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A B S T R A C T   

The evolution of an epidemic is strongly related to the behavior of individuals, and the consideration of cause 
and effect of social phenomena can extend epidemiological models and allow for better identification, prediction 
and control of the impacts of containment and mitigation measures. This work proposes an agent-based model to 
simulate the double causality that exists between individual behaviors, influenced by the cultural orientation of a 
population, and the evolution of an epidemic, focusing on recent studies on the COVID-19 pandemic. To do this, 
concepts from the social sciences are used, such as the theory of planned behavior, as well as Bayesian inference 
to abstract the decision-making processes involved in human behavior. A set of simulation experiments with 
different populations was developed to demonstrate the role that the cultural orientation of a population plays in 
the management of an epidemic. The results agree with the revised theory, showing that in populations that have 
a greater inclination towards collectivism, epidemiological indicators evolve in a better way than in those 
populations where the culture is individualistic. This work contributes to the field of computational epidemi-
ology by providing a new way of including the social aspects of studied populations in agent-based models to 
help develop better interventions.   

1. Introduction 

On March 11th, the World Health Organization (WHO) declared the 
COVID-19 epidemic a pandemic. This disease is caused by the SARS- 
CoV-2 virus (Severe Acute Respiratory Syndrome). By October 2021, 
there were more than 242 million confirmed cases of COVID-19, 
including more than 4.9 million deaths, according to WHO [1]. Today, 
as many of the affected countries go through new waves of infections 
and others advance in the vaccination process, the analysis of the best 
measures and policies for the “new normal” becomes crucial. Actions 
recommended by many authorities focus on washing hands, maintaining 
physical distance, and taking precautions when sneezing and coughing. 

Before strategies are implemented to mitigate an epidemic, it is 
important to consider the dual causal influences between how the disease 
is spreading and how people are behaving in terms of social distancing, 
mask-wearing, etc. [2]. Social scientists have been studying such in-
teractions using a variety of methods [3,4], and the formulation of this 
agent-based model drew on this prior research. 

Historically, analytical tools such as mathematical models have been 
published to help decision-makers understand the possible scenario 

effects of interventions to quell the epidemic. Some of them include the 
model of the theoretical behavior of an infectious disease, using the 
Susceptible-Infected-Susceptible (SIS) model proposed by Kermack and 
McKendrick [5], and the Susceptible-Infected-Recovered (SIR) model 
proposed by Bailey [6]. Some variations of these models have been 
widely used to address the behavior of epidemics, particularly in the 
study of COVID-19. One of them is the case of the Susceptible-Exposed- 
Infected-Recovered (SEIR) model, used by Yang et al. [7], Hou et al. [8], 
and He et al. [9]. 

Explicit expressions have recently been proposed to model specific as-
pects of an epidemic, such as the TM model presented by Turkyilmazoglu in 
Ref. [10] for the peak time of the fraction of infected people based on the 
susceptible–infectious–recovered/removed (SIR) model. In a comparison 
analysis, the TM model proved to have a better performance for small 
populations with fewer than hundreds of individuals than other approx-
imants such as those proposed in Refs. [11,12], according to Ref. [13] while 
the latter showed better results for large populations. Schlickeiser and 
Kröger in Ref. [11] proposed an extension of the SIR model to describe the 
temporal evolution of subsequent waves in the particular case where a large 
part of the population was infected in the first wave. 
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In [14], the authors use and analyze an extension of the classic SEIR 
model that incorporates additional compartments, such as the group of 
vaccinated people, to simulate the COVID-19 epidemic. In this work, the 
authors considered a total of 7 possible compartments: S (susceptible), E 
(exposed), I (infectious), Q (quarantined), R (recovered), D (dead), and 
V (vaccinated). In a similar work, in Ref. [15], the authors extend a 
SEIR-based model by adding two additional compartments corre-
sponding to the two doses required for the COVID-19 vaccine. 

The above models are very useful for explaining the global dynamics 
of an epidemic, using a large-scale top-down approach and population- 
level variables. However, the evolution of an epidemic is strongly 
related to the behavior of individuals. In this sense, it is believed that the 
cause-effect consideration of social variables such as cultural orientation 
[16,17], risk management in decision-making [18], inequity [3], 
segregation and informal settlements [19], violence and the social fabric 
of cities [20] can enhance epidemiological models and allow for better 
identification, prediction and control of the impacts of containment and 
mitigation measures. In this work, social aspects are modeled as net-
works of many interacting elements or components, showing non-linear 
dynamics. For the study of complex systems, a variety of techniques and 
modeling tools from different fields can be used, including Agent-Based 
Modeling (ABM), a type of Computational Social Science. 

ABMs use autonomous “agents” (entities) that represent individuals 
whose behaviors can be influenced by interactions with other agents and 
their environment [21]. This type of modeling has been widely used for 
the study of complex systems, partly thanks to the possibility of simu-
lating aggregate behaviors that emerge from local interactions between 
individuals. 

In the social and behavioral sciences, ABM has been applied to study 
different phenomena such as dynamic segregation [22], criminal justice 
[23], criminal gang formation [24], and the formation of ethnic and 
cultural patterns of violence [25]. In the area of urban studies, ABM has 
been used to study cities’ complexity [26], their social fabric [27] and 
new modes of mobility [28]. The integration of concepts and theories 
from the social and behavioral sciences into the study of epidemics can 
help to find factors that explain the phenomena that emerge during 
them. One of the factors that is explored in the present work is the 
cultural orientation of a population. 

This factor describes an individual’s intention to prioritize collective 
needs or the individual’s needs. In collective societies, priority is given 
to the tasks that lead to the fulfillment of group objectives [29], while in 
individualistic societies, there is a tendency to promote the freedom of 
the individual instead of collective objectives [30]. Following social 
norms is considered a good way to respond to a crisis [31] as in the 
context of the current COVID-19 pandemic. Studies have shown that 
countries with an individualistic culture recorded higher rates of in-
fections and deaths than those where collectivism predominates [17,32, 
33]. 

In this work, an agent-based model is proposed for the study of the 
dynamics of an epidemic, taking into account the cultural orientation of 
the population. This proposal integrates three main sub-models: (1) a 
model of contagion and spread of the disease in which the behavior of 
infections between people is described taking into account their inter-
action, (2) a mobility model to incorporate people’s travel habits, and 
(3) a decision-making model based on cultural orientation where the 
theory of planned behavior is used to represent decision-making and 
implemented using Bayesian inference. Each of the sub-models is based 
on previous studies and together they make it possible to simulate the 
dynamics of an epidemic and observe the effects of individuals’ pref-
erences to comply with or ignore –according to their individual interest– 

the established epidemiological intervention measures. The objective is 
to provide a tool with which the possible effect of mitigation measures 
can be evaluated based on the population studied. 

The sections are organized as follows: Section 2 presents a study of 
the state of the art of agent-based modeling for epidemics. Then section 
3 includes the modeling proposal. The process of experimentation 
through computer simulations is shown in section 4. In section 5, the 
findings obtained from the simulations are discussed. Finally, the con-
clusions of the work are presented in section 6. 

2. State of the art 

2.1. Agent-based epidemiological models 

Recently, due to the current health emergency, a large number of 
agent-based models have emerged for the specific study of COVID-19. In 
Ref. [34], an ABM is presented for the study of epidemic dynamics using 
simple behavioral rules and theoretical scenarios of population. In this 
work, the modeling and simulation of different scenarios for the 
COVID-19 evolution is well addressed; however, the author does not 
introduce the geographical aspects of agents and just considers homo-
geneous populations. In contrast, in Ref. [35] the authors use a meth-
odology that integrates two categories of data: (1) location-specific data, 
which refer to the specific locations where agents can move from/to, 
percentage of individuals having different professions, education- 
related data, life expectancy, transportation, and family size; and (2) 
physiological data, which include the probability of a person coughing 
and sneezing, touching contaminated objects, hand washing, and other 
parameters that differ when the agent is at home, at work, or hospital-
ized. In Ref. [36] the authors propose a model that addresses hetero-
geneity in individual characteristics (sex, age, household), a method to 
calculate daily routines (agendas), social relationships, and behaviors. 
In this work, the authors present their model as a combination of five 
sub-models: (1) individual clinical dynamics and epidemiological status 
agents, (2) agent-to-agent direct transmission of the infection, (3) 
environmental transmission through the built environment, (4) policy 
design and implementation, and (5) agenda-based model of people’s 
activities. Hackl and Dubernet in Ref. [37] propose a model that brings 
together two sub-models: an agent-based transport model and a basic 
disease dispersal model, all in the context of an urban area. In this work, 
the authors introduce a path to be followed by each agent on a daily 
basis in order to obtain information on contacts between individuals. 
This model is capable of capturing the agent’s interactions and simu-
lating the spread of the disease in scenarios using different trans-
portation modes. In Ref. [38] the authors propose an ABM approach that 
integrates geographic information systems (GIS) to simulate the spread 
of a disease in an urban environment. 

2.2. Cultural orientation and epidemics 

In the literature, works that address the correlation between the 
cultural orientation of a population and the epidemiological behavior it 
presents can be found. A comprehensive analysis of COVID-19 data 
collected from 69 countries was conducted in Ref. [17]. In this study, it 
was found that people with an individualistic profile had a greater 
probability of not adhering to epidemiological prevention measures. The 
study in Ref. [16] considers a more detailed classification of cultural 
profiles; they place individuals into one of four different categories: 
horizontal individualist, vertical individualist, horizontal collectivist, 
and vertical collectivist. The study concludes by suggesting that 

G.A. Palomo-Briones et al.                                                                                                                                                                                                                    



Computers in Biology and Medicine 141 (2022) 104995

3

promoting collectivism could be a way to increase commitment to ef-
forts to reduce the spread of the disease. 

2.3. Decision-making and the theory of planned behavior 

Conceptualizing human decisions and behaviors is not trivial. To 
address this, the theory of planned behavior (TPB) is used, which can be 
expressed through three components: the attitude toward behavior, 
subjective norms, and perceived behavioral control. Attitude is related 
to behavior through consequences. In this sense, favorable or unfavor-
able attitudes are formed depending on the consequences of a given 
behavior. The subjective norms concept is the decision-maker’s beliefs 
about other individuals’ approval of a specific behavior. This can be the 
result of evaluating the normative beliefs and the motivation to behave 
under such norms. Normative beliefs are behavioral approvals associ-
ated with important referent individuals. The perceived behavioral 
control is related to the individual’s confidence in his or her capability to 
engage in a behavior – it can be seen as the likelihood that the individual 
will carry out an action taking into account external factors and the 
individual’s perception of control over them–. Finally, a value of 
intention is the level of individual motivation to try to engage in a 
specific behavior, and it can be considered as a function of the three 
previous TPB components. The theory of planned behavior has proven to 
be very useful mainly to explain decision-making related to a large 
number of behaviors, such as addictive behavior [39–42], eating 
behavior [43–45], and exercising behavior [46,47]. In Ref. [18] a TPB 
agent-based decision-making model, Bayesian Inference (BI) and a 
cost-loss model are used to analyze risk perception for water manage-
ment decisions. 

3. Proposal 

In order to provide scenarios that take into account people’s indi-
vidual behavior, this proposal can be described as the integration of 
different specific models in which each one addresses an important 
aspect in the dynamics of infections in a population. The incorporation 
of these sub-models can be seen as a way to extend the current epide-
miological agent-based model, where the culture of the people is not 
taken into account, which, as explained previously, is very important in 
the management of an epidemic. While each of these sub-models in the 
current section is described, their combination into a single ABM is 
described in Appendix 8.1 using the ODD format [48], commonly used 
to describe and compare ABMs. 

3.1. Sub-model 1: Epidemiological behavior 

Modeling the behavior of a contagious disease in a community is a 
nontrivial task that can be approached from different points of view. 
However, there are two elements that will always be involved in the 
process of the spread of an infectious disease: (1) a population and (2) 
exposure to infectious material [49]. 

A first approach to modeling a contagious disease is to use com-
partments. Individuals can be classified into three basic groups or 
compartments: (a) susceptibles (individuals who can become infected 
through contact with infectious material), (b) infected (infected popu-
lation that hosts the infectious material), and (c) removed (individuals 
removed for any of several reasons, such as death or immunity). The 
epidemiological process can be described through a series of time- 
dependent steps. A susceptible individual is exposed to infectious ma-
terial through direct contact with an infected individual or through a 
contaminated object. The individual who has been exposed could be 

resistant to the invading organism, in which case it is rejected and the 
individual does not become infected. If s/he is not resistant, the indi-
vidual becomes infected and the invading organism evolves. In a given 
time interval, the invading organism develops and transitions the host to 
the infectious state. This time is called the latency period or incubation 
period. This model, known as the SIR model, was originally proposed by 
Ref. [5], and can be represented by equation (1) showing that: 

1. A part of the population has sufficient contact with other βN in-
dividuals every time step, transmitting the disease to them (N is the 
total population).  

2. Those infected individuals leave the infected class with a rate of αI 
per time step.  

3. The population is not considered to vary, except in the case where an 
individual dies. 

S′

= − βSI  

I ′

= βSI − αI  

R′

= αI (1) 

This model assumes that the disease incubation period is negligible, 
in such a way that an individual instantaneously becomes infected, then 
recovers with permanent or temporary immunity. However, it is rele-
vant for this work to consider the time it takes for an individual to make 
a transition from one epidemiological state to another (transition time). 
In the case of the COVID-19 pandemic, it has been observed that, once 
the virus enters the recipient organism, an incubation period of 
approximately five days elapses, after which that person becomes 
potentially infectious [50]. Using the compartmental approach, we can 
assume that an individual first goes to an exposed compartment for a 
time equal to the incubation period before becoming infectious [51], 
resulting in a SEIR-type model. 

The SEIR model has proven to be widely used to model epidemics. 
However, given that the objective of this work is to characterize the dual 
causal relationship between the emerging phenomenon (the epidemic) 
and the behaviors of individuals given their cultural orientation, we 
propose this modeling at an agent scale where the epidemiological 
compartments taken from SEIR describe the individual health status. 
Each agent will be in one epidemiological state at a time and will switch 
between them according to a set of simple rules. This description is made 
as follows: 

We consider the agent ai ∈ A, where A is the set of all agents. The 
epidemiological behavior of ai can be expressed through a Probabilistic 
Timed Automaton (PTA) [52]. 

G = (S, sinit, trap,C,E,F,A,ω)

where:  

• S is a finite set that contains the states that the agent can adopt. The 
model presented in this work considers the states 

S = {S,E, Is, Ia,Q,H,R,D, I}

• sinit is the initial state, such that s ∈ {S, Ia, Is}.  
• trap ∈ S is a trap state. In the present work trap = D.  
• C is a finite set of clocks. Specifically, a total of 4 clocks are 

considered t1:4 ∈ C  
• E⊂S × S × 2c × guard(C) is the set of edges between two states. For 

the edge (s, s’,X, δ) ∈ E that goes from s to s’, the set X⊂C is the set of 
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clocks that will be reset to zero and δ is a clock constraint in guard(C) 
that must be satisfied when this transition is used. In this case, 
guard(C) is a set made up of true, false, and a set of logical constraints 
of the form tϱn in which t ∈ C, n ∈ N and ϱ ∈ {>, <, = }.  

▪ t1 > 6. This corresponds to the average incubation time 
reported in the literature [53].  

▪ t2 > 25. This period indicates the number of days that the 
infectious state lasts when symptoms occur.  

▪ t3 > 15. Time period of the asymptomatic infectious state. 
▪ t4 > 180. Once recovered from the disease, a person ac-

quires immunity; t4 indicates how many days this immunity 
will last.  

• F⊂S is the set of final states. In our model the only final state is D.  
• As is the set of actions that can be performed when the automaton is in 

the s state. The sets As are disjoint.  
• σ : A × E→[0,1] is the transition probability function, such that for all 

s ∈ S and a ∈ As it is true that Σe∈Es σ(a, e) = 1.

The diagram that graphically represents the described automaton is 
presented in Fig. 1. 

3.2. Sub-model 2: Human behavior 

The relationship between individual behaviors and emerging col-
lective behaviors is a problem that has been constantly addressed in the 
area of complex systems [54–56], and one of the objectives is to know 
how the feedback process develops between these two levels. An 

example of this relationship is that between human behavior and social 
and epidemiological phenomena, in which people’s individual behavior 
is largely the result of a set of decisions previously made [57,58]. By 
conducting an analysis individually, a person performs actions that help 
them carry out their daily activities. They also make decisions about the 
way in which they will carry out these activities: the means of transport, 
the path to take, the sanitary measures to be followed, the number of 
activities they will carry out, etc. 

Decisions have a motivator that can be based on an analysis of the 
risk that each situation entails. In the context of an epidemic, the risk is 
to become seriously ill or even die. 

In order to implement TPB using an agent approach, it is necessary to 
take all three components into account. In this work, the idea of 
conceptualized decision-making through Bayesian inference (BI) map-
ping is used, as has been done in Refs. [18,59–61], determining the 
probabilities for certain decisions and behaviors to be carried out, built 
on the basis of Bayesian probability theory and cognitive mapping. As 
new external information arrives, beliefs of preceding factors are 
updated. The Bayesian approach has been applied in a number of works 
in the literature to investigate the influence of incomplete/ambiguous 
information on decision-making processes to simulate complex 
social-ecological systems [62]. 

If we consider f a preceding factor, and B a certain behavior, an 
agent’s belief about engaging in such behavior can be represented as a 
probability: 

π(B) = π(B | f )π(f ) + π(B | ¬f )π(¬f ) (2) 

Fig. 1. Epidemiological model conception for COVID-19.  
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The probability that the agent will engage in behavior B when the 
factor f happens is given by: 

π(B|f )= π(f |B)π(B)
π(f |B)π(B) + π(f |¬B)π(¬B)

(3) 

P(f | B) is called the likelihood in Bayesian theory, and says that if B 
is known, so are the likely values of f . In the same manner, the proba-
bility that the agent will engage in behavior B when f does not happen 
can be expressed as follows: 

π(B|¬f )=
π(¬f |B)π(B)

π(¬f |B)π(B) + π(¬f |¬B)π(¬B)
(4) 

Following the same process described in Ref. [18], in order to 
incorporate the temporal variable and the influence of external social 
pressures (related to cultural orientation) Eq. (2), Eq. (3), and Eq. (4) are 
used to build Eq. (5): 

βt =
δβt− 1

δβt− 1 + (1 − δ)
(
1 − βt− 1)εt +

(1 − δ)βt− 1

(1 − δ)βt− 1 + δ
(
1 − βt− 1) (1 − εt) (5) 

In Eq. (5), the individual’s perception of behavior at time t, βt, is 
calculated based on the perception at time t − 1, βt− 1; a cultural orien-
tation coefficient, δ; and a variable, ε, that represents new external 
information. 

3.2.1. Mobility 
The proposed model considers two different categories of activities: 

recreational (visiting friends or family and exercising) and economic 
(face-to-face work for essential workers). In all cases, they involve 
mobility from one place to another. Mobility has been shown to play a 
very important role in the evolution of an epidemic. In fact, in the case of 
COVID-19, a strong correlation has been found between mobility and 
cases of viral disease [63–66]. For this reason, an agenda-based mobility 
sub-model is included. For each simulated day, an agent will plan a 
series of activities (represented in Fig. 2 as home, activity 1, activity 2, 
etc.), which will take place at a specific place and time, thus representing 
a person’s agenda. Once agents finish their agenda, they head to a place 
designated as their home. The incorporation of this sub-model makes it 
possible to consider the infections generated by the encounters between 
people who carry out their activities on a daily basis. 

In the literature it can be found that mobility has been used to 
explain up to 92% of the initial spread of COVID-19 in countries of the 
European Union [63]. In the case of China, it has been found that there is 
a relationship between the mobility of people and the number of new 
cases and the growth rate, both before and after restrictions on mobility 
are established [64]. In the United States, a strong correlation has been 
found between mobility patterns and the increase or decrease in 
COVID-19 cases, using anonymous data from cell phones [65]. We can 
find a similar case for the UK [66]. 

3.2.2. Society, culture, and behavior 
The effectiveness of the actions implemented in the face of the threat 

of a pandemic tends to vary from one society to another, even though the 
protocols used have been the same, and this is a consequence of cultural 
differences. In the literature, a variety of cultural factors can be found 
that determine the behavior of individuals in a crisis such as that caused 
by COVID-19. 

Individualism-collectivism. The behavioral sciences, specifically 
social psychology, have explained that a person’s cultural orientation 
and actions have consequences reflected in large-scale emergent phe-
nomena. One measure of a person’s cultural orientation is the level of 
individualism. An individualistic orientation promotes personal 
freedom over harmony, while in collectivist societies it is ideal to fulfill 
social duties and obligations in order to maintain harmony [16]. Cul-
tural orientation is important because positive causality has been 
observed between collectivist-oriented societies and the intention to 
take actions that help reduce the spread of COVID-19. It has been found 
that promoting collectivism in a community can be a way to increase 
participation in efforts to reduce the spread of COVID-19. 

4. Experimental work 

As part of the experimental work, three simulation scenarios were 
prepared. The first focused on demonstrating and measuring the varia-
tion in the epidemic indicators among populations with different cul-
tural profiles. For this, three parallel simulations were carried out with 
three different population profiles: totally individualistic, totally 
collectivist, and a population with equal parts of both profiles. In the 
second simulation scenario, the parameters of the model were initialized 
in two communities that contrasted in cultural orientation (one of them 
in a country with an individualist orientation, and the other in a country 
with a collectivist orientation). The country cultural profile values were 
taken from Ref. [17]. The objective was to compare the behavior of the 
epidemic resulting from the two different cultural profile values. Finally, 
scenario 3 was a case study in which the parameters of the model were 
calibrated to study the municipality of El Arenal, Jalisco, Mexico. In this 
last scenario, the results of the model were validated by contrasting 
them with the data reported by the government. 

The model was implemented on the GAMA Platform [67]. The first 
two simulation scenarios were geographically located in the Lomas del 
Centinela polygon in the metropolitan area of Guadalajara, Mexico, 
through geographically referenced data. The code, supplemental mate-
rial, and resources can be found in the project repository [68]. An 
overview of the model implementation is provided in Fig. 3. Using a 
graphic and interactive interface, stakeholders and decision-makers are 
allowed to use the tool. In addition to the scenarios of interest mentioned 
in this work, readers can experiment with their own assumptions, 
changing the parameters to adapt the tool to a specific case study. 
Finally, the results can be exported to be used as input in subsequent 
data analysis processes. 

4.1. Epidemiological sub-model parameters 

The parameters used in the epidemiological behavior model incor-
porated in the agents were based on COVID-19 studies reported in the 
literature [50,69], and are shown in Table 1. 

4.2. Scenario 1 

4.2.1. Assumptions  

• A total of 180 days were simulated.  
• Agents carried out a random number of daily activities following the 

decision-making model explained in the previous section.  
• It was assumed that the disease had been imported by agents who 

returned to the community without taking precautionary measures. 

Fig. 2. Conceptual representation of a daily agenda.  
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4.2.2. Parametrization 

4.2.2.1. Cultural orientation. Cultural orientation was divided into two 
subtypes, so that in this scenario there were four types of profiles: ver-
tical individualist (VI), horizontal individualist (HI), vertical collectivist 
(VC), and horizontal collectivist (HC). The value that changed between 
each type was the cultural orientation coefficient, such that for each 
profile a proportional value was assigned: 0.5, 0.67, 0.83, and 1.0 
respectively. 

4.2.2.2. Population. A total of 400 people agents were used for each 
population, segmented as follows:  

• Individualistic population. For the individualistic population, 398 
agents were placed and divided between types VI and HI; in addition, 
we placed 1 HC agent and 1 VC agent.  

• Collectivist population. Similarly, the collectivist population was a 
population that contained 398 collectivist agents (both VC and HC), 
as well as 1 VI agent, and 1 HI agent.  

• Balanced population. The total agents were divided in half: 50% 
individualists (both VI and HI), and the other 50% collectivist agents 
(VC and HC). 

The initial number of people exposed to the virus was 10. 

4.2.3. Simulation results 

4.2.3.1. Compliance with prevention measures by the population. Fig. 4a, 
b, and 4c show the response shown by the population to the prevention 
measures recommended by the authorities. It can be observed that the 
number of people in the collectivist population who follow the recom-
mendations constantly increases, while the individualistic population 
shows a low response to the measures. In the case of the balanced 
population, the graph seems to have a lower growth rate than that of the 
collectivist population; however, on approximately day 100 of the 
simulation, this rate increases. One possible explanation is that as the 
number of infections increases, the collectivist population is motivated 
to comply with the measures. 

Fig. 3. Model implementation using GAMA Platform.  

Table 1 
Epidemiological parameters used in the simulation of the scenarios.  

β  ρ  δs  δa  γ  λ  

0.01 0.86834 0.13266 0.5 0.1 0.8  

Fig. 4. Results of the simulation of scenario 1. The number of agents that adopted each of the contagion prevention measures is shown. The results show that 
adoption of the measures increased linearly over time in the collectivist population (a). On the other hand, the balanced population showed a low adoption at the 
beginning (b); however, once the external information indicated an increase in the epidemic, they adopted the measures. It is also shown that in the proposed model, 
the individualistic population very rarely adopted the measures. 
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4.2.3.2. Basic reproduction number (R0). The basic reproduction num-
ber was observed for the three populations (Fig. 5). 

4.2.3.3. Epidemiological indicators. In order to distinguish the results, 
they are classified by study variable: susceptible agents (Fig. 6a), 
exposed (Fig. 6b), infected with symptoms (Fig. 6c), infected without 
symptoms (Fig. 6d), immune (Fig. 6e), deceased (Fig. 6f), quarantined 
with symptoms (Fig. 7a), quarantined without symptoms (Fig. 7b), 
hospitalized (Fig. 7c). Each of these variables is evaluated in three 
different scenarios: (1) Population divided between individualistic and 
collectivist people, (2) 100% individualistic population, and (3) 100% 

collectivist population. 

4.3. Scenario 2 

In this scenario, a comparison was made of two populations with the 
cultural orientation parameters for the US and Mexico, as found in the 
literature [17]. 

4.3.1. Assumptions  

• A total of 180 days were simulated.  
• 400 agents representing people were used.  
• Agents carried out a random number of daily activities following the 

decision-making model explained in the previous section.  
• It was assumed that the disease had been imported by agents who 

returned to the community without taking precautionary measures. 

4.3.2. Parametrization 

4.3.2.1. Cultural orientation. The cultural parameters used in this 
simulation scenario were obtained from the literature on the cultural 
orientation of both countries [17]. In that study, a correlation was made 
between the cultural orientation of 69 countries with each of their 
epidemiological behaviors. The individuality index (used in this work as 
cultural orientation coefficient) reported for Mexico is 0.35 (where the 
minimum is 0 and the maximum is 1). The second population considered 
corresponded to the United States, whose individuality value, according 
to the study, is 0.9 on the same scale. 

4.3.2.2. Population. Each of the populations contained the same num-
ber of agents (400) in order to more accurately compare both pop-
ulations. The initial number of people exposed to the virus was 10. 

4.4. Simulation results 

4.4.1. Compliance with prevention measures by the population 
Fig. 8a,b,8c show the evolution of the number of people who adopted 

Fig. 5. Result of observing the basic reproduction number (R0). The collectivist 
population (green) shows a decrease in its average infections that is faster than 
the balanced population’s (red). We can also observe a decrease in the value for 
the individualistic population; however, this is because the large number of 
infections led to a decrease in the susceptible population, which is reflected in 
the fact that fewer agents are infected. 

Fig. 6. The results obtained from the simulation of the model using the configuration of scenario 1 are shown, classified by estimated epidemiological indicator, 
although it should be noted that the user of this simulation tool can create new population configurations to create scenarios that simulate realistic case studies. 

G.A. Palomo-Briones et al.                                                                                                                                                                                                                    



Computers in Biology and Medicine 141 (2022) 104995

8

Fig. 7. The quarantine case estimates for the simulation of scenario 1 are shown. The model allows output data to be generated for user-defined populations. In (a) 
the cases of infections with symptoms are compared, in (b) the comparison is made with the asymptomatic cases, and in (c) the estimates of hospitalized people 
are shown. 

Fig. 8. Using a configuration of two populations with the cultural parameters reported in the literature, the simulation of scenario 2 shows an estimate of the number 
of people in each population who adopt each of the prevention measures. 

Fig. 9. Simulation of two populations with contrasting cultural orientation. The indicators in red belong to the individualistic population, while the indicators in 
black belong to the collectivist population. 

G.A. Palomo-Briones et al.                                                                                                                                                                                                                    



Computers in Biology and Medicine 141 (2022) 104995

9

the recommended prevention measures in each population studied. 

4.4.2. Epidemiological indicators 
The results corresponding to the epidemiological variables are 

shown in Fig. 9a, b, 9c, 9d, 9e, and 9f. Likewise, the results regarding 
people in quarantine or hospitalized are shown in Fig. 10a, b, and 10c. 

4.4.3. Basic reproduction number (R0)

The basic reproduction number (R0) was compared for the two 
populations. The result after 180 days is seen in Fig. 11. 

4.5. Scenario 3 

In addition to the two scenarios proposed and simulated above, there 
was a third scenario where calibrated input parameters were used 

according to the data found in official reports and in the literature. The 
main objective was to demonstrate that the model can be adjusted and 
used for scenarios with real data and population. 

4.5.1. Assumptions 
To implement this scenario, the available data on infections and 

hospitalizations from the municipality of El Arenal, in the state of 
Jalisco, Mexico were used. El Arenal is located approximately 38 km 
west of the Guadalajara metropolitan area (GMA) in Mexico, and it was 
selected as a case study. 

for the following reasons: its population, according to the latest 
population census published by INEGI [70] (government institution that 
conducts the population census in Mexico), in 2020 was 21,115; thus, it 
is not a municipality with a large number of inhabitants (unlike the GMA 
with more than 8 million residents). This allowed for the validation of 
the model in a simple way in terms of computational power. Another 
reason for selecting this scenario was the epidemiological information 
available, since data on infections and hospitalizations are reported at 
the municipal level on a daily basis, which allowed direct validation of 
the simulation. The available data made it possible to segment the 
population into age ranges and the approximate location of their home, 
and thus to estimate the number of agents who worked, who did not 
work but carried out leisure activities, and who stayed home (for 
example children and older adults). Below, the considerations taken into 
account are described:  

• Epidemiological traffic light. On June 1, 2020, the government of 
Mexico implemented a system to impose activity restrictions in 
accordance with the latest epidemiological indicators [71]. In this 
case study, the restriction on mobility is determined based on the 
levels of hospital occupancy, and the daily activities are restricted in 
accordance with the rules described in Table 2.  

• Infections outside the municipality. This case study considered that a 
number of workers carried out their activities within the study area 
(this information was imported from INEGI). Those who worked 
outside the municipality were transferred to a common point and 
were considered to return to the municipality infected, with a 
probability that this study called infected_outside. This probability 

Fig. 10. Observed results of cases of infected people with symptoms, without symptoms and hospitalized for simulation scenario 3.  

Fig. 11. Evolution of the basic reproduction number (R0) reported by the 
simulation of scenario 2. 

Table 2 
Rules of operation of the epidemiological traffic light implemented in the case 
study.  

Occupancy 
level 

Traffic 
Light 

Restrictions on Activities 

0% to 30% Green Essential and non-essential activities are allowed in 
their entirety on a regular basis. 

31% to 50% Yellow Essential activities are maintained on a regular basis 
and non-essential activities are reduced by 75%. 

51% to 70% Orange Essential activities are maintained with a maximum 
capacity of 75% and non-essential activities are 
reduced to 50%. 

More than 
70% 

Red Essential activities are kept at 50% and non-essential 
activities are fully restricted.  

Table 3 
List of parameters used to simulate the epidemic in the mu-
nicipality of El Arenal.  

Parameter Value 

β 0.0001 
ρ 0.86834 
δs 0.13266 
δa 0.5 
γ 0.1 
λ 0.95 
essential workers percentage 25% 
distance for contact 2 m 
infected outside 0.0001  

G.A. Palomo-Briones et al.                                                                                                                                                                                                                    



Computers in Biology and Medicine 141 (2022) 104995

10

served to detect infections that did not occur within the municipality 
and that could lead to the appearance of waves of infections.  

• Time period. The case study considered a total of 60 days starting on 
May 23, 2020, the date on which the first confirmed infection was 
reported in the municipality of El Arenal.  

• Number of experiments. Ten simulations were run in the specified 
time period. 

4.5.2. Parametrization 

4.5.2.1. Cultural orientation. A value of 0.35, the cultural orientation 
value for Mexico reported in Ref. [17], was used. 

4.5.2.2. Population. A total of 21,115 agents were used corresponding 
to the total population according to the most recent population census in 
Mexico [70]. The rest of the parameters used in this scenario are shown 
in Table 3. 

Fig. 12. Demonstration of the use of the proposed model to study the evolution of the coronavirus epidemic in the municipality of El Arenal in the period from May 
23, 2020 to July 21, 2020 (60 days). The model was configured to run ten simulations (shown in gray lines) in that time period. The parameters used were the result 
of a calibration process using data from the municipality of El Arenal. The data used were the accumulated cases and the hospitalizations (blue triangles). 

Fig. 13. Tukey mean difference plots.  

Table 4 
Average value of each of the epidemiological and behavioral variables resulting 
from simulation scenario 1 for each type of population.  

Variable Individualist Balanced Collectivist 

Susceptible 244.02 248.13 316.48 
Exposed 7.48 7.73 4.28 
Infectious Symptomatic 29.94 33.08 16.23 
Infectious Asymptomatic 3.07 2.81 1.80 
Recovered 4.10 4.34 2.15 
Immune 27.38 23.73 12.23 
Symptomatic in Quarantine 15.09 16.10 8.07 
Asymptomatic in Quarantine 0.83 0.45 0.48 
Hospitalized 1.01 1.55 0.81 
Dead 84.01 80.18 46.83 
Using Mask 8.64 56.21 65.78 
Hand Washing 8.45 55.98 65.76 
Practicing Social Distance 8.42 56.36 65.16  
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4.5.3. Simulation results 
The results of the experiments are shown in Fig. 12. It can be 

observed that the real data on the accumulated cases (blue triangles in 
Fig. 12a), obtained from official sources of the government of the state of 
Jalisco, Mexico, follow a behavior similar to that estimated by the 
twenty repetitions of the model with the cultural and population pa-
rameters of El Arenal (gray lines). Likewise, the estimated number of 
hospitalizations (gray lines in Fig. 12b) maintains a similar trend after 
the first 60 days of simulation, compared to real data (blue triangles). A 
subsequent analysis was performed to measure the precision of the 
simulation estimates. The RMSE value for the cumulative real and 
simulated cases was 2.94, and for the real and simulated hospitalization 
cases it was 0.84. As part of the validation, we carried out a comparison 
process using a statistical technique known as the Tukey mean differ-
ence plot, which serves to measure the variation between two data sets; 
the results are shown in Fig. 13. 

5. Discussion 

As part of the experimental work, three different scenarios were 
presented in order to verify the correct functioning of the model and to 
compare simulations with parameters reported in the literature. The first 
scenario consisted of 3 populations of agents with generic profiles of 
different cultural orientation: a population with an individualistic pro-
file, another with a collectivist profile, and one more with a balanced 
profile. In this scenario, the configuration settings did not correspond to 
any given specific region or population. The results in this scenario 
showed that, consistent with previous studies on cultural orientation 

and COVID-19, the collectivist population generally achieved better 
control of the epidemic. The basic reproduction number (R0) was 
compared and during the simulation period, an average of R0 = 0.87 
was observed in the collectivist population, while the individualistic and 
balanced populations showed R0 = 1.14 and R0 = 1.16, respectively. 
From the analysis of Table 4, which contains the average values of each 
output variable for each population, it was found that on average, a 
totally collectivist population had a better response to the epidemic, 
managing to keep contagion levels low due to the positive response to 
the prevention measures proposed by the authorities. 

As specified in Section 4.3, the second scenario considered two 
specific cultural profiles: Mexico and the United States. From the anal-
ysis of the results of the simulation of this scenario as shown in Table 5, it 
was found that the behavior of the epidemic in both populations coin-
cided with the empirical results reported in the literature. The mean 
value of the basic reproduction number for the population with US pa-
rameters was R0 = 1.27, while for the population based on the param-
eters for Mexico it was R0 = 1.00. It was observed that, like in 
simulation scenario 1, the behavior of the epidemic was better in the 
population that had a population with a profile oriented to collectivism, 
as is the case of the population with parameters for Mexico. On the other 
hand, infections and other epidemiological indicators were on average 
higher for the population based on the US parameters. 

In the third scenario, a comparison was made of the data reported by 
the authorities and the results obtained from the model. It is important 
to consider that the results obtained from the simulations of the sce-
narios were not expected to fully match the data reported by the au-
thorities. Multiple external factors can help explain this; one of the most 
important is the fact that official reports are based on the direct results of 
tests applied to the population daily, and do not take into account the 
estimate of positive cases that have not been tested. However, it has 
been shown that the estimates provided by the simulations of the pro-
posed model can help to plan better interventions by considering 
important aspects such as culture and adherence to prevention mea-
sures. A verification of the decision-making model was also carried out 
by evaluating the correct update of the intention value produced. In this 
sense, unit testing was performed for the decision-making sub-model 
corresponding to equation (5). For this, the simulation of this sub-model 
was run with a list of 11 different parameters for δ ∈ {0.0,0.1,0.2, ...,
1.0}, representing different cultural orientation indices. Using each of 
the test indices, a total of 180 simulation cycles were run using different 
incoming information ranging from 0.0 to 1.0. The results are shown in 
Fig. 14a and Fig. 14b. There are two special cases presented in equation 
(5). The first case is when δ = 1.0; the expression is reduced to βt = εt, 
which means that the agent takes into account only the external infor-
mation to obtain its value of intention to perform a behavior. This can be 

Table 5 
Average value of each of the epidemiological and behavioral variables resulting 
from simulation scenario 2 for each type of population, where population 1 was 
initialized with parameters from the USA and population 2 with parameters 
from Mexico, according to the literature.  

Variable Population 1 Population 2 

Susceptible 203.60 255.06 
Exposed 8.36 6.84 
Infectious Symptomatic 37.54 32.44 
Infectious Asymptomatic 2.38 1.76 
Recovered 4.94 4.07 
Immune 28.16 17.49 
Symptomatic in Quarantine 16.36 15.81 
Asymptomatic in Quarantine 0.68 0.57 
Hospitalized 1.67 1.48 
Dead 115.02 82.32 
Using Mask 101.0 49.05 
Hand Washing 100.80 49.16 
Practicing Social Distance 101.20 49.044  

Fig. 14. Intention value, result of evaluating equation (5) with the set of values for δ : {0.0, 0.1, ..., 0.9, 1.0}, with 180 incoming information values from 0.0 to 1.0.  
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seen in Fig. 14b where the line corresponding to the intention value for δ 
= 1.0 increases linearly to the incoming information. The second special 
case occurs when the value of δ = 0.5, for which the expression is 
reduced to βt = βt− 1. This indicates that the intention value to perform 
a behavior will depend exclusively on the β value of the previous deci-
sion taken. In Fig. 14b, it can be observed that the intention value re-
mains constant for δ = 0.5. This means that the same decision is made 
throughout the 180 simulation cycles. These tests indicate that the de-
cision sub-model behaves correctly and in accordance with the theo-
retical analysis. 

Additionally, a one-at-a-time sensitivity validation analysis was 
performed. The objective of this type of analysis is to obtain a sensitivity 
value, by increasing each parameter by a given percentage while the 
others are left constant, and quantifying the change in the output of the 
model [72,73]. An analysis was performed in which the variation in 
three dependent variables was observed (basic reproduction number 
(R0), infectious symptomatic people, and number of deaths). The 

independent variable that was varied was the cultural orientation. The 
simulation analysis considered 180 days from the first contagion and ran 
11 times corresponding to each of the δ values. The results of this 
variation for each output variable are presented in a boxplot format. 
Fig. 15a shows the variation of the basic reproduction number (R0) 
registered in the dependent variable. Fig. 15b shows the variation. 

observed for the variable infectious symptomatic people, and finally, 
Fig. 15c shows the variation registered in the variable deaths. It can be 
seen that the worst control of the epidemic and greatest variation in all 
cases occurs for the values of the cultural profile δ that range from 0.6 to 
1 (individualist cultural profile). 

Further validation will be done as future work using local cultural 
profiling data as they become available. It is important to mention that 
these cultural profiling studies are still needed at the local or community 
level at this time in the context of the COVID-19 pandemic. 

Fig. 15. Sensitivity analysis of the dependent variables when the independent variable is varied.  
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6. Conclusion 

In this work, an agent-based model was proposed to study the evo-
lution of the COVID-19 epidemic considering different simulation sce-
narios. For this, a set of theories from the social sciences were applied: 
the theory of planned behavior and cultural orientation. The first sce-
nario that was studied consisted of three generic population profiles 
with different coefficients of cultural orientation (a measure proposed to 
incorporate the agents’ level of individualism): an individualistic pop-
ulation, another collectivist, and a more balanced one. The results of the 
simulation showed, in general terms, a better management of the 
epidemic in the collectivist population, due to the positive response of 
the individuals to the prevention measures. A second simulation. 

scenario consisted of two populations from two different countries 
with coefficients of cultural orientation taken from the literature; in this 
simulation a better control of the epidemic was again demonstrated in 
the population with a less individualistic orientation. The worst control 
and greatest variation for the basic reproduction number (R0), infectious 
symptomatic people, and number of deaths were obtained for the cul-
tural profile values of δ ranging from 0.6 to 1. 

Local non-pharmaceutical interventions for pandemic mitigation are 

derived from the recommendations of the WHO and national health 
authorities. However, the results confirm that the socio-cultural profile 
is relevant in the individual agents’ response, from which the general 
behavior of the epidemic arises. 

This work has shown that it is possible to model both contagious 
diseases and social phenomena to study the associated emergence and 
the general effects on the evolution of an epidemic. This would allow for 
more precise or better adjusted epidemic interventions according to the 
specific characteristics of a given modeled community. 
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Appendix 

8.1. ODD description for the proposed agent-based model 

8.1.1. Purpose 
This model aims to explain and simulate some behavior of societies living in cities and regions and the affectations caused by COVID-19 mitigation 

and control measures. 

8.1.2. Entities, state variables and scales 
Scales. As the purpose of the model is to simulate scenarios at the scale of a community, it is necessary to consider data and behavior according to 

this scale. The time scale used is 2 min for every time step. The authors of this study believe that this scale is enough to capture the movement and 
contacts between people. Although these were the parameters chosen for the model, they can be modified in the implementation to be able to test 
other scenarios and scales. 

Entities. People are the most intuitive kind of agent, as they represent each person that is part of the community. Each individual has a series of 
characteristics: age, sex, household, agenda, medical profile, social profile, professional profile. They also incorporate different behavioral parameters 
that influence their interactions and how they follow indications and recommendations from authorities. Although the epidemiological state is 
included in the medical profile, it is important to highlight that people agents have a finite internal state machine which determines the agent’s current 
state in terms of diseases, not only COVID-19, but also other medical situations to be considered. People agents can move, not only from/to buildings, 
but also inside them to perform daily activities. Therefore, building as a kind of agent is included. As each people agent has an agenda, their daily 
behavior is guided by activities. Activity agents are used to describe the activities of people agents using information such as the location (where an 
activity will take place), the scheduled time to perform the activity, and the type of activity. An activity must be implemented based on the profile of 
each people agent. A list of activities conforms an agenda. Policy agents are designed to implement interventions on the behavior of individuals in the 
public space, such as restricted mobility, permitted but essential kinds of activities, etc. 

8.1.3. Process overview and scheduling 
This model describes the double causality between human behavior in pandemic situations and in an urban environment, and the dynamics of an 

epidemic. For this reason, different levels of dynamics need to be simulated: the agent’s agenda, the evolution of the epidemics, and the imple-
mentation of the prevention measures by the population. It is considered that during the simulation of a scenario, each time an agent needs to make a 
decision, it will do so by executing the Bayesian inference proposed in section 3.2, obtaining a value in the range [0,1]. This value is used to decide 
between taking an action or not, such as wearing a mask or not, going outside or not, etc. 

People perform daily activities according to an agenda. The agenda of each agent is randomly generated considering the cultural profile, and it is 
unique in this sense, although some similarities can be observed. A scheduling function belonging to the people agent manages the activities to be 
performed according to the hour of the day. A common example is the basic agenda consisting of activities such as going from home to work/school, 
then going out for lunch or for a leisure activity, and finally, in the afternoon, going back home. (See Fig. 16). 

Rule 1: Decision-making about agenda. The agent decides the activities to be performed, taking into account belief and risk analysis. Each time a 
people agent needs to perform a new activity, a function determines the kind of social behavior according to a level of awareness about the epidemic. 

Rule 2. Decision-making about behavior. The agent decides the manner in which to perform the activities. This involves the wearing of a face 
mask, washing hands and keeping social distance. The three behaviors described above are taken into account since they have been found to be the 
most important measures in reducing the risk of contagion between people [74,75]. For this purpose, each agent calculates and updates the individual. 
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Fig. 16. People agents’ daily routine process.  

Fig. 17. Agents’ decision-making process.  

belief about performing a specific behavior, using the Bayesian inference model presented in Eq. (5). This process is shown in Fig. 17. 
Rule 3: Epidemic dynamics. The epidemiological behavior of ai can be expressed through a Probabilistic Timed Automaton (PTA) and it has been 

explained in Section 3.1. At the same time activities are performed, people’s internal health state changes. The transition from Susceptible to Exposed 
can occur only if the agent has had contact with the virus, either by transmission from an infected agent or by infected places with a given probability. 
The described Probabilistic Timed Automaton can be observed in Fig. 1. Fig. 18 shows the class diagram that makes up the implementation of the 
model described above is shown. 
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Fig. 18. Description of agent classes and their relationships.  
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