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Abstract: Allogeneic hematopoietic stem cell transplantation was until very recently, the

only permanent curative option available for patients suffering from transfusion-dependent

beta-thalassemia. Gene therapy, by autologous transplantation of genetically modified hema-

topoietic stem cells, currently represents a novel therapeutic promise, after many years of

extensive preclinical research for the optimization of gene transfer protocols. Nowadays,

clinical trials being held on a worldwide setting, have demonstrated that, by re-establishing

effective hemoglobin production, patients may be rendered transfusion- and chelation-inde-

pendent and evade the immunological complications that normally accompany allogeneic

hematopoietic stem cell transplantation. The present review will offer a retrospective scope

of the long way paved towards successful implementation of gene therapy for beta-thalasse-

mia, and will pinpoint the latest strategies employed to increase globin expression that extend

beyond the classic transgene addition perspective. A thorough search was performed using

Pubmed in order to identify studies that provide a proof of principle on the aforementioned

topic at a preclinical and clinical level. Inclusion criteria also regarded gene transfer

technologies of the past two decades, as well as publications outlining the pitfalls that

precluded earlier successful implementation of gene therapy for beta-thalassemia. Overall,

after decades of research, that included both successes and pitfalls, the path towards a

permanent, donor-irrespective cure for beta-thalassemia patients is steadily becoming a

realistic approach.

Keywords: gene therapy, gene editing, thalassemia, mobilization, viral vectors, clinical
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Introduction
Beta-thalassemias are hereditary anemias that are caused by the absent or insuffi-

cient production of the beta-hemoglobin chain1 and constitute the most common

monogenic disease with 270 million heterozygotes worldwide.2 The prevalence of

beta-thalassemias was primarily favored in tropical and subtropical regions due to

resistance against malaria incurred in the individuals carrying the pathological

alleles. However, migration of populations, as well as implementation of effective

prevention programs, have changed the epidemiological map for these syndromes.3

Without treatment, the severe form of the disease, known as beta-thalassemia

major or Cooley’s anemia, is lethal within the first decade of life.4 The standard of

care for these patients comprises lifelong transfusion therapy combined with phar-

macological chelation to curb iron accumulation1,4 that substantially extends their

life expectancy, if strictly followed.5 However, this lifelong treatment constitutes an

unaffordable financial burden for many national economies and it severely
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compromises the quality of patients’ life, commonly

resulting in treatment non-compliance and vital organ

sequelae.6 Indeed, the major cause of death in these

patients, following sub-optimal iron chelation, is cardiac

failure due to secondary hemochromatosis.6 Older patients

may be exposed to a higher risk of hepatocarcinoma.7

The traditional curative treatment is allogeneic bone

marrow transplantation from a matched related donor.

Nevertheless, significant drawbacks are associated with

its implementation, including limited availability of

major histocompatibility complex (MHC)-matched

donors, the need for long-term immunosuppression, nar-

row application to the youngest patients and increased risk

of immunological complications, as well as non-rejection

mortality in older subjects with organ damage.8,9 This is

because age-associated extramedullary hematopoiesis,

chronic ineffective erythropoiesis and iron accumulation,

may indeed adversely affect engraftment of the hemato-

poietic stem cell compartment. Moreover, transplants from

alternative donors, such as matched unrelated or haploi-

dentical donors, do not represent an approach devoid of

complications, since they are associated with significantly

lower disease-free survival and higher morbidity and

mortality.10,11

The goal of gene therapy for the treatment of beta-

thalassemia is to achieve stable introduction of functional

globin genes into the patient’s own hematopoietic stem cells

(HSCs) in order to correct ineffective erythropoiesis and

hemolytic anemia, thus obviating the need for transfusion12

(Figure 1). This was anticipated to offer a curative potential

to those who could not undergo allogeneic transplantation

or were lacking an MHC-compatible donor, thus avoiding

the immunological risks of allogeneic hematopoietic stem

cell transplantation (allo-HSCT) and without requiring

Figure 1 Schematic representation of the classic gene addition protocol for the gene therapy of beta-thalassemia. In brief, Plerixafor+granulocyte-colony stimulating factor

(G-CSF) is administered to the patient in order to mobilize hematopoietic stem cells into peripheral blood. Peripheral blood mononuclear cells are then collected with

leukapheresis and enriched in CD34+ hematopoietic stem cells. These cells are co-cultured with a viral vector designed to express normal human beta-globin, followed by

quality control. Ultimately, the patient is subjected to myelosuppression and then engrafted with the gene-corrected cells.
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immune suppression to avert them. Indeed, genetic treat-

ment of beta-thalassemia has been very early singled out as

one of the most promising areas for future gene therapies by

the American Society of Gene and Cell Therapy.13

The two major hurdles posed for the implementation of

safe and effective stem cell gene therapy in beta-thalasse-

mia were firstly, to safely collect enough HSCs (the so-

called CD34+ cells) and secondly, to transduce patients’

CD34+ HSCs at potentially therapeutic levels.14,15

Infusion of insufficient cell doses or poorly transduced

cells would place the patient at risk of graft failure or

futile infusion. These concerns were particularly high-

lighted in the case of gene therapy for beta-thalassemia,

which requires complex tissue-specific vectors, that result

in lower titers than smaller, cDNA-encoding vectors.16,17

Furthermore, adult subjects were the first to be recruited in

these trials. This stood in contrast to the primarily pediatric

subjects treated for metabolic disorders and severe immu-

nodeficiencies, where the young age, the absence of poten-

tial medullary damage caused by iron accumulation and

the proliferative advantage of genetically modified pro-

genitors, were most favorable circumstances for HSC

engraftment.18 Another issue that had to be addressed in

the context of gene therapy for beta-thalassemia was the

risk of insertional oncogenesis,19 as well as limited effi-

cacy in certain cases, owing to non-myeloablative

conditioning.20

This study will retrospectively review the successes

and pitfalls of the last two decades in the field of gene

therapy for beta-thalassemia. Finally, it will discuss the

most recent advances that extend beyond the classic gene

addition protocols harnessing the semi-random integration

of the transgene, such as in situ gene editing for the

reactivation of the endogenous fetal hemoglobin, or gene

addition in safe harbor genomic loci. A graphic timeline of

the latest milestones for the gene therapy of beta-thalasse-

mia is presented in Figure 2.

Major Hurdle 1: Safe Collection Of
Sufficient Numbers Of HSCs
The earliest assumption towards a molecular therapy for

beta-thalassemia was the ex vivo gene addition strategy:

target cells with a repopulating capacity, such as HSCs, are

isolated from the patient and co-cultured with a viral

vector carrying the therapeutic gene. These genetically

modified cells are then reintroduced as a phenotypically

functional graft into the patient from whom they were

initially harvested and repopulate the bone marrow. To

do so, a preparative conditioning regimen would have to

be applied, in order to provide enough niches for engraft-

ment of the gene-modified cells over the uncorrected

endogenous ones21 (Figure 1).

It is well-established that the genetically modified cells

lack a selective advantage at the level of stem/early pro-

genitor cells in beta-thalassemia patients.14 Hence, large

numbers of highly engraftable transduced CD34+ cells,

need to be infused in order to achieve successful bone

marrow reconstitution.22 The need for harvesting large

numbers of HSCs from the patients is further intensified

because a backup of unmodified CD34+ cells is addition-

ally required, for rescue in case of engraftment failure.

Nowadays, peripheral blood-mobilized HSCs represent

the preferable source for many autologous and allogeneic

transplantation approaches.23 This is because this graft

source provides, under a minimally invasive procedure,

higher numbers of HSCs compared to conventional bone

Figure 2 The milestones of gene therapy for beta-thalassemia: a timeline of the last two decades.
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marrow harvest.24 Plerixafor, a most recent mobilizing

agent, when used in combination with granulocyte-colony

stimulating factor (G-CSF), results in rapid mobilization,

within hours following administration,25 and exhibits a

marked synergism, hence increasing CD34+ cell yields

by several fold.26

Until recently, there was little information about the

safety and efficacy of mobilization in adult patients with

beta-thalassemia. The peculiarity of HSC mobilization in

the context of beta-thalassemia mostly lied on the exten-

sive extramedullary hematopoiesis that results in spleno-

megaly, as well as the hypercoagulability observed in

these patients. Although G-CSF is known to be generally

well-tolerated, the rare events of splenic rupture27,28 or

thrombosis29 during mobilization in normal donors or

patients with hematologic malignancies raised concerns

for its safety in thalassemia.

Based on the results of two mobilization trials in patients

with thalassemia,30–32 as well as preclinical studies in

mice,33,34 the group of Yannaki suggested Plerixafor+G-

CSF-mobilized CD34+ cells as the optimal graft source for

thalassemia gene therapy. The two clinical trials (Figure 2)

assessed the safety and efficacy of HSC mobilization, using a

range of available agents (Hydroxyurea+G-CSF, G-CSF-

alone, Plerixafor-alone, Plerixafor+G-CSF) in 40 beta-thalas-

semic adults. It was demonstrated that the combined treatment

of Plerixafor+G-CSF leads to high yields of CD34+ cells in a

single apheresis procedure, despite the mandatory dose reduc-

tions of G-CSF that were applied to splenectomized patients to

avoid hyperleukocytosis. The Plerixafor+G-CSF-primed

CD34+ cells were chosen as the optimal graft for thalassemia

gene therapy because they provided, after lentiviral vector-

driven genetic correction, increased beta-globin expression per

vector copy and enhanced early human chimerism under non-

myeloablative conditions in xenografts, over the differently

mobilized cells.34 The superiority in engraftment of the

Plerixafor+G-CSF CD34+ cell graft was probably associated

with enrichment in cells bearing amore primitive phenotype.31

Ever since, Plerixafor+G-CSF mobilization has been adopted

in all clinical gene therapy trials for beta-thalassemia.

Major Hurdle 2: Transduction Of
Patients’ HSCs At Potentially
Therapeutic Levels
The onset of the transfer of gene therapy for beta-thalas-

semia from the bench to the bedside was noted in two

early clinical trials; in Paris, led by Philippe Leboulch, and

New York, led by Michel Sadelain (Table 2). In the Paris

trial, transfusion independence provided by infusion of

gene-corrected autologous HSCs in one fully myeloablated

patient, essentially reflected an HMGA2 dominant clone

contribution to vector-derived erythropoiesis combined

with the unusual activation of fetal hemoglobin post-

transplant.19 Fortunately, the dominant clone did not pro-

gress to leukemic transformation and gradually decreased.

Currently, it contributes for less than 10% of the circulat-

ing nucleated cells and the patient requires scarce

transfusions.35 Similar in vivo gene transfer rates in the

New York trial, reached with partial myeloablation, did not

provide a therapeutic benefit to the patients.20 Although

these trials demonstrated the feasibility and tolerability of

gene therapy for beta-thalassemia, they also revealed

safety and efficacy issues that needed to be addressed.

Efficacy Of Globin Vectors
Despite highly successful transduction of HSCs in gene

therapy of immune deficiencies36 or lysosomal storage

diseases,37 allowing for recent marketing authorization of

specific gene therapy products,12 efficient globin gene

transfer to HSCs was proved a challenge, mostly due to

the traditionally low titers of the vectors utilized. Globin

vectors need to possess extremely high transcriptional

efficiency in order to be therapeutic, an issue that was

initially addressed by the incorporation of elements of

the beta-globin locus control region (LCR), at the expense,

however, of a severe compromise of vector titers due to

the substantial length of the micro-LCR cassettes.16,38

The group of Sadelain was the first to demonstrate

successful gene therapy in murine models of beta-thalasse-

mia intermedia and major, with a lentiviral vector which

incorporated the human beta-globin promoter and regula-

tory elements to achieve erythroid-limited, developmental

stage-specific globin expression (Figure 2).39–41 Extensive

studies were followed, focusing on the design of a lentiviral

vector encoding a unique combination of the globin gene/

promoter/enhancer/LCR that was finally termed TNS9

(Table 1), which corrected anemia in beta-thalassemic

mice.39–42 Several groups afterwards confirmed and

enriched these findings in thalassemia models using various

lentiviral vectors that encoded beta, gamma or mutated

beta-globin genes.43–47 However, both gene transfer effi-

ciency and titers remained suboptimal and consequently,

full myeloblation was considered necessary to reach clini-

cally relevant levels of engraftment. Additionally, the large

vector production batches needed for the procedure,
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associated with high costs, hampered effective implementa-

tion of gene therapy for beta-thalassemia for many years.

The first vector ever reaching the clinic was the SIN-

LentiGlobin HPV569,19 with two copies of the 250 bp

core elements of the chicken beta-globin chromatin insu-

lator (cHS4) flanking the LCR and an anti-sickling beta-

globin transgene (Table 1). This transgene was utilized to

discriminate the contribution of the vector to erythropoi-

esis, over any residual endogenous or transfusion-derived

beta-globin expression. Three b0/bΕ thalassemic patients

participated, after a full myeloablative conditioning. Aside

from the sole patient who was rendered transfusion-inde-

pendent, the two other individuals failed to benefit from

the therapy. One patient had to receive his unmanipulated

back-up cells due to engraftment failure of the gene-mod-

ified cells and long-lasting aplasia, while the other was

presented with low gene marking in vivo and remained

transfusion-dependent. Moreover, there was a strong belief

at the time that even this one patient wouldn’t have been

treated without the concurrent events of the dominant

clone emergence and fetal hemoglobin activation.

On the other hand, the group of Sadelain, in the trial

conducted in New York, made use of the TNS9.3.55

vector,17 which was an incremental version of the proto-

typical TNS9, and bore an uninsulated LCR with the wild-

type beta-globin gene. Four b0/b+ thalassemic patients

received their gene-corrected G-CSF-mobilized CD34+

cell grafts, after a reduced intensity conditioning with 8

mg/kg Busulfan. Although initially the patients were pre-

sented with increasing intervals between transfusions, they

eventually remained transfusion-dependent, strongly indi-

cating that partial myeloablation is not a realistic approach

for engraftment of gene-modified cells in beta-thalassemia.

The above findings from the two trials also raised the

concern that even higher in vivo gene transfer rates would

be needed to ensure that the b0/b0 genotype would bear a

chance to be cured, even after a full myeloablative con-

ditioning. This is because non-b0/b0 genotypes are pre-

sented with residual endogenous globin production, which,

if combined with transgenic beta-globin expression, it

would be easier to reach transfusion independence.

Preparative Conditioning
The peculiarity of beta-thalassemia lies on the extremely

expanded bone marrow that essentially hampers effective

engraftment of gene-corrected HSCs, which, importantly,

provide a selective advantage only at the level of erythro-

blasts and erythrocytes.22 Hence, the truly capable forT
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long-term hematologic reconstitution genetically modified

CD34+ cells, would have to be exposed in particularly

competitive niche conditions upon transplantation.

Since beta-thalassemia is a non-malignant disease that

requires complete elimination of endogenous HSCs to confer

therapy, it was initially debated whether a partial or full

myeloablation would provide the optimal balance of ade-

quate vector-derived hematologic reconstitution, along with

the minimum possible peri-transplant morbidity and mortal-

ity. Supporters of the former opinion stated that, to counter-

balance the low engraftment expected from partially

myeloablative conditions, very large numbers of gene-cor-

rected HSCs would have to be administered.48 However,

despite the encouraging engraftment rates achieved under

competitive conditions of a non-myeloablative setting in

mouse models with various vectors,17,34,49,50 it was soon

discovered that this milder preparative regimen could not

be transferred to the clinic.20 Nowadays, a reduced intensity

conditioningwith Busulfan at 8 mg/kg is sufficient to achieve

therapeutic engraftment of modified HSCs only for disorders

that possess a selective advantage at the HSC level and do not

have an extramedullary hematopoiesis background.51,52

Ever since, several trials that implement a full myeloa-

blation (described below), utilizing either 12.8 mg/kg

Busulfan or 42 g/m2 Treosulfan and 8 mg/kg thiotepa have

opened and are currently in data evaluation progress.35

BlueBird BIO has sponsored two Phase I/II trials uti-

lizing 12.8 mg/kg Busulfan as the conditioning agent:53

the multicenter HGB-204 and the single-center HGB-205

(Table 2), using a modified version of Leboulch’s proto-

typical HPV569 beta-globin vector. The novel vector,

called Lentiglobin BB305 (Table 1), has been improved

by removing the insulator domains, that were found to be

unstable, and by replacing the 5ʹ long-terminal repeat

(LTR) with a CMV promoter.54 As a result, the titer of

BB305 was 3–4 times higher than that of HPV569, and its

transduction efficiency in CD34+ cells was 2–3 times

greater.55 Both trials followed the exact same procedure

as in the study conducted with HPV569, except that the

BB305 vector was further purified by preparative chroma-

tography and ultrafiltration.55 The HGB-205 trial enrolled

3 patients with the b0/bE genotype, who have discontinued

transfusions and iron chelation.53 As of June 2019, in the

completed HGB-204 study, 8 out of 10 patients with non-

b0/b0 genotypes were able to cease transfusions at 0.3–5.8

months post gene therapy and had sustained transfusion

independence for a duration of up to 45 months (data

presented at the 24th European Hematology Association

Congress) (https://library.ehaweb.org/eha/2019/24th/

267342/mark.c.walters.clinical.outcomes.of.lentiglobin.

gene.therapy.for.html?f=listing%3D0%2Abrowseby%

3D8%2Asortby%3D1%2Asearch%3Dlentiglobin). All 10

patients of the HGB-204 trial are now enrolled in the

long-term follow-up study, LTF-303. So far, no replica-

tion-competent lentivirus (RCL) has been detected, and no

safety issue was attributed to the BB305 vector or the

conditioning agent in either HGB-204 or HGB-205 study.

HGB-204 and HGB-205 were also the first studies to

enroll patients bearing the severe b0/b0 phenotype or

homozygosity for the IVS1-110 mutation, a b+ genotype

with trace endogenous beta-globin expression that resem-

bles the b0/b0 condition. Among the 9 patients with a b0/

b0 genotype from both studies (HGB-204 n=8; HGB-205

n=1), 5 continued to be transfusion-dependent. However,

the number of annual transfusions was reduced by 74%.53

The remaining 4 (HGB-204 n=3; HGB-205 n=1) patients

had not received transfusions for 16 to 20 months.53

(https://library.ehaweb.org/eha/2019/24th/267342/mark.c.

walters.clinical.outcomes.of.lentiglobin.gene.therapy.for.

html?f=listing%3D0%2Abrowseby%3D8%2Asortby%

3D1%2Asearch%3Dlentiglobin). The 8 patients in the

HGB-204 trial are also enrolled in the LTF-303 study, as

the 10 non-b0/b0 HBG-204 participants.

A more recent, Italy-based Phase I/II trial, sponsored

by the Telethon Foundation, implemented a myeloablative

conditioning with 42 g/m2 Treosulfan and 8 mg/kg

thiotepa.35 Treosulfan was chosen because, in the context

of allo-HCT for beta-thalassemia, demonstrated a more

reduced toxicity than Busulfan.56 The vector utilized was

GLOBE (Table 1), a beta-globin vector harboring a 2.7kb

LCR cassete.57 Three b0/b+ adults (median age 33 years

old) and 6 children (b+/b+ n=3; b0/b+ n=1; b0/b0 n=2;

median age 9 years old) were treated, after intrabone

administration of the gene-modified HSCs. Transfusion

requirements were reduced in adults up to 28 months

post gene therapy. Three out of 4 evaluable pediatric

participants, including 1 with the b0/b0 genotype, were

presented with transfusion independence during the last

follow-up (up to 18 months post therapeutic infusion)

(Table 2). The one child that did not reach transfusion

independence also bore a b0/b0 background.57 Most

importantly, this study verified that younger age and per-

sistence of higher vector copy number (VCN) in the repo-

pulating HSCs are associated with a better therapeutic

outcome.
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Safety Of Viral Vectors
The long way towards successful implementation of gene

therapy was not devoid of pitfalls and complications.

Leukemic transformation, also termed insertional onco-

genesis, in children with X-SCID58 or Wiskott-Aldrich

syndrome59 who were successfully treated by gamma-ret-

roviral gene therapy, initially overshadowed the first suc-

cesses of gene therapy and intensified the research towards

the reduction of the genotoxicity risk of the procedure.

Worries were also raised from the benign, yet potentially

oncogenic dominant clone that emerged in the first beta-

thalassemic patient ever treated with gene therapy.19 This

was a result of the tandem cHS4 element contained in the

HPV569 vector, which was proved prone to rearrange into

a single cHS4 element upon vector insertion,19,60 and did

not protect against gene activation when placed between

enhancer and promoter regions.

Nowadays, lentiviral vectors encoding human beta-glo-

bin that are currently being used in clinical trials, bear

safety features that should substantially reduce the risk of

vector-mediated oncogenesis compared to the early gen-

eration gamma-retroviral vectors. The self-inactivating

(SIN) vector design involving the deletion of the viral

enhancers in the vector LTR abrogates these major deter-

minants of genotoxicity.61 On the other hand, globin vec-

tors contain a very powerful enhancer derived from

elements of the LCR, and from the activating power of

this enhancer the environment of the integrating vectors

needs to be protected.38,62 In addition, genes expressed at

ectopic sites, as in gene therapy applications, are subjected

to the impact of the new chromosomal environment often

resulting in differential expression and/or silencing.63

Chromatin insulators are naturally occurring DNA ele-

ments that help form functional boundaries between adja-

cent chromatin domains and have been proposed as a

means to minimize vector-mediated genotoxicity (enhan-

cer-blocking insulators) and limit transgene silencing (bar-

rier insulators). For many years, the prototypic vertebrate

insulator remained the 1.2 kb cHS4, derived from the

DNAase hypersensitive site 4 of the chicken beta-globin

locus control region.63 However, the utilization of cHS4 in

viral vectors for clinical gene therapy up to date has been

associated with several limitations including suboptimal

titers, partial insulation and aberrant splicing.19,63,64

In recent years, novel, small-sized insulators have been

identified in the human genome by powerful genomic

technologies, allowing for the study of epigenetic marksT
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on a genome-wide level and understanding the context in

which gene regulation occurs. The majority of them dis-

play superior enhancer-blocking activity to that of the

cHS4 insulator and substantially reduce the genotoxicity

risk in a viral-vector-mediated carcinogenesis mouse

model.65 Importantly, these insulators are small-sized

(<300 bp) and can be easily accommodated in gene ther-

apy vectors without having detrimental effects on vector

titers. Indeed, the group of Sadelain extensively character-

ized one of these elements (termed A1) and incorporated it

into the TNS9.3.55 vector, constructing its insulated ver-

sion, TNS9.3.55.A1, which is aimed to be brought to the

clinic.20

Most Recent Clinical Trials
Recently, BlueBird BIO launched the first two Phase III

clinical trials; HGB-207 for patients with non-b0/b0 geno-

types and HGB-212 for patients with a b0/b0 genotype or

an IVS-I-110 mutation.35 The former plans to include 15

adult and adolescent patients together with 8 pediatric

patients. The latter trial plans to enroll approximately

fifteen adult, adolescent and pediatric patients.55 As of

June 2019 (EHA Congress), 20 patients have been treated

in the HGB-207 study and 11 in the HGB-212 study

(Table 2). In the HGB-207 trial, 4 out of 5 non-b0/b0

patients are transfusion-free for a median follow-up dura-

tion of 13.6 months, and 13 of 14 non-b0/b0 patients with

at least 3 months of follow-up are free from transfusions

for at least 3 months. The number of pediatric patients

enrolled in this study so far is 5. The first b0/b0 patient in

the HGB-212 study was reported transfusion independent

in late 2017 and, as of EHA 2019, 5 more patients have

stopped transfusions for at least 3 months at the time of the

last study visit (5–16 months post-treatment) (https://

library.ehaweb.org/eha/2019/24th/267341/andreas.e.kulo

zik.results.from.the.phase.3.northstar-3.study.evaluating.

html?f=listing%3D0%2Abrowseby%3D8%2Asortby%

3D1%2Asearch%3Dhgb-212).

Most importantly, as of March 2019 (https://www.ema.

europa.eu/en/documents/smop-initial/chmp-summary-posi

tive-opinion-zynteglo_en.pdf), BlueBird BIO received a

positive opinion from the Committee for Medicinal

Products for Human Use (CHMP) of the European

Medicines Agency (EMA) regarding conditional marketing

authorization for ZYNTEGLO™ (autologous CD34+ cells

encoding bA-T87Q-globin gene). The CHMP’s positive

opinion was followed by recent marketing authorization

for ZYNTEGLO™ in the European Union (EU) by the

European Commission (EC) (https://ec.europa.eu/health/

documents/community-register/2019/20190529144815/

dec_144815_en.pdf). This product would be available to

non-b0/b0 patients over 12 years old, for whom HSC trans-

plantation is appropriate but a matched related HSC donor

is not available. Hence, ZYNTEGLO™ became be the first

gene therapy product for transfusion-dependent beta-thalas-

semia patients.

Beyond The Gene Addition
Perspective
Gene editing, namely the in situ alteration of genes by

specific nucleases, represents a novel strategy which, owing

to the nuclease-associated creation of double stranded breaks

in the DNA, replacement, insertion, or deletion of a sequence

in a certain locus may become achievable. Such nucleases

include zinc-finger nucleases (ZFNs), meganucleases (MNs),

transcription-activator-like effector nucleases (TALENs),

and the RNA-guided CRISPR/Cas9 system (Clustered,

Regularly Interspaced Short Palindromic Repeats/CRISPR-

Αssociated Ρrotein 9).66

To carry out their function, these nucleases rely on

specific DNA interaction modules and a nuclease domain.

This procedure is rendered feasible either by homology-

directed repair (HDR), or by non-homologous end-joining

(NHEJ) (Figure 3). Although the latter is more efficient

than the former, NHEJ is error-prone and the outcome of

DNA modifications cannot be controlled. On the other

hand, HDR allows for specific, predetermined changes to

the target sequence67 and is thus the preferable emerging

discipline for treating beta-thalassemia. Lately, many clin-

ical gene editing trials for HIV, leukemia, hemophilia B

and mucopolysaccharidosis I have been conducted.68 In

the context of beta-thalassemia, two clinical trials, one

utilizing a CRISPR/Cas9 system (https://clinicaltrials.

gov/ct2/show/NCT03655678) and one implementing a

ZFN (https://clinicaltrials.gov/ct2/show/NCT03432364) to

treat transfusion-dependent beta-thalassemic patients are

currently at the recruiting process (Table 2). In the latter

trial (Table 2), early clinical data from one b0/b0 patient at

7 weeks post therapy were announced in April 2019

(https://www.prnewswire.com/news-releases/sangamo-pro

vides-clinical-development-update-including-early-phase-

12-beta-thalassemia-gene-edited-cell-therapy-data-

300822611.html), stating cessation of transfusions. While

these data are very early and will require confirmation in

additional patients as well as longer follow-up to draw any
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clinical conclusion, they are promising, because of the

patient’s genotype which has proved particularly difficult

to treat. More data, including results from additional

patients, are expected in the last quarter of 2019.

Therapeutic effects may also be driven by inserting the

gene of interest into a specific locus (safe harbor),69 with-

out affecting the transcriptional activity of adjacent genes.

This method may also support minimization of transgene

silencing. The AAVS1 site on chromosome 19, is well-

known to serve as a common integration site of the human

adeno-associated virus (AAV), and soon became a target

for research.69,70 However, although the AAVS1 site has

shown sustainable transgene expression upon incorpora-

tion in a different range of cell types, there is still a

substantial amount of work to be done in order to be

capable of providing a high level of safety confidence.70

A third option is reactivation of the gamma-globin gene,

which is normally silenced after birth but it may prove some-

times capable of compensating the beta-globin deficiency,

should expressed at a substantial level.71 Another approach,

combining reactivation of the gamma-globin gene with cor-

rection of beta-globin mutations has also been reported.72

More recently, inactivation, by gene editing, of an erythroid

intronic enhancer termed BCL11A, was shown to lead to

fetal gamma-globin (HbF) reactivation.73–75 However, it has

been observed that ubiquitous BCL11A knockdown

impaired engraftment of both human and murine

HSCs,76,77 suggesting that erythroid-specific disruption of

BCL11A needs to be considered. Indeed, erythroid-specific

BCL11A knockdown has previously been shown to support

high-level and sustained reactivation of gamma-globin in

Κ562 cells78 and human HSCs77 and also effectively bypass

the engrafting inability of HSCs with ubiquitous BCL11A

downregulation.77 Alternatively, disrupting the binding site

of the GATA-1 transcription factor at the upstream enhancer

of BCL11A may also lead to therapeutic expression levels of

HbF.79 Generation of hereditary persistence of fetal hemo-

globin (HPFH) mutations in HSCs by gene editing is also

another promising therapeutic strategy applied in order to

increase HbF levels in beta-thalassemic patients. Indeed, it

has been demonstrated that introduction of the HPFH-175

T>C point mutation is associated with increased HbF expres-

sion in erythroid cell lines through de novo recruitment of a

TAL1 activator.80

Remaining Questions
Despite the inarguable success of gene therapy in beta-

thalassemic patients with non-b0/b0 genotypes, therapeutic

outcomes for patients with the b0/b0 genotype still remain

suboptimal, thus intensifying the need for further improve-

ments in globin vector design, manufacturing and perfor-

mance. It is widely acknowledged that gene-modified HSCs

are prone to attenuation of their repopulating capacity

because of ex vivo culturing conditions.22 Moreover, stable

gene marking and effective engraftment of gene-modified

HSCs may be challenged by the inevitable cryopreservation

of the end-product prior to extensive quality assurance

testing.12 All together, these interventions might lead to

low engraftment levels post-transplant. Consequently, pro-

tocols should be further optimized using a range of various

refinements such as: shortening the duration of ex-vivo

culture of HSCs,81 enriching and transducing more primi-

tive cells,82 amending culture and cytokine concentrations

to accelerate platelet and granulocyte recovery,83 incorpor-

ating molecules to expand84,85 or to transduce HSCs,86–89

Figure 3 Gene editing mechanisms are based on either homology-directed repair (HDR), or on non-homologous end-joining (NHEJ), both created by nuclease-associated

creation of double stranded breaks in the DNA.
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and administering the modified HSCs through alternative

routes to favor engraftment and to reduce cell loss.57

Cationic additives, such as protamine sulfate, which

neutralize membrane charges and enhance the cell-virus

interaction, are well-known for increasing transduction

efficiency and are already used in clinical studies.90

Other molecules, such as proteasome inhibitors,91 cyclin-

dependent kinase p21,92 or mTOR,87 inhibit the post-entry

trafficking from the plasma membrane to the nucleus, and

may be clinically relevant in the future. Other compounds

that support maintenance and expansion of HSCs include

SR1 and UM729.93,94 On the other hand, using small

molecules to increase VCN might risk transduction of

only a particular cell subset95 and increase the risk of a

dominant clone emergence.

An amended manufacturing process, using 2 small pro-

prietary molecules as transduction enhancers,55 aims to gen-

erate higher VCN in vivo post gene therapy and is already

applied for the BB305 vector in the HGB-207 trial for tha-

lassemic patients with non-b0/b0 genotypes. This provides

hope that such amendments may prove sufficient to confer

transfusion independence in the most challenging cohort of

b0/b0 patients participating in the HGB-212 trial.

Albeit no adverse events were so far observed in any of

the clinical trials conducted with the BB305, the

TNS9.3.55, or the GLOBE vector, the need for higher

transduction efficiencies in order to treat b0/b0 genotypes

requires patients’ close and long-term surveillance, since a

higher VCN in vivo may entail increased risk of cell

transformation. Alternatively, transducing cells at <1

VCN per cell and selecting only the gene-modified HSCs

from the total cell population before infusion might alle-

viate the need for higher VCNs in vivo,95 as well as

prevent possible gene silencing.96 However, this procedure

is substantially longer in duration, which may ultimately

lead to a loss of engraftment potential and a decrease in

clonal diversity.97

Gene editing strategies by HDR, though they represent

a theoretically safe and efficient way to repair the patient’s

HSCs, do bear drawbacks. Such disadvantages include low

rates of HDR in HSCs due to quiescence of this particular

cell type,98 inefficient delivery of nucleases to the cells,99

potential off/oncotarget cleavage,100 low engraftment

potential of HSCs bearing repaired genes,101 as well as

on-target mutagenesis, such as large deletions and more

complex rearrangements.102 In addition, since HDR is

conducted with an exogenously supplied donor template,

very large number of HDR products would have to be

manufactured and authorized for human use in order to

cover the >200 mutations for beta-thalassemia,55 unless

only patients carrying the most common genotypes

would be chosen to be treated. The aforementioned need

to be extensively evaluated and addressed as this technol-

ogy is becoming more widely adopted.

Conclusions
After years of research, a new era for the treatment of beta-

thalassemia has begun and will soon offer curative potential

with many alternate options. Since the long-term conse-

quences of gene editing mechanisms in HSCs are not yet

clarified, current gene editing cannot be considered safer

than viral-mediated gene addition. Among novel therapies,

the classic gene addition perspective remains the most

promising strategy and soon after long-term data release

from Phase III trials, gene therapy for beta-thalassemia

might become available to a large cohort of patients.
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