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A B S T R A C T   

Background: To understand the transcriptomic response to SARS-CoV-2 infection, is of the utmost importance to 
design diagnostic tools predicting the severity of the infection. 
Methods: We have performed a deep sampling analysis of the viral transcriptomic data oriented towards drug 
repositioning. Using different samplers, the basic principle of this methodology the biological invariance, which 
means that the pathways altered by the disease, should be independent on the algorithm used to unravel them. 
Results: The transcriptomic analysis of the altered pathways, reveals a distinctive inflammatory response and 
potential side effects of infection. The virus replication causes, in some cases, acute respiratory distress syndrome 
in the lungs, and affects other organs such as heart, brain, and kidneys. Therefore, the repositioned drugs to fight 
COVID-19 should, not only target the interferon signalling pathway and the control of the inflammation, but also 
the altered genetic pathways related to the side effects of infection. We also show via Principal Component 
Analysis that the transcriptome signatures are different from influenza and RSV. The gene COL1A1, which 
controls collagen production, seems to play a key/vital role in the regulation of the immune system. Additionally, 
other small-scale signature genes appear to be involved in the development of other COVID-19 comorbidities. 
Conclusions: Transcriptome-based drug repositioning offers possible fast-track antiviral therapy for COVID-19 
patients. It calls for additional clinical studies using FDA approved drugs for patients with increased suscepti
bility to infection and with serious medical complications.   

1. Background 

Coronaviruses are a varied group of single positive-stranded RNA 
viruses, with a crown-like appearance under an electron microscope, 
due to the presence of spike glycoproteins on the envelope. These viruses 
originate in bats and circulate in a wide range of hosts [1]. There are 

several different types of coronaviruses: Alpha-coronaviruses (alpha
CoV), Beta-coronaviruses (betaCoV), Delta-coronaviruses (deltaCoV), 
and Gamma-coronaviruses (gammaCoV). Most of them seem to cause 
colds or other mild respiratory illnesses. There have been far more 
deadly varieties/adaptations of coronaviruses in the past known as Se
vere Acute Respiratory Syndrome (SARS) and Middle East Respiratory 
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Syndrome (MERS). 
The SARS-COV outbreak was first discovered in southern China in 

February 2003. The outbreak lasted approximately six months and the 
disease propagated to more than two dozen countries in North America, 
South America, Europe, and Asia, before it was stopped in July 2003. It 
has infected more than 8,000 people and the mortality rate was around 
9.6%. In late 2017, Chinese scientists traced the virus to cave-dwelling 
horseshoe bats in Yunnan province. 

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV)- 
related pandemic outbreak started in September 2012 in the Middle 
East, and it had subsided by June 2013. Around 2,500 laboratory 
confirmed cases were reported, and the fatality rate was around 34.4%. 
MERS-CoV appears to have originated from an animal source in the 
Arabian Peninsula. Researchers have found MERS-CoV in camels in 
several countries. Evidence suggests that MERS-CoV could have been 
also originated in bats that infected camels which in turn passed the 
infection on to humans. 

In December 2019, a novel coronavirus, SARS-CoV2, today known as 
COVID-19, was identified as responsible for an outbreak of viral pneu
monia focused on Wuhan, Hubei, China [2]. COVID-19 virus shares 
structural and sequential features with SARS-CoV and MERS-CoV vi
ruses, causing severe respiratory complications in their hosts [3,4]. It is 
likewise originated in horseshoe bats found in several caves in China [5, 
6], which infected intermediate hosts, like cats, raccoons or dogs, 
transferring the infection to humans. As of today (July 27, 2020), there 
are over 16 million COVID-19 infection cases with approximately 650, 
000 worldwide. However, in some countries such as Italy or Spain, the 
death rate is significantly higher [7]. COVID-19 symptoms are charac
terized by high fever, cough and a general malaise [8]. However, severe 
cases experience acute respiratory distress syndrome, and lung injury 
leading to lung inflammation and pneumonia [9]. SARS-CoV-2 forms 
spherical or elliptic particles of a diameter of approximately 50–200 nm 
containing single-stranded RNA associated with a nucleoprotein within 
a capsid. There are four main structural proteins of coronaviruses: spike 
(S), membrane (M), envelope (E), and nucleocapsid (N) glycoproteins. 
SARS-CoV-2 has around 79% similarity to SARS-CoV and about 50% 
similarity to MERS-CoV [10]. 

The structural arrangements of nucleocapsid protein (N), envelope 
protein (E), and membrane protein (M) among SARS-CoV-2, SARS-CoV 
and MERS-CoV beta-coronaviruses are different. The patient’s physio
logical response starts at the cellular level following virus replication. 
The spike glycoprotein (S) of the coronavirus ease the entrance into the 
virus’ targeted cells, which depends on the binding of the virus protein 
to a cellular receptor [11]. Li and co-workers reported that SARS-S 
protein binds to angiotensin-converting enzyme 2 (ACE2) as the entry 
receptor and utilizes cellular serine protease (TMPRSS2) for S protein 
priming [12]. To detect pathogens such as bacteria and viruses, the 
immune system is equipped with receptors called pattern recognition 
receptors (PRRs). These receptors are a key element of the immune 
system. Subsequent to the virus cell infection, replication is performed 
through a Pattern Recognition Receptor (PRRs) [13]. Binding of virus 
specific RNA structures yields to oligomerization of these receptors and 
the activation of down-stream transcription factors, where interferon 
regulator factors (IRFs) and nuclear factors κB (NF-κB) are the most 
likely ones [14]. These two factors generate two antiviral responses in 
the host. The first antiviral response is mediated by transcriptional in
duction of type I and II interferons (IFN–I and IFN-II) and overexpression 
of IFN-stimulated genes (ISGs) [15]. The second response is carried out 
by leukocytes and mainly induced by chemokine secretion [16]. 
Furthermore, the response of the host varies depending on the under
lying genetics, showing different degrees of morbidity, including mor
tality [17]. 

The current COVID-19 outbreak is acute and rapidly growing into a 
global crisis. Consequently, it is of utmost importance to analyze the 
transcriptomics data of the viral infection [18] to precisely detect the 
genetic pathways severely altered by the virus and to perform drug 

repurposing aimed at restoring homeostasis. The analysis of disease’s 
transcriptomic response, plays a key role in the development of novel 
and effective therapeutic strategies [19]. Comparing the transcriptomic 
response on SARS-CoV-2 to other respiratory diseases, such as influenza 
A virus (IAV), and SARS-CoV-1, we can obtain not only a better insight 
on potential treatments, but also a way to repurpose existing 
FDA-approved drugs, as a complementary approach to the design of new 
drugs and novel vaccines. In terms of transcriptomics, Frieman et al. 
reported that these respiratory diseases involve a variety of different 
antagonists to IFN-I and IFN-III response [20]. More precisely, Frieman 
et al. and Kopecky-Bromberg et al. attributed IFN antagonism to the 
nucleocapsid (N) gene products, ORF3B and ORF6 [20,21]. García-
Sastre et al. reported that, either IAV and SARS-CoV-1, encode the IFN-I 
and IFN-III antagonist non-structural protein 1 (NS1), which blocks the 
human body initial detection by PRRs via binding and masking RNA 
produced during the infection [22]. 

Clinicians believe that the main cause in many critically ill patients is 
related to the cytokine storm that take place when the immune system 
reacts against viral infection. These signaling proteins secreted by the 
immune system, act as chemical messengers against the infection, 
helping to regulate the immune system response by binding to the sur
face of the infected cells. Sepsis occurs when the immune system over
reacts. Other clinicians emphasize the hyperinflammatory state 
generated by the infection and argue that targeting the cytokines will 
speed up the viral replication. New studies on the side-effects triggered 
by the COVID infection, show that infection may also lead to blood 
vessel constriction and the main risk factors seem to be associated with 
diabetes, obesity, and hypertension. Other organs such as the brain, the 
eyes, the nose, the heart and the blood vessels, the liver, the kidneys, and 
the intestines are affected as well. Heart damage, renal and kidney 
failures, neurological and gastrointestinal problems have also been re
ported in COVID-19 patients [23]. All these medical data indicate that 
varying genetic pathways are being altered by the coronavirus and that 
identifying these alterations is the crucial step in understanding the 
dynamics of the infection and finding possible treatments via drug 
repurposing. Varying approaches have been applied to fight COVID-19 
infection, ranging from the use of natural products and human intesti
nal defensins, to sophisticated methods combining drug repositioning, 
virtual screening and molecular dynamics simulations [24–27]. 

In this manuscript, we aim to understand the mechanisms of the 
disease and repurpose existing FDA-approved drugs to treat COVID-19 
by performing a retrospective analysis of SARS-CoV-2 transcriptomic 
data, that were made publicly available (GEO 147507) by the Icahn 
School of Medicine at Mount Sinai Hospital (New York). This analysis 
was carried out by sampling different equivalent high discriminatory 
genetic networks, that are related to the uncertainty space of the clas
sifier that is used to predict the phenotype (disease versus controls). For 
that purpose, we have used the Holdout (HDS) and the Leave-One-Out- 
LOOCV Samplers, described by us in detail in earlier works [28]. The 
subsequent analysis entails finding the most frequently sampled genetic 
signatures with high validation accuracy in the phenotype prediction. 
We apply this knowledge of altered genetic pathways to conduct drug 
repositioning by using the connectivity map (CMAP) library, developed 
by the Broad Institute which contains over 1.5 million gene expression 
profiles, around 5000 small molecule compounds, and nearby 3000 
genetic reagents [29]. The main philosophy of using CMAP library is to 
find drugs that are potentially efficient to reestablish the homeostasis 
[30]. From this perspective, given a set of altered genes, drugs in CMAP 
library are score-based on a disease-drug connectivity and rank-based on 
the two-sample Kolmogorov-Smirnov test to determine which ones are 
more likely to have either a positive effect or an amplified negative ef
fect [31]. The algorithm samples the equivalence region of a regression 
problem by using bootstrapping to find different sets of equivalent 
predicting parameters [32,33]. Finally, these findings have been cross 
validated with the results obtained by analyzing independent datasets. 

In conclusion the use of transcriptomic data enables a better 
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understanding of the disease and offers the possibility of fast-tracking 
antiviral therapies for COVID-19 patients via drug repositioning. 

2. Material and methods 

2.1. Material 

To achieve drug repositioning, we perform a retrospective analysis of 
two transcriptomic datasets. The first one was deposited in the Gene 
Expression Omnibus Database https://www.ncbi.nlm.nih. 
gov/geo/under the accession number GEO147507. 

It contains transcriptomic data from cells and animal models of 
SARS-CoV-2, Respiratory Syncytial Virus (RSV) and Influenza A Virus 
(IAV). These data has been recently studied by Blanco-Melo et al. [18], 
whose research revealed an unsuitable inflammatory response by low 
levels of type I and type III interferons juxtaposed to elevated chemo
kines and high expression levels of IL-6. In their studies, they used cell 
models of SARS-CoV-2 infection, in addition to transcriptional and 
serum profiling of COVID-19 patients. This dataset was the main target 
of this study since authors identified a muted transcriptional response to 
SARS-CoV-2, which supports a model in which initial failure to rapidly 
respond to infection results in prolonged viral replication and an influx 
of proinflammatory cells that induce alveolar damage and manifest in 
COVID-19 lung pathology. 

We utilized transcriptomic data derived from independent triplicates 
of primary normal human bronchial epithelial (NHBE) cells, that were 
mock-treated (control set) or infected with SARS-CoV-2, IAV H1N1, or 
IAV dNS1 strains, and treated with human interferon-beta (cell-lines). 
Additional data were derived from independent biological triplicates of 
adenocarcinoma human alveolar basal epithelial cells (A549) that were 
mock-treated or infected with SARS-CoV-2, RSV or IAV H1N1. We have 
used the expression data from transformed lung alveolar (A549) trans
duced with a vector expressing human ACE2 and transformed lung- 
derived Calu-3 cells, both infected and controlled. In this paper we 
only perform the SARS-CoV-2 analysis (infected vs. Mock Treatment 
cases). The main analysis to identify drug repurposing uses only SARS- 
CoV-2 infected cell lines, although the additional infection datasets 
were used for some comparative studies. This dataset also includes 4 
samples from mock-treated lung biopsies (2) and COVID-19 infected 
lungs (2): uninfected human lung biopsies were derived from one male 
(age 72) and one female (age 60) and lung samples derived from a single 
male COVID-19 deceased patient (age 74). These samples were used to 
check the findings performed with the cell-lines samples. 

Additionally, we have interpreted the dataset provided by Duke 
University (https://www.ebi.ac.uk/arrayexpress/experiments/E-M 
TAB-8871/), a transcriptomic profiling conducted on blood collected 
from COVID-19 cases by Desai et al., [34]. The blood was collected in 
Tempus Blood RNA tubes, and RNA was extracted using the Tempus 
Spin RNA Isolation Kit. Mock-treated samples were taken from partici
pants of a measles, mumps, and rubella re-vaccination study. In this 
respect, the researchers used the NanoString Human Immunology Panel, 
that includes the gene expression analysis of over 437 immunology 
genes. Panel includes major classes of cytokines and their receptors, 
enzymes with specific gene families such as the major chemokine li
gands and receptors, interferons and their receptors, the TNF-receptor 
superfamily, and the KIR family genes. This panel is ideal for the 
study of allergy, autoimmune diseases, and infectious disease immune 
response. This dataset shared most of the targeted genes with the first 
study and allowed us to confirm the immune pathway analysis found in 
the first experiment and perform drug repositioning targeting the che
mokines storm and the immune response. 

2.2. Methods 

To perform the retrospective cohort study, we applied our novel 
machine learning uncertainty-based method to sample (within the entire 

dataset) different combinations of highly predictive genes for a specific 
phenotype prediction problem. This enables us to identify the discrim
inatory genetic pathways for SARS-CoV-2 infected vs. Mock Treatment 
cases. The main idea is to identify the genes that are up- and down
regulated upon infection to establish personalized treatments. 

Prediction of the transcriptomic response can be framed as a general 
regression model between the high discriminatory genes that charac
terize the infection and a set of sample cases that are part of the training 
data set [35]. The most important issue in the analysis of genetic data is 
the lack of a conceptual model that can relate the different genes/probes 
to the class prediction (phenotype). As a result, a classifier L*(g) must be 
built as an algorithm that maps genetic signatures g to the set of classes 
into which the phenotype is divided, in our case: 

L*(g) : g∈Rs → C={SARS − CoV − 2;Mock}. (1) 

To properly map the genetic signatures and the phenotype, the 
modeling scheme is divided in two steps: learning and validation. The 
learning stage is carried out with a subset of samples T, whose class 
vector cobs is known and consists of finding the genetic signature that 
maximizes accuracy according to: 

Acc(g)= ||100 − L*(g) − cobs||1. (2) 

||100 − L*(g) − cobs||1 stands for the prediction error (in percents) 
which is determined via Leave-One-Out-Cross-Validation (LOOCV). The 
shortest genetic signature with the highest predictive accuracy is 
considered the small-scale signature and offers an idea of the complexity 
of the phenotype prediction. Due to the inherent uncertainty of this type 
of problems [36,37], the stability of the small-scale signature can be 
established by performing data bagging [38]. One of the novel tech
niques recently published in this regard was introduced by Li et al. and 
Yang et al. The first one proposes a methodology that identifies the 
proteomic signature (in this case it can also be applied to a genetic 
signature) of good reproducibility and aggregating them to ensemble 
feature ranking by ensemble learning, assessing the generalizability of 
ensemble feature ranking to acquire the optimal signature and indi
cating the phenotype association of discovered signature [39]. The 
second one introduce a novel feature selection strategy integrating 
repeated random sampling with consensus scoring and evaluating the 
consistency of gene rank among different datasets was constructed [40]. 
In our case; and similarly to Li et al. and Yang et al., we utilized a holdout 
sampler [41,42] in combination to the Fisher’s ratio in order to filter the 
highest discriminatory genes according to this parameter [43]. 

Fig. 1 shows the algorithm workflow, that consists of three steps:  

1. Data bagging: a set of random 75/25 data bags holdouts were 
generated, where 75% of the data is used for learning and 25% for 
validation. In the present study, we have used 1000 different bags.  

2. Gene selection: For each data bag, the discriminatory genes are 
selected, and the classifier is built. The genes utilized to construct the 
classifier are restricted to the most discriminatory ones according to 
their Fisher’s ratio, with a minimum cutoff of 0.5. The accuracy is 
calculated on the validation set. This way of proceeding is because 
variables with high discriminatory power span the main features of 
the classification, while variables with lowest discriminatory ratios 
account for the details in the discrimination. This method determines 
the minimum amount of high-frequency details (helper genes) that 
are needed to optimally discriminate between classes promoting the 
header genes, which are those that explain the phenotype in a robust 
way [35,36,44,45]. 

For clarification purposes, Fisher’s ratio and the fold change of gene j 
in a binary classification problem are defined as follows: 

fc
(
gj

)
= log

μ1j

μ2j
,
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(
gj
)
=

(
μ1j − μ2j

)2

σ2
1j + σ2

2j
,

where μ1j, μ2j are the mean expressions of the gene j in classes 1 and 2 
and σ2

1j, σ2
2j are their respective variances. By combining both, it is 

possible to look for genes that are differentially expressed, and whose 
respective gene expression probability distribution tails do not overlap. 
In our analysis, we use the p-value of the T-test to decide if both gene 
expressions come from a distribution with the same mean or not. A small 
p-value indicates strong evidence for the exclusion of the null- 
hypothesis, that both distributions have the same mean. 

Posterior analysis: After the data bagging simulation, the small- 
scale signature is found by selecting holdouts with the highest predic
tive accuracies. Finally, we performed a frequency analysis of the 

sampled genes and linked them to the potential defective pathways. 
Once the different genes are ranked according to their differential 

gene expression with respect to the control samples, it is possible to 
perform CMAP-based drug repurposing with Dr. Insight package [31]. 
When searching for a potential drug, a gene is considered concordantly 
expressed if there is an inverse association of its expression in the disease 
data and in the drug-perturbed data [30,46]. This means that a gene is 
upregulated in the disease data but downregulated after drug pertur
bation, or vice-versa. Dr. Insight algorithm computes for each gene its 
expression rank in the disease and reference drug data according to a 
formulated outlier-sum based statistics that models the overall 
disease-drug connectivity. The algorithm computes the outlier-sum for 
each drug and compares it with the reference distribution outlier-sum 
statistics obtained from the entire CMAP database. It employs the two 
sample Kolmogorov-Smirnov test to determine if a specific outlier-sum 
for a given drug indicates a novel repurposed drug candidate [47]. 

3. Results 

3.1. Analysis of the first data set: transcriptomic analysis in cell lines and 
lung biopsies 

To understand the transcriptional response of SARS-CoV-2 and infer 
potential drug targets via drug repositioning of already FDA-approved 
drugs, we perform a comparative study of the altered genes and path
ways in SARS-CoV-2 with respect to other respiratory diseases, including 
SARS-CoV-1, Respiratory Syncytial Virus (RSV) and Influenza A Virus 
(IAV). Fig. 2 shows the dataset, which is the transcriptomic profile of 
SARS-CoV2 with respect to other respiratory diseases. The colour in
tensity represents the expression of the genes. No visual difference can 
be made. Therefore, supervised methods are needed to find the genes 
that separate COVID infected samples versus mock treated. Although 
this is obvious for many modelers, some people still think that unsu
pervised methods could be used. 

Fig. 3 shows that IAV and RSV comprises a unique cluster in the 

Fig. 1. Flowchart of the Holdout Sampler utilized to sample the tran
scriptomic data. 

Fig. 2. First data set. Transcriptomic profile of SARS-CoV-2 with respect to 
other respiratory diseases. The x-axis represents the index of the genetic probe, 
and the y-axis the index of the samples. It is impossible to differentiate the SARS 
COVID samples from the rest. Our methodology includes cross-validations of 
the discriminatory genetic signatures that were sampled. In this case the image 
contains all the samples in this data set, not only the COVID samples. Blue color 
indicates lower expressions, while the red colors indicate higher expressions. It 
can be observed that blue colors (under expressions) are predominant in 
this dataset. 
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Principal Component Representation, which is due to a high expression 
of IFNs and ISGs, as suggested by Blanco-Melo and coworkers. In 
contrast, the infection of SARS-CoV-2 differs in this representation and 
based on the transcriptomic profile, it shows little expression with 
regards to IFN-I and IFN-III, but shows an expression in the ISGs and 
proinflammatory pathways (as seen later in Table 4 concerning the 
altered genetic pathways). 

3.2. Genetic small-scale signature of SARS-CoV-2 shows high expression 
of proinflammatory pathways and infer possible secondary effects and 
complications 

This comparison establishes the differences between transcriptomic 
data for SARS treated (X samples) and mock treatment (Y samples). The 
small-scale signature to predict this phenotype is composed of 31 genes. 
We have achieved a LOOCV accuracy of 91.84% (92%). In this case, 
under expression indicates that mean genetic expression of these genes 
in SARS-CoV-2 samples, is smaller than in the mock treatment samples. 
Figs. 4 and 5 shows two discriminatory plots of the SARS-CoV-2 
phenotype classification problem. The first one shows the fold change 
Fisher’s ratio plot, where we observe that the genes with the highest 
Fisher’s ratio do not coincide with the one with the highest fold change. 
This is because there is an overlapping between gene expressions in both 
classes. Fig. 5 shows the regression between the Fisher’s ratio and the 
-log10 of the p-value of the T-test performed on the median expressions 
of the most discriminatory genes in each class (SARS and Mock-treated). 
It can be observed that the Fisher’s ratio increases as the p-value de
creases (-log10 increases). Therefore, the Fisher’s ratio is a correct 
descriptor of the discriminatory power of the genes in the phenotype 
classification problem. 

Tables 1 and 2 show the genes of the small-scale signature (over- and 
under expressed). We also provide the mean expression in class 1C1 
(COVID) and class 2C2 (Mock-treated), the dispersions (std), the Fisher’s 
ratio and the LOOCV accuracy of the incremented lists ranked by 
decreasing discriminatory power (Fisher’s ratio). In this case, the min
imum Fisher’s ratio is frmin = 0.76. This cut-off value makes the center of 
the distributions of the genes expressions in both classes to be separated: 

|μ1 − μ2| >
̅̅̅̅̅̅̅̅̅
frmin

√
(std1 + std2).

That way, the binary classification problem becomes a linear sepa
ration problem. This was explained in Ref. [48] where the algorithm was 
formerly described. 

It is interesting to analyze the most important pathways, diseases and 
drugs related to the small-scale genetic signature concerning both types 
of genes (under and overexpressed).  

1. Under expressed genes:  
o Pathways: Passive transport by aquaporins (AQP6), Platelet 

adhesion to exposed collagen (COL1A1), Osteoblast signaling 
(COL1A1), TWEAK regulation of gene expression (COL1A1), As
sociation of TriC/CCT with target proteins during biosynthesis 
(FBXW9), Inflammatory response pathway (COL1A1), Glycopro
tein VI-mediated activation cascade (COL1A1), Beta-3 integrin cell 

Fig. 3. Principal Component Representation of SARS-CoV-2 infection with 
respect to other respiratory diseases. The projection is done on the two first PCA 
terms obtained from the gene expressions of the Small-Scale Signature given 
in Table 1. 

Fig. 4. Fisher’s ratio-foldchange plot of the most discriminatory genes in the 
SARS discrimination. 

Fig. 5. Fisher’s ratio-pvalue plot (in -log10 scale) of the most discriminatory 
genes in the SARS discrimination. 
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surface interactions (COL1A1), NCAM1 interactions and Syndecan 
1 pathway (COL1A1).  

o Diseases: Immune response to smallpox (secreted IL-10) 
(SPOCK3), Insulin resistance/response (KCNU1), Response to 
taxane treatment (docetaxel) (COL1A1), Lipid traits (pleiotropy) 
(HIPO component 1) (KCNU1), Iron status biomarkers (transferrin 
saturation) (KCNU1), Mild influenza (H1N1) infection (KCNU1).  

o Drugs: dosulepin (MRPL41; COL1A1; PLEKHF1), mexiletine 
(MRPL41; COL1A1; PLEKHF1), bromopride (MRPL41; COL1A1; 
SPOCK3), fenoprofen (COL1A1; SPOCK3; FSCN1), tetrahydroal
stonine (COL1A1; PLEKHF1; SPOCK3), cytisine (MRPL41; 
COL1A1; FSCN1). 

The main pathway concerns the passive transport by aquaporins 
related to AQP6, that are membrane water channels proteins, which 
facilitates the transport of water between cells. Aquaporins are impor
tant in several tissues [49]: nervous (retina/olfactory epithelium/inner 
ear/brain and spinal cord), renal, cardiovascular, respiratory, repro
ductive, digestive and musculoskeletal (muscle and cell swelling), skin 
(dermis) and fat (glycerol transport). Interestingly, COL1A1 is related to 
the inflammatory response pathways, TWEAK proinflammatory cyto
kines via NF-κB and MAPK and also in glycoprotein VI-mediated acti
vation cascade that plays a key role in some animal model of thrombosis. 
Moreover, COL1A1 seems to have increased expression in patients with 
severe COVID-19 [50–52]. Therefore, the deregulation of this gene 
seems to have a major role in COVID-19 infection. In the set of the 
related diseases, appear the immune response to smallpox and influenza 
infection related to the KCNU1 gene. The main drugs are antidepressant 
(dosulepin), dopamine antagonists (bromopride), nonsteroidal 
anti-inflammatory drug (frenopren), voltage-gated sodium channel 
blockers (mexiletine) and acetylcholine agonist (cytisine) with strong 
binding affinity for the nicotinic acetylcholine receptor [49]. 

4. Overexpressed genes  

o Pathways: dopamine receptors, thyroxine biosynthesis, calcium- 
activated potassium channels, organic anion transporters, amine- 
derived hormones, 4-1BB-dependent immune response, Ck1/Cdk5 
regulation by type 1 glutamate receptors, collecting duct acid 
secretion, hypothetical network for drug addiction, ion transport by 
P-type ATPases.  

o Diseases: idiopathic dilated cardiomyopathy (DNAH17/KCNT2), 
dermatomyositis (ANKRD33B), cardiac effects (KCNT2), treatment 
response for severe sepsis (DRD1), immune response to smallpox 
(secreted IL-12p40) (FKBP6), age-related macular degeneration 
(KCNT2), asthma exacerbations in inhaled corticosteroid treatment 
(KCNN1).  

o Drugs: citiolone (NKAIN1, DNAH17, KCNN1), rofecoxib (NKAIN1, 
DNAH17, FKBP6), estradiol (DNAH17, KCNN1, SLC5A5), ethister
one (KCNN1, SLC5A5). 

The overexpressed genes seem to mainly control dopamine and 
glutamate receptors; thyroxine biosynthesis and amine-derived hor
mones; calcium activated potassium channels involved in age-related 
neurodegeneration (memory impairment and neurovascular disfunc
tion); and 4-1BB-dependent immune response, which are inducible T- 
cell surface receptors belonging to the tumor necrosis factor receptor 
superfamily (48). The 4-1BB-4-1BBL pathway has been considered 
therapeutic in the treatment of HIV infection. Interestingly, 4-1BB-defi
cient mice show dysregulated immune responses and very high Ig re
sponses to T-dependent antigens (49). 

The main diseases related to the overexpressed genes in COVID-19 
are cardiomyopathies (DNAH17/KCNT2) and cardiac metabolic effects 
(KCNT2), severe sepsis (DRD1), immune response to smallpox provoked 
by secreted IL-12p40 (FKBP6), and macular degeneration (KCNN1). 
FK506 binding protein 6 belongs to the FKBP immunophilins. These 
proteins act as receptors for immunosuppressive drugs such as rapa
mycin, cyclosporin and tacrolimus. Cyclosporin A has been proposed as 
a first-line therapy in COVID-19 pneumonia for different reasons (50): 1. 
Mitochondrial function is essential for the antiviral defense to produce 
ATP for the increased energetic needs of the infected cells. Mitochon
drial failure has been pointed as one of the mechanisms unchaining 
severe forms of COVID-19 infection. Cyclosporin A seems to protect 
against this effect and has shown cardioprotective effects in patients 
with myocardial infarction; 2. It has shown remarkable antiviral activ
ities in a variety of RNA viruses. The role of these genes in COVID should 
be further investigated. 

The main drugs found acting on the overexpressed genes are used for 
liver therapy (Citiolone). COX-2 selective nonsteroidal anti- 

Table 1 
Small Scale Genetic Signature between SARS-CoV-2 and Health Con
trol. This is the smallest list of genes that could expand the differences 
between infected and healthy patient (31 genes) with the highest 
discriminatory accuracy. The upper part of the table lists these 31 genes 
divided into underexpressed and overexpressed genes.  

Underexpressed Genes Overexpressed Genes 

KCNU1 MTRNR2L1 
ENO1-AS1 PGA5 
SPOCK3 ATP4A 
AQP6 DRD1 
RNF126 SLC5A5 
TMEM89 FKBP6 
PLEKHF1 DNAH17 
BOP1 KCNN1 
MRPL41 C16orf96TNFRSF9 
FBXW9 ZNF280A/MTRNR2L2 
FSCN1 KCNT2/NKAIN1 
COL1A1 HIST1H3J/ZNF627 
CYB561D2 ANKRD33B/THAP1  

Table 2 
Mean expression values in each class (C1 is the SARS COVID-19 class and C2 are 
Mock-treated), and their mean deviations, the Fisher’s ratios, and the cummu
lative LOOCV accuracies for each of the 31 genes given in Table 1.  

Gene Name MeanC1 StdC1 MeanC2 StdC2 FR LOOCV Acc 

TMEM89 0.4 0.66 0.8 0.56 1.15 73.47 
HIST1H3J 3.8 3.37 1.9 2.43 1.05 71.43 
KCNT2 23.5 19.10 10.7 15.58 1.02 71.43 
ZNF280A 44.4 42.65 19.0 26.58 1.00 73.47 
MTRNR2L2 1.1 0.71 0.5 0.48 1.00 71.43 
ENO1-AS1 0.8 1.20 2.5 1.79 0.99 77.55 
ANKRD33B 485.2 323.33 288.5 392.19 0.94 79.59 
MTRNR2L1 0.8 0.65 0.1 0.08 0.93 77.55 
KCNN1 15.6 11.94 5.2 7.47 0.93 77.55 
SLC5A5 8.2 7.06 2.2 2.77 0.93 79.59 
KCNU1 0.1 0.12 0.8 0.75 0.91 81.63 
RNF126 249.4 222.48 536.2 352.68 0.90 81.63 
FBXW9 69.4 75.03 134.2 73.55 0.88 81.63 
PLEKHF1 51.0 48.16 103.3 60.71 0.88 79.59 
SPOCK3 2.9 2.48 7.4 4.90 0.87 83.67 
AQP6 1.4 1.68 3.1 2.15 0.86 87.76 
BOP1 163.7 189.90 332.6 236.45 0.83 81.63 
NKAIN1 17.1 15.37 8.5 9.92 0.82 81.63 
FKBP6 0.7 0.60 0.2 0.26 0.82 85.71 
ZNF627 190.9 121.25 100.4 71.49 0.82 83.67 
DRD1 154.0 148.64 40.4 54.61 0.80 83.67 
CYB561D2 105.7 108.24 196.8 107.98 0.79 85.71 
TNFRSF9 197.3 171.47 70.7 114.07 0.78 87.76 
PGA5 0.2 0.21 0.0 0.06 0.77 83.67 
FSCN1 1794.1 2236.36 3454.2 2596.43 0.76 83.67 
COL1A1 246.6 292.49 477.2 385.09 0.76 87.76 
MRPL41 371.7 508.81 722.0 484.73 0.75 87.76 
DNAH17 133.6 112.37 41.1 68.15 0.75 87.76 
C16orf96 1.0 0.79 0.3 0.43 0.74 87.76 
THAP1 224.4 128.00 155.3 75.99 0.74 89.80 
ATP4A 2.5 1.92 0.6 0.75 0.74 91.84  
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inflammatory drug (Rofecoxib) is used to treat rheumatoid arthritis, 
estrogen steroid hormones (estradiol) and agonist of the progesterone 
receptor (Ethisterone). It has been suggested that women were less 
affected by COVID-19 than males. 

Interestingly, when all the genes from the small scale signature are 
applied, the main drugs repositioned using CMAP were: sirolimus 
(COL1A1; PLEKHF1; KCNN1; DRD1); ivermectin (COL1A1;PLEKHF1; 
KCNN1;DRD1) and cytisine (MRPL41; COL1A1; HIST1H3J; FSCN1) (50) 
(51). Sirolimus and ivermectin have been used against COVID. Iver
mectin inhibits the replication of SARS-CoV-2 in vitro. Ivermectin has 
been granted FDA-approval for parasitic infections. An unexpectedly 
low prevalence of active smokers has been observed among hospitalized 
patients with COVID-19. Cytisine is an alkaloid that occurs naturally in 
several plant genera. It has been used medically for smoking cessation 
since its molecular structure has some similarity to nicotine and it has 
similar pharmacological effects. We believe that these findings confirm 
the validity of the small-scale genetic signature approach. 

Although we have also performed the analysis of the overexpressed 
and under expressed genes separately to provide insights about the 
pathways that are involved, all the genes of the small-scale signature 
work synergistically and they should be considered together to have a 
correct view of the ensemble. Furthermore, when all the genes are used, 
the analysis served to identify 3 main drugs, 2 of which are currently in 
trial for COVID. This fact suggests that the gene signatures, rather than 
individual genes, will identify disease-relevant drug findings. 

4.1. Expression of the small-scale genetic signature in the lung biopsies 

To confirm the previous findings, we have calculated the median 
expressions of the small-scale signature composed of 31 genes given in 
Table 1 in the 4 samples from healthy and infected lung biopsies. Table 3 
shows the genes with the most representative mean expression differ
ences of the genes belonging to the small-scale signature. It is very 
important to highlight that all these genes are downregulated in SARS- 
COVID biopsies, being the most significant ones: MRPLR1, COL1A1, 
FSCN1, RNF126 and ANKRD33B. The main pathways related to these 
genes are dopamine receptors, inflammatory response, and immune 
response. The main CMAP drugs downregulating those genes are 
reserpine, flurbiprofen and debrisoquine, which treat hypertension, and 
are nonsteroidal anti-inflammatory drugs. 

An exploitative and explorative sampling of the altered genetic 
signature space offers a wide range of genetic pathways related to causes 
and plausible complications after infection/recovery. 

Considering the LOOCV sampler, which is capable of sampling the 
uncertainty space of the phenotype prediction problem with a highly 
exploitative character, given the small-scale genetic signature, it acts as a 
classifier that is capable of converging rapidly to a minimum error 

solution. In this sense, we obtain a set of genes that are altered between 
the SARS-CoV-2 and the mock treatment. Similarly, to perform this 
analysis with the LOOCV sampler, a Holdout sampler could be used to 
enact the sampling of the uncertainty space of the phenotype prediction 
problem with a highly explorative character, given the small-scale ge
netic signature. 

Table 4 shows the list with the most frequently sampled genes by 
LOOCV. Table 5 shows the main genes sampled by the hold out sampler. 

Additionaly, Table 6 shows the altered genetic pathways obtained 
with the most frequently sampled genes provided by the LOOCV 
(exploitative) and Holdout (exploratory) samplers. The results are 
similar in both cases and are in line with clinical studies indicating that 
low levels of interferon are produced upon COVID-19 infection [18,53]. 
The analysis of the altered pathways supports the idea that viral repli
cation leads to a dysregulated immune response in patients, as suggested 
by the alteration of Innate immune system pathways, JAK-STAT 
signaling pathway and antigen-activated B-cell receptor pathway. This 
result has been also proposed by Channappanavar et al. in the case of 
SARS-CoV-Infected mice. Based on animal models, SARS-CoV was found 
to induce cytokine response that generally delays IFN, leading to a 
paucity of immune response (with COL1A1 being a central gene in this 

Table 3 
Most representative expression differences of the genes of the Small-Scale Ge
netic Signature in lung biopsies (HC and SARS-COVID Infected).  

Gene-name Mean expression in HC Mean expression in SARS-COVID 

MRPL41 1311 10 
COL1A1 1312 84 
FSCN1 745 20 
RNF126 729 12 
ANKRD33B 667 0 
CYB561D2 232 0 
DNAH17 227 0 
THAP1 222 2.7 
TNFRSF9 220 1.9 
PLEKHF1 198 0 
ZNF627 198 0 
FBXW9 142 0 
BOP1 58 0 
DRD1 58 0 
KCNT2 55 2  

Table 4 
List of the most frequently sampled genes by the LOOCV sampler. C1 is the SARS 
COVID samples and C2 are mock treated samples (Healthy controls). We provide 
the mean signatures in each class, the fold change, the fisher ratio, the LOOCV 
accuracy of the different incremented list of genes and the sampling frequency 
that it is 0.58 for all of them.  

Gene Name MeanC1 MeanC2 FC FR LOOCV 
Acc 

Frequency 

ENO1-AS1 0.84 2.52 − 1.59 0.99 73.47 0.58 
NKAIN1 17.11 8.54 1.00 0.82 73.47 0.58 
EFNA1 2260.14 805.52 1.49 0.57 77.55 0.58 
SNORD75 0.16 0.66 − 2.07 0.72 83.67 0.58 
SNORD74 3.43 6.98 − 1.02 0.49 89.80 0.58 
KCNT2 23.45 10.66 1.14 1.02 87.76 0.58 
EPC1 550.69 394.32 0.48 0.58 83.67 0.58 
WEE1 643.72 446.80 0.53 0.64 83.67 0.58 
AQP6 1.36 3.13 − 1.21 0.86 83.67 0.58 
ATP6V0D1 629.94 1256.87 − 1.00 0.68 85.71 0.58 
MTRNR2L1 0.75 0.06 3.54 0.93 85.71 0.58 
DNAH17 133.60 41.11 1.70 0.75 85.71 0.58 
RNF126 249.37 536.15 − 1.10 0.90 83.67 0.58 
NDUFS7 232.20 503.85 − 1.12 0.71 83.67 0.58 
ADAT3 16.44 37.26 − 1.18 0.72 85.71 0.58 
PPAN 12.08 27.10 − 1.17 0.69 83.67 0.58 
ZNF627 190.88 100.39 0.93 0.82 83.67 0.58 
SLC5A5 8.23 2.20 1.90 0.93 85.71 0.58 
KCNN1 15.64 5.21 1.59 0.93 81.63 0.58 
GDF15 1369.24 928.66 0.56 0.61 83.67 0.58 
ZNF14 89.36 50.73 0.82 0.59 83.67 0.58 
PLEKHF1 51.00 103.33 − 1.02 0.88 83.67 0.58 
ATP4A 2.46 0.63 1.95 0.74 83.67 0.58 
PLEKHG2 1353.67 826.16 0.71 0.59 83.67 0.58 
ZNF845 200.73 129.85 0.63 0.73 83.67 0.58 
USP37 385.81 227.38 0.76 0.65 83.67 0.58 
ZNF280A 44.42 18.96 1.23 1.00 83.67 0.58 
CABP7 4.00 2.07 0.95 0.54 83.67 0.58 
TMEM89 0.40 0.80 − 1.02 1.15 83.67 0.58 
SPOCK3 2.93 7.37 − 1.33 0.87 83.67 0.58 
ANKRD33B 485.20 288.52 0.75 0.94 83.67 0.58 
MTRNR2L2 1.06 0.46 1.21 1.00 81.63 0.58 
NME5 6.18 18.44 − 1.58 0.69 83.67 0.58 
DRD1 154.00 40.44 1.93 0.80 85.71 0.58 
HIST1H3J 3.82 1.92 0.99 1.05 87.76 0.58 
ZNF92 202.38 111.26 0.86 0.65 87.76 0.58 
FKBP6 0.66 0.19 1.82 0.82 85.71 0.58 
CYP3A4 1.95 0.97 1.01 0.59 83.67 0.58 
KCNU1 0.09 0.77 − 3.13 0.91 83.67 0.58 
THAP1 224.43 155.33 0.53 0.74 83.67 0.58 
BOP1 163.67 332.63 − 1.02 0.83 81.63 0.58 
CBWD6 57.86 40.47 0.52 0.54 81.63 0.58  
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case) [54]. Moreover, it is widely believed that the physiological reasons 
of a high morbidity is the selective death of pneumocytes, which leads to 
a lower air interchange in the lungs and filling lungs with fluid [55–58]. 

Due to the SARS-CoV-2 infection, the inflammatory response can 
lead to a sudden cytokine storm, which can result in injury of multiple 
organs. Various studies have shown elevated levels of proinflammatory 

cytokines in patients with severe course of the disease. This might be 
caused by DNAH17, KCNT2 and TMEM89 genes in the small genetic 
signature [59] and is also suggested by the sampled altered pathway of a 
cytokine-cytokine receptor interaction. It is possible that the 
SARS-CoV-2-induced immune suppression predisposes to secondary in
fections, especially in more severely ill patients, and it is unknown if 
there are any longer term effects on humoral or cell-mediated immunity 
following SARS-CoV-2 infection [59]. Furthermore, a meta-analysis of 
various publications from China, including clinical studies of 1527 pa
tients with COVID-19, reports 9.7%, 16.4% and 17.1% prevalence of 
diabetes, cardio-cerebrovascular disease and hypertension, respectively 
[53]. This is further confirmed by our analysis of altered pathways for 
the class A GPCRs, GPCR ligand binding receptors and peptide G-protein 
coupled receptors shown in 4. The small genetic signature suggests this 
feature as inferred by the sampled genes KCNU1 and TMEM89. 

A remarkable feature in the small genetic signature is the presence of 
DNAH17, a gene which is involved in kidney/liver disease. Zhang et al. 
reported that the incidence of hepatic abnormalities significantly in
creases after COVID-19 infection and during the course of the disease, 
which may indicate the effect of SARS-CoV-2 on the liver or side effects 
of the medications used by patients [60]. In addition to liver injuries, 
some articles have similarly reported an increased incidence of acute 
renal injury following COVID-19 [56,61], which could be related to the 
follicle stimulating hormone (FSH) regulation of apoptosis reported in 
Table 6 [62]. Lastly, it is worth mentioning the role of COL1A1, which 
seems to play a central role in SARS-CoV-2 disease and subsequent 
secondary effects. In this sense, it could explain several neurological 
disorders found after infection and recovery, as reported in recent 
literature [63], also supported by the fact that the neuroactive 
ligand-receptor interaction pathways has been pointed as altered in the 
sampling (see Table 6). 

Gastrointestinal manifestations have also been reported in patients 
with SARS-CoV-2. One study in California found that a significant 
number of COVID-19 patients suffered likewise from a loss of appetite, 
nausea, vomiting and diarrhea [64]. This problem might be caused by 
the alteration of the gastrin-CREB signaling pathway via the PKC and 
MAPK pathway. 

4.2. Connectivity mapping of two different gene samplings reveals 
potential therapeutic targets for COVID-19 

By identifying the overexpressed and under expressed genes from a 
robust transcriptomic analysis of SARS-CoV-2 data, we could create two 
lists of 35 and 38 drugs respectively. These drugs have the potential to 
reverse the transcriptomic signature linked to COVID-19. The top 
compounds for each sampling are listed in Table 7. However, a more 
comprehensive list of potential treatments is given in Supplementary 
Material. 

Acute respiratory syndrome upon infections of influenza viruses 
could be potentially relieved with geldanamycin, a 1,4-benzoquinone 
ansamycin antitumor antibiotic, which is a family of bacterial second
ary metabolites, that show antimicrobial activity against many type of 
bacteria. Studies with mice have shown markedly reduced production of 
major proinflammatory cytokines and chemokines and attenuated 
infiltration and activation of immune cells, but did not notice any 
alteration of the generation of virus-neutralizing antibodies [65]. 
Further studies focused on how geldanamycin binds to the heat shock 
protein Hsp90 inhibiting its ATPase activity and thus minimizing viral 
replication of Herpes Simplex Virus 2 (HSV-2) and of SARS-CoV-2 [66] 
suggest that Hsp90 is a potential novel target for antiviral research [67]. 
Tanespimycin is another Hsp90 inhibitor, that was found to be poten
tially beneficious in treatment filoviruses, such as Ebola virus [68], or 
enteroviruses, such as enterovirus 71 [69]. 

The Holdout sampler with a higher explorative character, found four 
additional drugs in addition to Trichostatin A (TSA). This sampler seems 
to propose drugs more orientated towards treatment of secondary effects 

Table 5 
List of the most frequently sampled genes by the Holdout sampler (HDS).  

Gene Name MeanC1 MeanC2 FC FR LOOCV 
Acc 

Frequency 

ENO1-AS1 0.84 2.52 − 1.59 0.99 73.47 0.58 
NKAIN1 17.11 8.54 1.00 0.82 73.47 0.58 
EFNA1 2260.14 805.52 1.49 0.57 77.55 0.58 
SNORD75 0.16 0.66 − 2.07 0.72 83.67 0.58 
SNORD74 3.43 6.98 − 1.02 0.49 89.80 0.58 
KCNT2 23.45 10.66 1.14 1.02 87.76 0.58 
EPC1 550.69 394.32 0.48 0.58 83.67 0.58 
WEE1 643.72 446.80 0.53 0.64 83.67 0.58 
AQP6 1.36 3.13 − 1.21 0.86 83.67 0.58 
ATP6V0D1 629.94 1256.87 − 1.00 0.68 85.71 0.58 
MTRNR2L1 0.75 0.06 3.54 0.93 85.71 0.58 
DNAH17 133.60 41.11 1.70 0.75 85.71 0.58 
RNF126 249.37 536.15 − 1.10 0.90 83.67 0.58 
NDUFS7 232.20 503.85 − 1.12 0.71 83.67 0.58 
ADAT3 16.44 37.26 − 1.18 0.72 85.71 0.58 
PPAN 12.08 27.10 − 1.17 0.69 83.67 0.58 
ZNF627 190.88 100.39 0.93 0.82 83.67 0.58 
SLC5A5 8.23 2.20 1.90 0.93 85.71 0.58 
KCNN1 15.64 5.21 1.59 0.93 81.63 0.58 
GDF15 1369.24 928.66 0.56 0.61 83.67 0.58 
ZNF14 89.36 50.73 0.82 0.59 83.67 0.58 
PLEKHF1 51.00 103.33 − 1.02 0.88 83.67 0.58 
ATP4A 2.46 0.63 1.95 0.74 83.67 0.58 
PLEKHG2 1353.67 826.16 0.71 0.59 83.67 0.58 
ZNF845 200.73 129.85 0.63 0.73 83.67 0.58 
USP37 385.81 227.38 0.76 0.65 83.67 0.58 
ZNF280A 44.42 18.96 1.23 1.00 83.67 0.58 
CABP7 4.00 2.07 0.95 0.54 83.67 0.58 
TMEM89 0.40 0.80 − 1.02 1.15 83.67 0.58 
SPOCK3 2.93 7.37 − 1.33 0.87 83.67 0.58 
ANKRD33B 485.20 288.52 0.75 0.94 83.67 0.58 
MTRNR2L2 1.06 0.46 1.21 1.00 81.63 0.58 
NME5 6.18 18.44 − 1.58 0.69 83.67 0.58 
DRD1 154.00 40.44 1.93 0.80 85.71 0.58 
HIST1H3J 3.82 1.92 0.99 1.05 87.76 0.58 
ZNF92 202.38 111.26 0.86 0.65 87.76 0.58 
FKBP6 0.66 0.19 1.82 0.82 85.71 0.58 
CYP3A4 1.95 0.97 1.01 0.59 83.67 0.58 
KCNU1 0.09 0.77 − 3.13 0.91 83.67 0.58 
THAP1 224.43 155.33 0.53 0.74 83.67 0.58 
BOP1 163.67 332.63 − 1.02 0.83 81.63 0.58 
CBWD6 57.86 40.47 0.52 0.54 81.63 0.58  

Table 6 
Altered pathways in SARS-CoV-2 transcriptomic signature obtained via Leave- 
One-Out Cross-validation (LOOCV) sampler (exploitative character) and 
Holdout Sampler (HDS) (explorative character). Both samplers converge to 
similar pathways suggesting plausible causes and complication of COVID19.  

Holdout Sampler (HDS) LOOCV Sampler 

Olfactory transduction Olfactory transduction 
Innate immune system Innate immune system 
Neuroactive ligand-receptor 

interaction 
Neuroactive ligand-receptor interaction 

Cytokine-cytokine receptor 
interaction 

Cytokine-cytokine receptor interaction 

Class A GPCRs (rhodopsin-like) FSH regulation of apoptosis 
GPCR ligand binding Carbohydrate metabolism 
Messenger RNA processing Wnt signaling pathway 
G alpha (i) signaling events Antigen-activated B-cell receptor 
JAK-STAT signaling pathway Developmental biology 
Peptide G-protein coupled 

receptors 
Gastrin-CREB signaling pathway via PKC and 
MAPK  
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associated with COVID-19. Due to its explorative nature, it is capable of 
sampling other altered pathways associated with the COVID infection. 
However, since the side effects of COVID-19 are still under clinical 
study, these results must be considered as preliminary ones, due to a lack 
of available data for detailed computational studies. Female hormone 
estradiol (estrogen) and 5-alpha-reductase-inhibitor finasteride, could 
potentially reduce inflammation and increase breath capacity and sta
bility [70,71]. Another drug discovered by the Holdout Sampler, was 
Eldeline, which is considered an antiarrhythmic agent. This drug could 
be potentially used to treat the side effects of COVID-19 infection 
associated with arrhythmias. However, the exact contribution of 
COVID-19 infection to the development of arrhythmias in asymptom
atic, mildly ill, critically ill, and recovered patients is still not fully 
confirmed [72]. 

Regarding TSA, it has been reported that histone deacetylases 
(HDCAs) inhibitors have a great potential in treating neurological dis
orders via binding to the CREB-binding protein (CBP) [73,74]. This 
suggests that TSA could be used not only to alleviate the viral infection, 
but also to treat viral side effects after recovery, since neurological 
post-COVID-19 problems have been reported in the literature [63] most 
likely related to the alteration of the COL1A1 gene [75]. Thalidomide 
was originally a sedative drug prescribed for a morning-sickness. 
Nevertheless, it was immediately removed from the market after it 
was found to cause birth defects: stunted or malformed limbs in babies 
born from mothers who took thalidomide during pregnancy. Currently, 
this drug is used to treat leprosy and multiple myeloma, and it was 
considered as a treatment for lung injury caused by the H1N1 flu virus 
when it first appeared in humans in 2009 [76]. Basically, thalidomide 
tamps down inflammation in the lungs, reduces scarring and rein in the 
overactive immune system. A clinical trial in Wenzhou, China is being 
conducted to elucidate whether this drug could shorten the time of re
covery in patients with pneumonia caused by COVID-19, to reduce the 
number of patients who critically need mechanical ventilation [77]. 

Although our analysis has been primarily focused on finding poten
tial drugs for COVID-19, it has not been only limited to this. A 
comparative analysis of the repositioned drugs obtained by using only 
leave-one-out cross validation (LOOCV), Holdout (HDS), and other 
additional samplers (FRS, RF and RS) [18,34] are given in Tables 8 and 
9, and confirms what has been previously discussed. All these algorithms 
use different rules to sample the set of genes altered by the COVID-19 
infection, that are later used in drug repositioning. 

Within the drugs that reverse the disease with milder effects we have 
found several interesting mechanisms of action (MOAs):  

1. Antibiotic protein synthesis inhibitor (puromycin or anisomycin).  
2. Anthelmintics (pyrantel, niclosamide) and antibacterial 

(sulfaphenazole). 

3. Antihypertensive drugs and blood vessel conditions (bisprolol, har
pagoside, hesperidin) or antiarrhythmic and anti-inflammatory 
(napelline, myricetin)  

4. Alkaloid derivatives and anticholinergics (Hyoscyamine).  
5. Steroid hormones (androsterone). 

4.3. Testing for biological invariance 

Testing for biological invariance [78] is important to assure that the 
drug repositioning does not depend on the algorithm that has been used. 
This was partially confirmed by the results presented in Tables 4 and 5 
obtained by using five different types of samplers. For final confirma
tion, we have performed a different drug repositioning experiment by 
combining a robust sampling of high discriminatory genetic networks 
via a cross validation sampler combined with COGENA repositioning 
algorithm [79]. Basically, the methodology that we used is like the one 
that has been previously described: sampling the uncertainty space of 
the COVID-19 phenotype prediction problem and using the knowledge 
derived from the analysis of altered genetic pathways to find the desired 
drugs. For each learning stage of the cross validation we select genes via 
Random Forest [80], and support vector machine with least absolute 
shrinkage and selection operator (SVM LASSO) [81]. The discriminatory 
genes were previously selected within those that were differentially 

Table 7 
Main drugs repositioned from CMAP via altered genetic signatures obtained with LOOCV and Holdout samplers.   

LOOCV    HOLDOUT   

Drug Cell Line μM Freq Drug Cell Line μM Freq 

trichostatin A MCF7 0.1 0.06 trichostatin A MCF7 0.1 0.06 
trichostatin A MCF7 1 0.06 trichostatin A MCF7 1 0.06 
vorinostat MCF7 10 0.06 vorinostat MCF7 10 0.06 
trichostatin A PC3 0.1 0.05 trichostatin A PC3 0.1 0.05 
trichostatin A PC3 1 0.05 trichostatin A PC3 1 0.05 
PNU-0230031 MCF7 1 0.04 PNU-0230031 MCF7 1 0.04 
PNU-0230031 MCF7 10 0.04 PNU-0230031 MCF7 10 0.04 
geldanamycin MCF7 1 0.04 geldanamycin MCF7 1 0.04 
tanespimycin MCF7 0.1 0.03 tanespimycin MCF7 0.1 0.03 
tanespimycin MCF7 1 0.03 tanespimycin MCF7 1 0.03 
trichostatin A MCF7 0.1 0.06 trichostatin A MCF7 0.1 0.06 
trichostatin A MCF7 1 0.06 trichostatin A MCF7 1 0.06  

Table 8 
Main repositioned drugs that reverse the disease (with stronger effects) found by 
different samplers: LOOCV, Holdout, Fisher’s ratio (FRS), Random Forest (RF) 
and Random Sampler (FR). In this paper) and the Holdout (HDS) samplers are 
discussed in detail. Repeated drug names might correspond to different cell-lines 
and/or to different concentrations (see supplementary material for further 
details).  

LOOCV HDS FRS RF RS 

trichostatin A trichostatin 
A 

trichostatin A eldeline acetylsalicylic A 

vorinostat eldeline trichostatin A CP-690334- 
01 

doxorubicin 

trichostatin A thalidomide estradiol CP-690334- 
01 

etiocholanolone 

PNU- 
0230031 

estradiol estradiol karakoline genistein 

geldanamycin finasteride estradiol thalidomide genistein 
tanespimycin trichostatin 

A 
daunorubicin thalidomide valproic acid 

trichostatin A trichostatin 
A 

daunorubicin trichostatin A valproic acid 

vorinostat eldeline CP-690334- 
01 

trichostatin A valproic acid 

trichostatin A thalidomide CP-690334- 
01 

trichostatin A valproic acid 

PNU- 
0230031 

estradiol trichostatin A trichostatin A valproic acid 

geldanamycin finasteride trichostatin A eldeline acetylsalicylic A  
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expressed and exhibited the highest Fisher’s ratios. For each selection a 
group of genes was randomly selected via Metropolis-Hastings algo
rithm [82]. The predictive accuracy of these networks was established in 
the corresponding test fold via Random Forest, linear SVM and k-nearest 
neighbors’ algorithm (k-NN). This process was repeated 500 times, 
providing 1500 different gene expression signatures with their corre
sponding predictive accuracies. Finally, a posterior frequency analysis 
was carried out considering those genetic signatures with a predictive 
accuracy higher than 80%. Finally, the drug repurposing with the first 
100 genes using COGENA was performed. Previously this algorithm was 
used in the drug repositioning for different gene clusters. Here we have 
defined the sets of underregulated and overregulated genes. 

The genetic pathways related to the most frequently sampled sig
natures revealed by this analysis were:  

1. Regulation of RAS family activation.  
2. The p38 MAPK signaling pathway.  
3. EGFR-dependent endothelin signaling event.  
4. Ras signaling in the CD4+ TCR pathway.  
5. CXCR3-mediated signaling events.  
6. Regulation of cytoplasmic and nuclear SMAD2/3 signaling.  
7. Cellular roles of anthrax toxin.  
8. ErbB1 downstream signaling.  
9. The p38 signaling mediated by MAPKAP kinases.  

10. BCR signaling pathway. 

This analysis points mainly to the regulation of RAS family and 
various signalling pathways. The RAS family of genes encode proteins 
that are involved in cell signalling pathways that control cell growth and 
cell death. Mutated forms of the RAS gene may be found in some types of 
cancer. The p38 mitogen-activated protein kinases are a class of 
mitogen-activated protein kinases (MAPKs) that are responsive to stress 
stimuli, such as cytokines, ultraviolet irradiation, heat and osmotic 
shocks. These proteins are involved in cell differentiation, apoptosis and 
autophagy. Oxidative stress is the most powerful stress activating p38 
MAPK. 

CXCR3 is a membrane receptor with affinity for certain cytokines. 
CXCR3 gene is located on the human X chromosome. CXCR3 is 
expressed primarily on activated T lymphocytes and NK cells and some 
epithelial cells. CXCR3 is able to regulate leukocyte trafficking and has 
been associated to different diseases [83–89]. 

The epidermal growth factor receptor is a protein coded by EGFR 
gene involved in signaling events. It is a receptor tyrosine kinase that is 
commonly upregulated in different kind of cancer. It has been found to 
be involved in the development of pulmonary fibrosis in patients who 
went through SARS coronavirus infection [90]. 

The role of the EGFR in viral infections has been outlined by Hon
dermarck, H. et al. [91], who indicated that many viruses use growth 
factor receptors to physically attach to the cell surface and internalize 
and also to divert receptor tyrosine kinase signaling to replicate. These 
authors propose repurposing drugs that initially have been developed to 

target growth factor receptors and their signalling in cancer against viral 
infections and particularly against COVID-19. ErbB1 downstream 
signaling is also related to this pathway. 

The p38 MAPK pathway plays a crucial role in the release of pro- 
inflammatory cytokines such as IL-6 and has been implicated in acute 
lung injury and myocardial dysfunction. The p38 MAPK inhibition has 
been proposed as a promising therapeutic approach for COVID-19 [92]. 
It has been established that the uncontrolled inflammatory response in 
COVID-19 infection may be caused by disproportionately upregulated 
p38 activity. The idea exposed in this paper is that SARS-CoV-2 may 
induce overwhelming inflammation by directly activating p38 and 
downregulating a key inhibitory pathway, while simultaneously taking 
advantage of p38 activity to replicate. 

Fig. 6 shows the main repositioned drugs found in this analysis. The 
COGENA drug repositioning method requires several clusters. We have 
chosen 2 clusters since the number of selected genes is low (100). The 
first cluster was built with 97 genes (1#97) targeting 20 drugs with a 
high score. The second cluster contained only 3 remaining genes gave no 
results (2#3). Moreover, we found that a cluster composed of 93 
downregulated genes (Down#93), provided similar result of the first 
cluster. Finally, All#100 shows the score using all the 100 genes. The 
drugs with the highest scores were anisomycin and 16-dimethylprosta
glandin. Interestingly, some of these drugs were discovered earlier 
with CMAP-based Dr. Insight package, namely: rofecoxib, cyclosporin, 
tanespimycin, and trichostatin A. 

Our earlier CMAP-based analysis using the same genetic signatures 
selected the following compounds: acetylsalicylic acid, tanespimycin, 
riluzole, flucloxacillin, TSA, minocycline and ciclosporin, among others. 

4.4. Analysis of the second data set: the immunological panel 

The analysis of the second dataset provided the following pathways 
related to the immunological system. Fig. 7 shows the main pathways 
found using Reactome. 

It can be observed that the main pathways are related to cytokine 
signalling, the innate and adaptive immune systems, cytokine signalling 
and interferon gamma-signalling that is related to the innate immune 
response (NK and NKT cells). Fig. 8 shows the main repositioned drugs 
using the main set of altered genes using the same methodology as 
previously. 

There are different types of drugs in this list:  

1. Immunosuppressors: Sirolimus  
2. Antibiotics used to treat antibacterial infections: Clindamycin, 

Nalidixic acid, Sulfaphenazole.  
3. Histone deacetylases (HDAC) inhibitors: Vorinostat, TSA.  
4. Alkaloids used to treat neurological conditions: Securinine.  
5. Chemotherapy drugs: Chlorambucil.  
6. Antihypertensive drugs: Guanethidine.  
7. Antiarrhythmic drugs: Moracizine.  
8. Inhibition of thyroid hormones: Thiamazole. 

Table 9 
Main repositioned drugs that reverse the disease (with milder effects/lower CMAP concordance) found by different samplers: LOOCV, Holdout (HDS), Fisher’s ratio 
(FRS), Random Forest (RF) and Random Sampler (RS). In this paper only LOOCV and HDS samplers are discussed in detail.  

LOOCV HDS FRS RF RS 

puromycin prednisone pyrantel bisoprolol puromycin 
bisoprolol androsterone hyoscyamine hyoscyamine fendiline 
napelline anisomycin bisoprolol pentetrazol pimozide 
pyrantel hydroflumethiazide 5707885 pyrantel thioridazine 
chenodeoxycholic A. paroxetine Prestwick-665 etodolac thioridazine 
dihydroergocristine harpagoside 8-azaguanine scoulerine anisomycin 
H-89 hesperidin androsterone alprostadil calmidazolium 
harpagoside myricetin cyclopentolate puromycin carbinoxamine 
hyoscyamine pyrantel dexibuprofen dihydroergocristine carmustine 
niclosamide sulfaphenazole hyoscyamine loxapine harmine  
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9. Anthelmintic agents: Niridazole.  
10. Antidepressant: Imipramine. 

The drugs with the highest score are sirolimus, moricizine and gua
nethidine. Interestingly, some of these drugs have already appeared in 
the previous analysis presented in this paper. 

5. Discussion 

Our analysis of transcriptomic data clearly suggests that the tran
scriptomic response to SARS-CoV-2 infection indicates the imbalance 
between the control of the virus replication, the innate immunity 
mechanisms that provides the initial defence against infection (cellular 
and biochemical mechanisms that are in place before the infection and 
are poised to response rapidly to infections), and the activation of the 
adaptive immune response that develops later. Hence, COVID-19 
treatments should not be targeted only on the interferon (IFN) 
response but also on the control of the inflammation. Our results 
demonstrate a variety of genes involved in chemokines and interleukins 
(ILs) signalling pathways, and inflammatory response. Therefore, 
COVID-19 treatment efforts should be focused on the standard of care 
drugs that can be repurposed rapidly and applied to a vast population of 
patients. Besides, we have shown via PCA that the transcriptomic sig
natures are different from RSV and influenza. 

Although our research was limited to purely computational studies of 
transcriptomic data in cell lines, there is some clinical evidence that the 
identified drugs have some therapeutic potential for treating COVID-19 
patients and preventing pathological cellular responses to SARS-CoV-2 
infection. This is mainly inferred by clinical data showing that the 
repurposed drugs selected by our method for COVID-19, have been used 
in the past to treat similar viral diseases. Our list of possible repurposed 
drugs against COVID-19, needs further detailed clinical studies to 

elucidate whether these drugs are effective for COVID-19 treatment, 
either to protect against the infection by interacting with the viral 
mechanisms, molecular docking, etc., or to provide post-infection 
treatment by reversing coronavirus-induced expression signatures, 
captured by CMAP connectivity mapping. Additionally, our analysis 
suggests that COLIA1 gene plays a very important role, among other 
genes that have been revealed and whose roles have been analysed. This 
gene has been identified as a candidate for heart failure [93]. We have 
also provided a discriminatory small-scale signature composed of 31 
genes that could be used clinically. Finally, it is plausible that the 
transcriptomic signature of patients with acute infection, differs from 
the genetic signatures that were unravelled in the present analysis. 
Consequently, much more publicly available transcriptional signatures 
data from different patients at varying disease stages, would be needed 
to improve our current computational limitations. However, due to the 
speed of the pandemic and the urgency of the problem, we believe that 
the proposed novel method of selecting drug candidates that could be 
repurposed against SARS-CoV-2, is vital and might be very useful for the 
whole community of virologists, medical doctors, data scientists, and 
pharmacologists who are currently studying COVID-19. The drug can
didates were identified using a data-driven hypothesis-free approach. 
Although the computational approach presented in this paper is very 
different from the previous works by Blanco de Melo et al. [18] on the 
first dataset and by Desai et al. [34] on the second dataset, our results 
aligned with the results obtained by these two teams. The aim of our 
work was to find the altered genetic pathways to perform drug reposi
tioning. Some of these drugs were reconfirm by an independent dataset 
and this fact becomes important to highlight. Our machine 
learning-based method can be significantly improved in the future by 
rapidly growing transcriptomic signature data available from clinical 
studies. This transcriptomic data should be publicly available and 
possibly stored in one central depository to ensure speedy research 

Fig. 6. Main drugs repositioned via COGENA. Here 1#97 and 2#3 denote that cluster number 1 has 97 genes and cluster number 2 has 3 genes. Down#93 represent 
a subset of 93 downregulated genes. Finally, the label All#100 shows the score for all the 100 genes. 
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progress on development of new drugs or vaccines against COVID-19 or 
other possible future pandemics. One of the main disadvantages in 
performing this kind of analysis is to obtain independent and compatible 
datasets regarding the sequencing platform. 

6. Conclusions 

In this paper we have found the small-scale genetic signature that 
predicts the COVID infection with respect to healthy controls (mock 
treated) and we have analysed how different samplers explore the un
certainty space of the phenotype prediction problem. Based on the hy
pothesis of biological invariance, we were able to unravel the main 
disease altered pathways and to perform drug repositioning by using 
CMAP methodology. This methodology suggests potential COVID-19 
treatments, which then need to undergo clinical testing to establish 
their efficacy in human patients, to be authorized as treatments by the 
regulatory agencies. In our opinion the most interesting finding is the 
role of the COL1A1 gene that plays an important role in the regulation of 
the immune system. The COL1A1 gene produces the alpha 1 chain of 
type I collagen found in different tissues (skin, tendons, corneas, lungs, 
and bones). Type I collagen is also a major structural protein in the lung 
and is stimulated during certain inflammatory reactions. It has been 
shown that the need for type I collagen increases substantially in adult 
respiratory distress syndrome [94]. 

A lack of glycine affects collagen production and immunity, since 
glycine has crucial function in cytoprotecting, immune response, 
growth, development, metabolism, and survival of humans [95]. In 
addition, the production of collagen is not the same across ethnically 
diverse population [96]. Around 95% of the European population cor
responds to a genotype that has a lower collagen production, and 
therefore a higher need of both glycine and vitamin C for Type 1 
collagen synthesis to maintain optimal levels of each to protect the 

lungs. Glycine concentrations have consistently been found to be lower 
in individuals with obesity, Non-Alcoholic Fatty Liver Syndrome 
(NAFLD), and Type 2 diabetes [97]. All three health conditions are at a 
higher risk for the severity of COVID-19 infection. Moreover, the decline 
in collagen production occurs in high-sugar diets, elderly population, 
and women after the menopause. Although this is just a hypothesis that 
could be controversial, we believe that the expression level of 
COL1A1could be adopted as a predictive test of the severity of COVID-19 
infection. 

Furthermore, we have highlighted the role of other important 
downregulated genes in lung biopsies, such as, MRPLR1, FSCN1, 
RNF126 and ANKRD33B, involved in pathways related to dopamine 
receptors, inflammatory response, and the immune response. Finally, we 
have pointed out several genes overexpressed in COVID-19 infection 
which are responsible for cardiomyopathies (DNAH17/KCNT2) and 
cardiac metabolic effects (KCNT2), severe sepsis (DRD1), immune 
response (FKBP6) and macular degeneration (KCNN1). 

In our opinion all genes, drugs and pathways that were discussed in 
this paper, open new hypothesis, and possibilities of potential treatment 
against COVID-19 infection. Additionally, our paper can provide clini
cians with useful insights, based on their prior knowledge of the disease, 
to test various compounds in clinical trials. 
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