence points to
the latter. In a study by Gupta et al, for example, a
negative correlation was found between the differentially
expressed neuronal module and the M2 activation state
[45]. In addition, Voineagu et al. showed that the tran-
scriptome changes they observed in the ASD brains con-
verge with GWAS data, which are enriched for neuronal
genes, in particular genes coding for synaptic proteins;
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immune changes have a less pronounced genetic compo-
nent, suggesting that the differential expression found in
ASD is secondary [58]. This idea is consistent with the
key role of microglia in synaptic pruning [59-61]. A rea-
sonable hypothesis is that a primary defect in neurons
leading to dysfunctional synaptogenesis is triggering
microglial activation and synaptic pruning, which is then
reflected in the postmortem gene expression findings.
The importance of dysfunctional synaptic pruning in
neuropsychiatric disorders was highlighted in a recent
study showing that allelic variation in complement com-
ponent 4 (C4) genes is associated with schizophrenia: C4
is a key regulator of microglia-mediated synaptic prun-
ing [62]. In addition, genetic studies show that genetic
variation in CSMDI, which codes for a complement
regulator, is a risk factor for both ASD and SZ [63, 64].

On the other hand, there is some support for the idea
that a primary defect in microglial function could also be
involved in some ASD cases. For example, disruption of
genes that regulate microglial phagocytosis, such as
annexin 1 (ANXAI) and MER proto-oncogene tyrosine
kinase (MERTK), which are expressed at markedly ele-
vated levels in microglia compared with neurons [65],
have been found in rare, ASD-related CNVs and loss of
function mutations in exome sequencing studies [66—68].

The possibility for a direct role of microglia in RTT is
controversial, however. As noted in the introduction, re-
storing macrophage function in a mouse RTT model was
reported to alleviate some symptoms in one study, but not
another [27, 28]. In addition, Schafer et al. suggested re-
cently that while microglia may contribute to the RTT
phenotype by enhancing engulfment and the elimination
of presynaptic inputs at the end stage of disease, specific
loss or gain of Mecp2 expression in microglia were not
primary events [29]. On the other hand, Mecp2 deficiency
leads to dysregulation of inflammatory responses in
microglia and macrophages, which could alter their func-
tion and contribute to some aspects of disease pathogen-
esis [56], which is supported by our findings .

With these findings in mind, we carried out a tran-
scriptome study in microglia derived from female Het
mice, a model that more closely mimics clinical RTT,
which occurs in females. One of our significant findings
was that genes coding for nine HSP proteins were mark-
edly decreased in microglia from pre-phenotypic female
RTT mice. By contrast, no differences in HSP gene ex-
pression were detected in the 24-week samples derived
from mice that had developed neurological symptoms.
This suggests that in pre-phenotypic female mice, micro-
glia could be susceptible to hyperthermia and perhaps
other cellular stressors that function through the HSP
pathway, such as oxidative stress, hypoxic stress, and in-
flammation. HSPs are molecular chaperones that play a
role in brain function by preventing protein misfolding
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and by promoting the degradation of proteins that are
improperly folded [69, 70]. Upon exposure to cellular
stress, an increase in expression occurs, which protects
cells from apoptosis. Although there are no studies sug-
gesting that HSPs play a role in RTT, there is some evi-
dence pointing to other forms of cellular stress having
an impact. For example, reduced Mecp2 expression
leads to redox imbalance and oxidative stress [71-73].
In addition, increased expression of hypoxia-induced
transcripts was found in Mecp2-deficient microglia and
peritoneal macrophages [56].

Another significant finding in our study is that both 5-
and 24-week DEGs were significantly enriched for genes
that are associated with both the M1 and M2 activation
states, suggesting that neuroinflammation is an active
process in both pre- and post-phenotypic RTT mice.
Curiously, however, disparate M1 and M2 gene sets were
differentially expressed in pre-phenotypic and pheno-
typic microglia. This could be due, perhaps, to a tem-
poral difference in microglial activation in RTT that are
specific to microglia per se, or exogenous, due to inter-
actions with other cell types in the brain; microglia can
be activated through contact with neurons via the prun-
ing of weak, ineffective synapses, and with activated as-
trocytes, oligodendrocytes, and endothelial cells [74-76].

Disparate findings in pre-phenotypic and phenotypic
microglia were also observed by Cronk et al. who
showed that compared with control males, microglia
have significantly smaller soma in pre-phenotypic
Mecp2-null mice, but larger soma (indicative of micro-
glial activation) in phenotypic mice [56].

Although overall, there was overlap with the Cronk et
al. transcriptome findings on a general level (i.e., altered
expression of inflammatory and cellular stress genes);
there was limited overlap in DEGs per se, perhaps owing
to differences in sex; we used females and their RNA-
seq data were obtained using males, or temporal differ-
ences (early phenotype vs late phenotype).

Finally, the enrichment of DEGs that contribute to the
ECM in the 5-week RTT samples is interesting in view
of the contribution made by microglia, albeit modest
compared with astrocytes and neurons, to ECM homeo-
stasis [77—-81]. Considering the importance of the ECM
in maintaining synaptic function, the altered expression
of ECM components and regulators in the pre-
phenotypic phase could play some role in the synaptic
dysfunction that ultimately leads to clinical symptoms.

Overall, our results suggest that the molecular alter-
ations in Mecp2-deficient microglia are relatively small
but certain genes may have important roles in modulat-
ing synaptic homeostasis and function.

A caveat to our findings is that the microglia from Het
mice were not separated into WT and Mecp2-null cells.
Thus, X chromosome skewing could have had an impact
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on our results. We computed the ratio of RNA-seq reads
mapped to the deleted exons (exons 3 and 4) vs the
reads mapped to the undeleted exons (exons 1 and 2)
and then compared the ratios between Mecp2 Het and
WT samples. Based on this, we estimate that the
Mecp2-null cells were probably present in ~40% of the
cells used for RNA sequencing (data not shown) sug-
gesting that X chromosome skewing did not have a sig-
nificant impact on our findings. However, follow-up
single-cell sequencing studies will be necessary to better
resolve this.

In addition, follow-up functional studies are needed to
validate our findings, in particular, whether microglia de-
rived from pre-phenotypic RTT mice show an altered
response to heat shock and other stressors that require
an intact HSP response, the dysfunction of which might
compromise microglial function, contributing to the de-
velopment of symptoms later in life.

Conclusions

Transcriptome analysis was carried out on microglia
from control female mice and heterozygous female mice
carrying one Mecp2-null allele—a mouse model of Rett
syndrome—at two time points; 5 weeks, prior to the on-
set of neurological symptoms (pre-phenotypic) and
24 weeks, after the development of neurological symp-
toms (phenotypic). Genes involved in innate immunity
and in M1 and M2 macrophage activation were differen-
tially expressed at both time points, although different
sets of genes were found at the two time points. In
addition, a number of heat shock genes were differen-
tially expressed at 5 weeks, but not at 24 weeks. These
findings suggest that pre-phenotypic female mice may
have alterations in their capacity to response to heat
stress and other stressors that function through the HSP
pathway, as well as dysregulated expression of genes in-
volved in innate immunity, both of which might contrib-
ute to the later development of neurological symptoms.

Additional files

Additional file 1: Figure S1. Representative histograms from the FACS
analysis CD11b+ and CD11b— fractions obtained in the microglial
isolation procedure. (JPG 62 kb)

Additional file 2: Table S1. Total number of reads and mapped reads
in 5- and 24-week Het females and WT controls. The mapping statistics
were from tophat2 alignment report. QC of mapping results was done

with RSeQC [82]. (XLSX 11 kb)

Additional file 3: Table S2. Entire gene list for Het vs WT in 5-week
(sheet 1) and 24-week microglia (sheet 2). The genes are listing in
descending order according to the adjusted p value (padj). Sheet 3
shows the number of DEGs in the 5-week samples after repeating
the analysis five times by randomly sampling from the 5-week samples the
numbers of RNA-seq reads matching to the read depth of the week
24 samples. (XLSX 7264 kb)
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Additional file 4: Figure S2. Principal components analysis (PCA) was
carried out on the top 5000 most variable genes as defined by the
software DESeq2. The samples could be separated using PC1 and PC3.
(JPG 47 kb)

Additional file 5: Figure S3. A heat map shows the expression level of
all week 5 DEGs across all samples, where expression levels here are
quantified by normalized read counts (log10-transformed). As seen in the
heat map, similar levels of expression were found in the week 4 and
week 24 samples. (JPG 103 kb)

Additional file 6: Table S3. Enrichment analysis of DEGs using the
ToppGene suite. 5-week down-regulated DEGs (sheet 1); 5-week up-
regulated DEGs (sheet 2); 24-week down-regulated DEGs (sheet 3); and
24-week up-regulated DEGs (sheet 4). (XLSX 7206 kb)

Additional file 7: Table S4. DEGs that overlap with M1- and M2-
activated genes. Week 5 and week 24 DEGs were compared with genes
activated in mouse macrophage following M1 and M2 activation found
by Jablonski et al. as described in the Methods section [36]. Each sheet
contains the overlap of up- or down-regulated genes with M1- or M2-
activated genes. (XLSX 502 kb)
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