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Acute necrotizing encephalopathy (ANE) is a devastating neurologic condition that can

arise following a variety of systemic infections, including influenza and SARS-CoV-2.

Affected individuals typically present with rapid changes in consciousness, focal

neurological deficits, and seizures. Neuroimaging reveals symmetric, bilateral deep

gray matter lesions, often involving the thalami, with evidence of necrosis and/or

hemorrhage. The clinical and radiologic picture must be distinguished from direct

infection of the central nervous system by some viruses, and from metabolic and

mitochondrial disorders. Outcomes following ANE are poor overall and worse in those

with brainstem involvement. Specific management is often directed toward modulating

immune responses given the potential role of systemic inflammation and cytokine storm in

potentiating neurologic injury in ANE, though benefits of such approaches remain unclear.

The finding that many patients have mutations in the nucleoporin gene RANBP2, which

encodes a multifunctional protein that plays a key role in nucleocytoplasmic transport,

may allow for the development of disease models that provide insights into pathogenic

mechanisms and novel therapeutic approaches.
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INTRODUCTION

In the setting of acute infection, central nervous system (CNS) dysfunction may ensue through
a variety of mechanisms. Direct infection of the CNS can result in acute encephalitis, and is
characterized by changes in mental status, focal neurological findings, and, importantly, evidence
of inflammation by neuroimaging or spinal fluid analysis (1). On the other hand, there is growing
recognition of infectious conditions that result in encephalopathy without evidence of overt CNS
inflammation (2). In such conditions, which include sepsis-associated encephalopathy, influenza-
associated encephalopathy and febrile infection-related epilepsy syndrome, the pathogenic
processes that lead to acute brain dysfunction remain poorly defined. A particularly dramatic
example of an infection associated encephalopathy is acute necrotizing encephalopathy (ANE),
in which necrosis of the deep gray matter of the brain occurs following systemic infections such
as influenza or SARS-CoV-2 (3, 4). Importantly, the identification of mutations within affected
families- most commonly in the protein RANBP2 (5)- may shed light on the neuropathogenesis of
this devastating condition.
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CLINICAL PRESENTATION AND
OUTCOMES

Acute necrotizing encephalopathy (ANE) is characterized by
rapid neurological deterioration following a febrile systemic
illness. While most commonly reported in young children, it
can also affect adults. Although the most commonly found
infectious trigger is influenza, other pathogens, including SARS-
Cov-2 and human herpes viruses, have been associated with ANE
(Table 1). It is intriguing that such a wide array of pathogens
has been linked to ANE despite the enormous variability in
their virulence–some, such as rhinovirus typically cause only
mild disease in humans, while others, such as dengue virus,
are associated with severe, and often fatal, systemic disease.
From the initial descriptions by Mizuguchi and colleagues (6–
8), a key characteristic is the acute development of multifocal
bilateral and symmetrical necrotic lesions, most commonly
involving the deep gray matter. Seizures are commonly
reported (up to 50% of cases), and intracerebral hemorrhage,
cerebral edema, and coma can develop (5, 7, 9). Fever is
present in about 2/3 of cases, and systemic manifestations,
including respiratory failure, liver dysfunction, and diarrhea
can also occur. A systemic inflammatory response syndrome
leading to multiple organ failure has been reported (10–
12).

Radiographic findings typically reflect edema, necrosis, and
in some cases, hemorrhage in the deep gray matter (13). While
computed tomography (CT) on presentation may be normal
very early on (14), findings typically evolve rapidly such that
subsequent scanning demonstrates deep gray hypodensities.
Brain magnetic resonance imaging (MRI) often demonstrates
restricted diffusion in affected areas, along with hypointensities
on T1 weighted imaging and hyperintensities on T2 weighted
imaging. Susceptibility weighted imaging (SWI) sequences on
MRI may demonstrate evidence of microhemorrhages even if
frank hemorrhage is not observed on CT (13). Notably, ANE
must be distinguished from a number of other conditions that
can result in acute neurologic manifestations and deep gray
matter abnormalities on imaging. Japanese encephalitis virus and
other neurotropic arboviruses can directly invade the CNS and
account for a similar clinical picture, as can toxic disorders such
as carbon monoxide poisoning, mitochondrial disorders such as
Leigh disease, and vascular conditions such as deep venous sinus
thrombosis (15–17). Indeed, the differential diagnosis in a patient
with suspected ANE is quite broad.

Routine laboratory examination often demonstrates
evidence of liver dysfunction, with elevated levels of
aspartate aminotransferase, alanine aminotransferase and
lactate dehydrogenase; in contrast, hyperammonemia is rarely
reported and its absence may help to distinguish ANE from some
mimics (18). Thrombocytopenia is also commonly seen, and
may be associated with disseminated intravascular coagulation.
CSF protein is typically elevated, often > 100 mg/dL, likely as a
consequence of neuronal damage and necrosis (7, 8). Pleocytosis
of white blood cells is exceedingly rare, arguing against ANE
as a primary inflammatory disorder of the CNS. Furthermore,
there is seldom evidence of viral infiltration of the CNS (19).

These findings suggest an infection-triggered brain injury that is
neither due to CNS infection nor substantial inflammation.

ANE outcomes span the spectrum from complete recovery to
death, though the majority of outcomes are severe (Figure 1).
Even in cases of complete recovery, prolonged hospitalization
and rehabilitation may be required. Although it remains unclear
exactly what contributes to severe outcomes, involvement of
the brainstem is associated with an increased risk of death
(18, 20). In an effort to better characterize severity and
outcome in ANE, a severity score, termed ANE-SS, has been
developed (21). The ANE-SS incorporates the presence of
shock (+3 points), brainstem lesions (+2 points), older age
(+2 points if above 4 years of age), thrombocytopenia (+1
point), and elevated CSF protein (+1 point). Notably, in a
study of 73 ANE patients, ANE-SS correlated with outcomes
in patients assessed at a year or longer following the acute
presentation (21).

ANE VS. ANE1

In 2009, Neilson and colleagues identified a genetic
predisposition for ANE in the nucleoporin gene RANBP2
(22). This finding prompted the recategorization of ANE
patients with missense mutations in the leucine rich region of
RanBP2 as ANE1. While a threonine to methionine mutation
(T585M) accounts for the majority of familial or recurrent
ANE cases, other mutations in the RanBP2 gene have been
reported in the setting of ANE, including T653I, I656V, T681C,
and Lys1665Glu (22–25). A different genetic abnormality- a
chromosomal translocation resulting in fusion of part of the
RANBP2 gene with the anaplastic lymphoma kinase gene- has
been associated with inflammatory myofibroblastic tumor, but
not with ANE (26).

The T585M mutation is inherited in an autosomal dominant
fashion with incomplete penetrance (22). Mutations have also
arisen de novo in children whose parents are unaffected
(19). Interestingly, genotyping of families affected by ANE1
often shows unaffected carriers, highlighting the complexity of
disease pathogenesis (27). Furthermore, RANBP2 mutations in
a consanguineous family without previous history of ANE raises
the possibility of recessive inheritance of somemutations (22). Of
note, not all recurrent or familial ANE cases are associated with
mutations in RanBP2 (28–30). Mutations in other genes such as
SCNIA R1575C and carnitine palmitoyltransferase II have also
been associated with ANE (31, 32). There also appears to be
a correlation between HLA genotypes and ANE susceptibility
(33, 34).

Although similar inmany respects, there are some distinctions
between ANE and ANE1 (Table 2). ANE1 patients often have
lesions in regions such as the amygdalae, hippocampi, and
medial temporal lobes, that are not typically seen in other ANE
patients (22). While ANE patients commonly exhibit elevated
serum transaminases this is less often the case in ANE1 patients
(8, 22). One prominent distinction between ANE1 and ANE is
the rate of recurrence, as sporadic ANE patients seldom have
recurrent episodes.
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TABLE 1 | Infections associated with ANE.

Infectious trigger Number of cases Cited cases

Unknown Pathogen 26 Zhou (2014), Kobayashi (2019), Narra (2015), Wetzburger (1998), Sharma (2019),

Hassanzadeh (2017), Akiyoshi (2006), Mastroyianni (2006), Bassuk (2003), Porto (1999), Sell

(2016), Lee (2017), Marco (2010), Marco (2010), Dangi (2020), Oh (2004), Weng (2010), Wolf

(2013), Ravid (2001), Shibata (2019), Akiyoshi (2006), Dai (2016), Ueno (2002), Hayakawa

(2007), Soriano-Ramos (2018), Manara (2006)

H1N1 19 Ormitti (2010), Anand (2015), Offiah (2012), Aruajo (2016), Martin (2010), Lyon (2009), Komur

(2011), Mariotti (2010), Isikay (2016), Mungaomklang (2016), Koh (2019), Koh (2019), Ochi

(2018), Demir (2019), Demir (2019), Demir (2019), Abdelrahman (2019), Howard (2018),

Howard (2018)

Influenza A 18 Kumakura (2011), Offiah (2012), Gika (2010), Lee (2012), Kirton (2005), Ichiyama (2003),

Vourdris (2001), Okumura (2006), Marco (2010), Vargas (2012), Munakata (2000), Fasano

(2008), Lee (2011), Watanabe (1998), Shinohara (2011)

HHV-6 13 Yoshida (2013), Kubo (2006), Huang (2020), Skelton (2008), Sell (2016), Shinohara (2011)

Influenza B 9 Bloch (2015), Bloch (2015), Onozawa (2018), Huang (2004), Sazgar (2003), Nishimura (2016),

Koh (2019), Taniguchi (2017), Samanta (2019)

SARS-CoV-2 5 Al Mazrouei (2020), Elkady (2020), Delamarre (2020), Dixon (2020), Poyiadji (2020)

HHV-6B 3 Kansagra (2011), Kawamura (2013), Ohsaka (2006)

VZV 3 Kirton (2005), Tran (2001), Tran (2001)

Enterovirus 2 Tabarki (2013), Orgun (2020)

Mycoplasma Pneumoniae 2 Lee (2017), Shinohara (2011)

Rotavirus 2 Kirton (2005), Shinohara (2011)

Gastrointestinal Infection 2 Saitoh (2012), Salehiomran (2013)

Plasmodium Vivax 1 Yadav (2009)

Streptococcus Pneumoniae Bacteremia 1 Huber (2020)

Parainfluenza 1 Mastroyianni (2003)

Victoria Lineage Influenza B 1 Larsh (2020)

Rhinovirus 1 Alawadhi (2018)

Viral Bronchitis 1 Nishimura (2016)

Diptheria, Tetanus, Pertussis Vaccine 1 Aydin (2010)

Coxsackie Virus 1 Fasano (2008)

EBV 1 Lin (2019)

Respiratory Syncytial Virus (RSV) 1 Shinohara (2011)

Adenovirus 1 Shinohara (2011)

Dengue Fever 1 Abbas (2017)

RANBP2

RanBP2 is a 358kDa, multi-domain, cytoplasmic nucleoporin
that influences a multitude of cellular functions (35–37). Like
several other nucleoporins, RanBP2 contains FG/FxFG repeats
which facilitate nucleocytoplasmic transport (35, 37, 38). It also
contains an N-terminal leucine rich region or leucine domain, a
zinc finger domain containing eight zinc finger motifs, four Ran
binding domains, a kinesin binding domain, an E3 SUMO ligase
domain, and a cyclophilin homologous domain (Figure 2).While
several reports indicated localization at the axon initial segment
(AIS) of neurons (39, 40), the use of more specific antibodies has
recently demonstrated that endogenous RanBP2 is not found in
the AIS (41).

RanBP2 and Nucleocytoplasmic Transport
RanBP2 is localized to the cytoplasmic filaments of the nuclear
pore complex, and plays a major role in nucleocytoplasmic
transport (Figure 3). The directionality of nucleocytoplasmic

transport relies upon maintenance of the Ran gradient. Ran is
a Ras-related GTP hydrolase. The Ran gradient is established by
the Ran guanine activating protein RanGAP1 by stimulating the
hydrolysis of RanGTP to RanGDP in the cytoplasm, and by the
guanine nucleotide exchange factor RCC1 exchanging RanGDP
for Ran GTP in the nucleus (42, 43). RanBP2 anchors RanGAP1
at the nuclear pore complex, thus helping to maintain the critical
Ran gradient (44–47). RanGAP1 is first conjugated to SUMO1
by the E2 SUMO-conjugating enzyme Ubc9. In turn, sumoylated
RanGAP1 and Ubc9 interact with the internal repeat domains
of RanBP2 to form a stable RanBP2/RanGAP1-SUMO1/Ubc9
complex that remains associated with the cytoplasmic filaments
of the NPC and also functions as an E3 SUMO ligase (48).

RanBP2 plays roles in nucleocytoplasmic transport of protein
and RNA cargoes. The nuclear export receptor CRM1 interacts
with the zinc finger and FG-repeat domains of RanBP2 during
protein export. The release of exported cargo is facilitated by
the interaction of Ran-GTP with the Ran binding domains
of RanBP2. This destabilizes the CRM1-RanGTP interaction
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FIGURE 1 | Outcomes of ANE from 84 cases in available literature where modified Rankin scores could be ascertained.

TABLE 2 | Clinical characteristics of ANE vs. ANE1.

Sporadic ANE Both ANE1

- Cerebral

periventricular white

matter and

cerebellum lesions

- Frequent elevation of

transaminases

- Systemic

organ damage

- Elevated CSF

protein

- Symmetric bilateral

thalamic lesions

- High rate of recurrence

- Potentially lower rate of

seizures

- Lesions in external

capsule, claustrum,

medial temporal lobes,

amygdalae,

hippocampi, medial

temporal lobes

leading to the release of exported cargo from CRM1 on
the cytoplasmic side of the NPC (49, 50). Depletion of
RanBP2 impairs nuclear export, though the other cytoplasmic
filament nucleoporins Nup214 and Nup88 are also involved
in this process and can partially compensate for loss of
RanBP2 (51). mRNA export requires the interaction of the
RanBP2 FG repeat domain with the NFX1-p15 heterodimer
that functions as the export adapter for mRNAs (52). The
role of RanBP2 in protein import has been controversial.
RanBP2 deletion from mouse embryonic fibroblasts leads to
decreased protein import associated with reduced docking
of importin-β to the NPC (53). Depletion of RanBP2 in
human cell lines resulted in the shift of nucleocytoplasmic
transport (NCT) reporter constructs and a subset of endogenous
nuclear proteins to the cytoplasm (42, 54, 55). By contrast,
deletion of RanBP2 in Xenopus oocytes had no significant
effect on protein import (56). Relative to its essential role

in protein and RNA export, RanBP2 likely plays a relatively
minor and species-specific role in facilitating nuclear import of
protein cargoes.

Mice lacking RanBP2 exhibit embryonic lethality and
conditional knockout of RanBP2 in cultured mouse embryonic
fibroblasts resulted in progressive cell death in association with
disrupted NCT. Of note, the presence of the N-terminal domain
of RanBP2, which contains the leucine rich region where ANE
mutations typically occur, is sufficient for viability of these cells
(53). This domain, along with the FG repeats which associate
with NFX1 mRNA shuttling protein, are both critical for efficient
mRNA export (52, 53).

RanBP2 and Regulation of Gene
Expression
In addition to the aforementioned roles in bulk mRNA
transport, RanBP2 may have additional functions in the
regulation of specific subsets of mRNAs. Through its zinc-
finger domain, RanBP2 facilitates translation of mRNAs
containing alternative mRNA nuclear export (ALREX) elements,
including ER proteins, secretory proteins and likely even
mitochondrial proteins (57). Depletion of RanBP2 in U2OS
cells resulted in a dramatic and selective reduction of the
production of secretory proteins (57). This may be of particular
importance in the setting of ANE, since elevated secreted
cytokines may play a central role in disease pathogenesis
(discussed below).

In addition, RanBP2 may indirectly regulate nuclear export
of specific mRNAs. For example, the eukaryotic translation
initiation factor eIF4E promotes export of a subset of mRNAs
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FIGURE 2 | Schematic of RanBP2 protein. RBD, Ran binding domain; ZnF, zinc finger; E3, E3 SUMO ligase domain; Cy, cyclophilin homologous domain.

FIGURE 3 | RanBP2 is a multifunctional protein.

from nucleus to cytoplasm. Overexpression of RanBP2 limits
this export pathway, likely by slowing the release or recycling of
export factors Depletion of RanBP2, on the other hand, results
in increased export of eIF4E target mRNAs (58). RanBP2 also
interacts with argonaute (AGO) proteins and helps target certain
mRNAs, including the proinflammatory cytokine interleukin-6,
for silencing through miRNA induced silencing complex (RISC)
(59). These unique and opposing effects exhibit the importance of
RanBP2 inmaintaining and regulating gene expression profiles at
the mRNA export and translational levels. Moreover, alteration
of export or silencing of specific mRNAs in the setting of
RanBP2 mutations could play a role in the pathogenesis of ANE.
These observations highlight the need to determine whether
disease-causing RanBP2 mutations affect export or translation of
specific mRNAs.

RanBP2 and Mitochondrial Function
In photosensory neurons, haploinsufficiency of RanBP2 resulted
in mislocalization of mitochondrial hexokinase I and a 50–
60% reduction of hexokinase I specifically within the CNS
with corresponding deficits in glucose metabolism and ATP
production (60), suggesting that regulation of glycolysis by
RanBP2 is especially critical for neurons. The kinesin binding
domain of RanBP2 interacts with KIF5B andKIFC and influences
localization and function of mitochondria, thus potentially
further directing cellular metabolism (61). Notably, ANE patients
exhibit evidence of mitochondrial dysfunction such as loss of
coupling of oxidative phosphorylation (27).

Mitochondria play an important role in innate immune
signaling. For example, toll-like receptors, nuclear
oligomerization domain like receptors, and RIG-I like
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helicase receptors rely upon mitochondrial signaling pathways
(62, 63). When activated, the NLRP3 inflammasome uses
the mitochondria as a scaffold where it responds to infection
or cellular damage by regulating proinflammatory cytokine
secretion including IL-1ß and IL-18 (62, 64). Thus, RanBP2
mutations in ANE that affect mitochondrial function may not
only result in alterations in metabolism and energy production
but also immune signaling.

RanBP2 and Immune Activation
Ablation of RanBP2 can lead to marked derangements in innate
immune signaling through mechanisms that are not yet well
defined. Broadly speaking, RanBP2 loss in retinal ganglion
neurons causes activation of microglia (65). From a mechanistic
standpoint, loss of RanBP2 leads to intracellular sequestration
of the matrix metalloproteinase Mmp28 such that Mmp28
is no longer able to suppress production of the chemokine
Ccl6. Ccl6, in turn, acts as a macrophage chemoattractant (66)
and the lack of Mmp28 has been associated with increased
macrophage chemotaxis and chemokine production (67, 68). In
motor neurons, on the other hand, loss of RanBP2 leads to
a posttranscriptional decrease in Mmp28 which is associated
with dampened microglial and macrophage inflammatory
responses (69). Moreover, marked derangements were found
in transcription, translation, and intracellular localization of a
number of molecules involved in the innate immune response,
including Cxcl14, Cxcl12, and Stat-3. In cone photoreceptors,
ablation of RanBP2 resulted in early and marked upregulation
of Mmp11, which can cause damage to the secreting cell itself
in addition to neighboring cells, potentially leading to a feed-
forward process of neuronal injury (70). Overall, the loss of
RanBP2 is associated with derangement of innate immune
mechanisms in a complex and cell type specific fashion that
may, in part, be accounted for by alterations in local matrix
metalloproteinase expression and function.

CYTOKINE STORM, THE BLOOD BRAIN
BARRIER, AND ANE

Dysregulation of cytokine production appears to be a common
feature of ANE. In the setting of infection, the innate immune
system acts as a “first responder,” elaborating an array of
pro-inflammatory mediators including interferons, interleukins,
and chemokines in an effort to clear the pathogen (71, 72).
These immune cascades are, under normal circumstances, tightly
controlled with respect to amplitude and duration due to
feedback mechanisms that fine-tune the response (73, 74).
Unrestrained activation, however, can result in marked systemic
inflammation with deleterious consequences to the host, a
condition termed “cytokine storm.” The finding of elevated
cytokine levels, sometimes markedly so, in ANE has raised the
possibility that cytokine storm may play a central role in disease
pathogenesis (75).

While elevated cytokine levels in the serumhave been reported
in the setting of ANE (76–79), there is less data on CSF cytokine
levels (77, 78, 80). However, it is likely that high serum cytokine

levels would contribute to high CSF cytokine levels in the setting
of breakdown of the blood brain barrier (BBB). Indeed, cytokines
such as TNFalpha and IL-6, which are elevated in ANE, have been
shown to cause breakdown of the BBB both in vitro and in vivo
(81–86). In vitro, administration of IL-6, TNFalpha and IL-1B to
rat cerebral endothelial cells reduced trans-endothelial electrical
resistance by 50%, reflecting perturbations in tight junction
stability. These cytokines cause cerebral endothelial cells to
produce eicosanoids, such as thromboxane A2 and prostaglandin
E2, which interact with thromboxane A2 receptors (83, 87).
This interaction causes vasodilation and increased permeability
of the BBB (88). Notably, the effects of IL-6, TNFalpha, and
IL-1B on permeability could be prevented by a cyclooxygenase
inhibitor, and could be reversed over time (83). TNFalpha is also
known to cause ultrastructural changes to tight junctions (89),
likely enhancing their permeability. A report that gadolinium
enhancement precedes some of the other neuroradiological
manifestations of ANE (90) lends further support to the
hypothesis that a surge of cytokines in the periphery may alter
the BBB and directly contribute to the pathogenesis. Intra-CNS
production of pro-inflammatory cytokines may also occur in
some cases; indeed, in one report levels of IL-6 that were over
100 fold greater in the CNS than serum during the acute phase of
ANE and 8 fold higher during the late phase (77).

Elevated cytokines are a common feature in several other types
of encephalopathy/encephalitis, including influenza associated
encephalitis (IAE). Notably, serum levels of IL-6 were predictive
of influenza associated encephalitis disease severity (91). It is
believed that elevated IL-6 precedes neurological symptoms,
and thus may not necessarily be elevated during or after
encephalopathy. Patients with lowest maximal levels of IL-6
had the best outcomes while patients with IL-6 levels over
15,000 pg/mL did not survive, despite high dose corticosteroid
treatment. Brainstem dysfunction was associated with IL-6
levels 6,000 pg/mL and over, while cases without brainstem
involvement peaked around 150 pg/mL. Thus, it is possible
that IL-6 may play a central role in a range of infection-
associated encephalopathies.

Cytokines are known to affect neuronal function and
high levels of CSF proinflammatory cytokines could directly
contribute to the neurological damage seen in ANE (81, 84).
For example, elevated proinflammatory cytokine levels
can increase excitatory glutamatergic neurotransmission
while simultaneously reducing inhibitory GABAergic
neurotransmission, increasing the risk of excitotoxicity (92).
Interestingly, cytokines such as TNFalpha and IL-6 are also
released after limbic seizures in rats (93), thus potentially fueling
the existing positive feedback loop of cytokine production.
IL-6 is also produced after cellular injury (94), thus potentially
contributing to a deleterious positive feedback loop.

MANAGEMENT

While a number of treatments have been suggested for ANE,
there is limited evidence to support any individual approach.
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Corticosteroids
Given the potential role of proinflammatory cytokines in driving
the disease process, some form of immunomodulatory therapy
such as corticosteroids or intravenous immunoglobulin is often
used. It is possible that the timing of immunomodulatory therapy
may be critical. In seven of twelve patients who received steroid
treatment within 24 h of symptom onset, good outcomes were
noted in comparison to poor outcomes in all five patients without
early steroid intervention (20). Unfortunately, among those with
brainstem lesions, outcomes were poor and no treatment showed
any correlation with outcome. In another case, an 8-year-old
girl with influenza A presented with fever and generalized tonic-
clonic seizures, raising the possibility of impending ANE (32).
Her initial CT and MRIs appeared normal and she was treated
with pulsed methylprednisolone (20 mg/kg/day for 3 days) and
high dose gamma-globulin therapy (1 g/kg/day for 2 days) 4 h
after her seizure. Twelve hours after her seizure, imaging revealed
bilateral thalamic and brainstem lesions consistent with ANE.
Notably, this patient made a full recovery, despite the presence of
brainstem lesions. This case also demonstrates that corticosteroid
therapy before the onset of brainstem lesions might alter the
course of disease progression and improve outcome. Similarly,
in a patient with recurrent ANE1, treatment within 24 h of onset
with 20 mg/kg/day methylprednisolone for 5 days and then
prednisone 2 mg/kg/day for 6 weeks led to greater improvement
with more rapid recovery than in prior episodes in which
immunomodulatory therapy was not given (95).

IL-6 Blockade–Tocilizumab
Since IL-6 appears to be the most widely and highly elevated
cytokine, attempts to control IL-6 levels represent a potentially
rational approach to ANE management and treatment. IL-6
levels correlate with severity of outcome (96), providing further
rationale for targeting IL-6 levels. In one study, patients with
high risk ANE (ANE-SS= 5) with brainstem lesions, but without
RanBP2 mutations were treated with Tocilizumab, a monoclonal
antibody targeting the IL-6 receptor, 18–32 h after the onset
of neurological symptoms. Two patients recovered completely,
and the third only had mild sequelae likely due to profuse
hemorrhage early in the disease course. Furthermore, while
previous studies have linked brainstem lesions with extremely
poor outcomes patients in this study showed remarkable
outcomes with tocilizumab treatment despite the presence of
brainstem lesions. Interestingly, positive outcomes were noted
in the setting of tocilizumab treatment even if initial IL-6 levels
were considered normal; while this may potentially be due to the
variable course of IL-6 levels during ANE, the normal IL-6 levels
call into question the mechanism of potential benefit.

Hypothermia
Hypothermia reduces brain metabolism and cerebral blood
flow, and has anti-inflammatory effects (97, 98). In the setting
of ischemia after experimental stroke, neuroprotection is
achieved in part through reduction of neutrophil infiltration
and microglial activation (98–100), the latter of which may
be particularly relevant in ANE. Furthermore, hypothermia

is able to decrease nuclear translocation of the pro-
inflammatory transcription factor NFkB and reduce levels
of the proinflammatory cytokines most commonly and highly
elevated in ANE, including IL-6 and TNFalpha (101, 102). Several
small studies to date have combined the use of hypothermia
with other anti-inflammatory agents in the management of ANE
(103, 104).

Serine Protease Inhibitors
Serine proteases play a critical role in the inflammatory
response (105) and thus blocking their activity can attenuate
hyperinflammatory responses. Urinary Trypsin Inhibitor, or
Ulinastatin, is a serine protease inhibitor that has been used
in Japan to treat acute sepsis, and disseminated intravascular
coagulation (DIC) (106–108), the latter of which is a feature
commonly seen in ANE patients. In animal models of
sepsis, treatment with serine protease inhibitors (bikulin
and ulinastatin) reduces TNFalpha, IL-6 and a multitude
of other inflammatory mediators (106, 109). Furthermore,
ulinastatin inhibits phosphorylation of p38 MAPK, resulting
in reduced expression of pro-inflammatory genes such as
TNFalpha (110). Other studies show that ulinastatin suppresses
JNK/c-Jun signaling (111). Ulinastatin has also been shown
to improve experimental autoimmune encephalomyelitis by
reducing oligodendrocyte apoptosis and demyelination and by
reducing levels of cytokines such as IL-1B and IL-6 (112).

Ulinastatin has also been evaluated in humans. In patients
with sepsis, ulinastatin has also been shown to reduce serum
levels of TNF-alpha and IL-6 and other pro-inflammatory
mediators while increasing levels of the anti-inflammatory IL-
10 (106, 107, 113). Notably, endogenous protease inhibitors
are usually synthesized in the liver (114), and as previously
mentioned liver dysfunction is also commonly noted in ANE.
Thus, it is plausible that liver dysfunction in ANE reduces the
output of serine protease inhibitors, further exacerbating the
already heightened immune response.

Insights From Related Encephalopathies
Nup214, which like RanBP2 is a nucleoporin localized to the
cytoplasmic filaments of the NPC, is also associated with an
acute or progressive encephalopathy. Two independent groups
have reported a total of three families with homozygous or
compound heterozygous mutation of NUP214. The affected
children have hypotonia, global developmental delay, and
either cerebellar hypoplasia or microcephaly. Patients in two
of the families experienced dramatic developmental regression
following routine viral respiratory infections, characterized
by seizures, hyperkinetic movement disorder, and progressive
volume loss in the cerebral cortex and cerebellum, and
lesions in the thalami. The third family showed an early
onset neurodegenerative phenotype without apparent distinct
episodes of regression or provoking factors. The findings were
accompanied by altered nuclear protein import, RNA export, and
decreased cell survival in patient skin fibroblasts. No effective
therapies are yet known for NUP214-associated encephalopathy
(115, 116).
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As previously described, several other acute encephalopathies
can also affect the deep gray matter of the brain. Mitochondrial
disorders, in particular, share some common clinical features
with ANE and it is possible that the failure of neuronal
energetics seen in these conditions may also contribute to
the pathophysiology ANE. While treatment for mitochondrial
disorders consists mainly of supportive care, there has been
growing interest in specific therapies focused on correcting or
bypassing specific biochemical abnormalities in the setting of
known mutations in mitochondrial proteins (117). In addition,
broad spectrum approaches including supplementation with
agents such as creatine and coenzyme Q have been evaluated,
though have not demonstrated proven benefit (118). Notably,
following a randomized controlled trial and monitoring of data
from a subsequent expanded access program, the antioxidant
idebenone was approved to treat visual dysfunction in the
setting of the mitochondrial disorder Leber’s hereditary optic
neuropathy (119, 120). Whether such approaches will benefit
patients with ANE is unknown.

CONCLUSIONS AND FUTURE
DIRECTIONS

While there is little evidence in ANE for direct viral invasion of
the CNS or overt CNS inflammation, much remains unknown
regarding the pathogenesis of disease. Growing evidence for
systemic derangements in proinflammatory cytokines suggests
a potential role for systemic cytokine storm. Many of the
currently utilized approaches for management of ANE focus
on the hypothesis that dysregulation of systemic cytokines
drives disease, though their utility is yet to be proven.
There is a need for controlled trials of therapeutics, which

is likely to be quite challenging due to the rarity of the

condition. The discovery of RANBP2 mutations in familial
and recurrent ANE provides the opportunity to identify at-
risk cohorts of patients for clinical trials, and may also assist
in the development of relevant disease models to identify
the functions of RanBP2 central to disease pathogenesis.
Given the role of RanBP2 in NCT, dysregulated transport of
cargoes between nucleus and cytoplasm may play an important
role. However, other cellular processes, such as mitochondrial
functioning, may also be directly impacted by RanBP2 and may
be particularly important to elucidate given similarities with
some mitochondrial disorders in which neurologic injury is
triggered by infection. Moreover, given the clinical similarities
between ANE and some metabolic and mitochondrial disorders,
it will be important to investigate whether the function
of RanBP2 is altered in those diseases. Overall, a better
understanding of disease pathogenesis in ANE may allow for
the development of novel, targeted therapeutics that can limit
neurological injury.
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