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Abstract

Metabolic adaptation is linked to the ability of the opportunistic pathogen Candida albicans

to colonize and cause infection in diverse host tissues. One way that C. albicans controls its

metabolism is through the glucose repression pathway, where expression of alternative car-

bon source utilization genes is repressed in the presence of its preferred carbon source, glu-

cose. Here we carry out genetic and gene expression studies that identify transcription

factors Mig1 and Mig2 as mediators of glucose repression in C. albicans. The well-studied

Mig1/2 orthologs ScMig1/2 mediate glucose repression in the yeast Saccharomyces cerevi-

siae; our data argue that C. albicans Mig1/2 function similarly as repressors of alternative

carbon source utilization genes. However, Mig1/2 functions have several distinctive features

in C. albicans. First, Mig1 and Mig2 have more co-equal roles in gene regulation than their

S. cerevisiae orthologs. Second, Mig1 is regulated at the level of protein accumulation,

more akin to ScMig2 than ScMig1. Third, Mig1 and Mig2 are together required for a unique

aspect of C. albicans biology, the expression of several pathogenicity traits. Such Mig1/2-

dependent traits include the abilities to form hyphae and biofilm, tolerance of cell wall inhibi-

tors, and ability to damage macrophage-like cells and human endothelial cells. Finally, Mig1

is required for a puzzling feature of C. albicans biology that is not shared with S. cerevisiae:

the essentiality of the Snf1 protein kinase, a central eukaryotic carbon metabolism regulator.

Our results integrate Mig1 and Mig2 into the C. albicans glucose repression pathway and

illuminate connections among carbon control, pathogenicity, and Snf1 essentiality.

Author summary

All organisms tailor genetic programs to the available nutrients, such as sources of carbon.

Here we define two key regulators of the genetic programs for carbon source utilization in

the fungal pathogen Candida albicans. The two regulators have many shared roles, yet are
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partially specialized to control carbon acquisition and metabolism, respectively. In addi-

tion, the regulators together control traits associated with pathogenicity, an indication

that carbon regulation is integrated into the pathogenicity program. Finally, the regulators

help to explain a long-standing riddle—that the central carbon regulator Snf1 is essential

for C. albicans viability.

Introduction

Carbon metabolism is central to the growth and survival of all organisms. It provides both

energy and biosynthetic building blocks. It is tightly controlled in most organisms to enable

optimal use of diverse carbon sources. The ability to adapt to changing carbon sources is espe-

cially important for commensal and pathogenic microbes because microbial competitors and

host factors can cause dynamic changes in the spectrum of carbon compounds available [1, 2].

Our focus is the fungus Candida albicans. It exists primarily as a commensal resident of the

GI and GU tracts of humans and other warm-blooded animals. However, upon dysbiosis of

the host environment it can cause infections that include oropharyngeal candidiasis, cutaneous

candidiasis, vaginal candidiasis, and systematic or intra-abdominal candidiasis stemming

from colonization of the patient’s own GI tract [2, 3]. The ability of C. albicans to cause infec-

tion of diverse tissues and body sites depends upon its ability to regulate the utilization of

diverse carbon sources [4].

Many of the mechanisms that govern carbon source utilization and regulation have been

studied using the yeast Saccharomyces cerevisiae [5]. The extensive research from this model

organism has been a useful guide for gene function analysis because genetic studies are more

intractable in C. albicans. Additionally, this comparison is interesting because C. albicans is a

human pathogen, so we might expect its regulation of metabolism and carbon source utiliza-

tion to be different than in S. cerevisiae, a pathogen only on rare occasion. In fact, there are

several unique features of C. albicans carbon regulation, such as distinctive transcriptional

activators of glycolysis and alternative carbon source utilization [6, 7], loss of glucose-mediated

catabolite inactivation [8], and loss of glucose-responsive post-translational modifications of

the regulatory kinase, Snf1 [9]. Some differences in metabolic regulation have been directly

linked to virulence [8], a connection that may inform new therapeutic strategies [4].

One form of metabolic regulation is called "glucose repression" or "carbon catabolite repres-

sion" [2, 4]. In the presence of glucose, a preferred carbon source, expression of genes for use

of alternative (i.e., non-glucose) carbon sources is repressed. In S. cerevisiae, a central regulator

of this pathway is the protein kinase ScSnf1, also known as the AMP-activated protein kinase.

ScSnf1 is highly conserved among eukaryotes, and it functions to integrate diverse signals

including metabolic and environmental changes like glucose restriction, oxidative stress, and

alkaline pH [10].

ScSnf1 is activated by the upstream protein kinase ScSak1 (Snf1 Activating Kinase) and two

paralogs, ScElm1 and ScTos1. ScSnf1 is required for expression of glucose-repressed genes

[11], a requirement that is mediated by the transcriptional repressor ScMig1 (Multicopy Inhib-

itor of GAL gene expression). In response to glucose, ScSnf1 is dephosphorylated, resulting in

the activation of ScMig1 which represses expression of ScSnf1-dependent genes [12, 13]. The

paralog ScMig2 functions mainly to augment repression of a subset of the glucose-repressed

genes controlled by ScMig1 [13, 14]. Although the activation of ScMig1 is directly controlled

by ScSnf1, ScMig2 has been shown to function independently of ScSnf1 [13], is transcription-

ally regulated by another pathway [15], and is post-translationally modified by ubiquitination
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in response to carbon source [16]. In contrast, ScMig1 is regulated by carbon-responsive

nuclear-cytoplasmic shuttling [17].

Elements of the Snf1 glucose repression pathway are conserved in C. albicans and in many

other fungi. In C. albicans, Sak1 is required for utilization of alternative carbon sources, cell

wall and membrane stress resistance, and expression of hexose transporter genes and glyoxy-

late cycle and gluconeogenesis genes [9]. Sak1 also influences production of long filamentous

chains of cells called hyphae in a medium-dependent manner. C. albicans Snf1 clearly func-

tions downstream of Sak1: it undergoes Sak1-dependent phosphorylation, and a strain that

expresses a nonphosphorylatable Snf1-T208A mutant protein is unable to grow on alternative

carbon sources [9]. Among downstream components, C. albicans, Mig1 is functionally con-

served with ScMig1 as a repressor of several carbon utilization genes [18–20]. However, a

mig1Δ/Δmutation does not affect expression of most glucose-repressed genes [20]. Therefore,

additional mediators of glucose repression in C. albicans have yet to be established.

One surprising feature of Snf1 function in C. albicans is that Snf1 is required for viability,

unlike the situation in S. cerevisiae [9, 21–24]. Homozygous snf1 null mutations have not

been recovered through transformation or selection for mitotic recombinants [21, 22], meth-

ods that readily yield homozygous mutations in nonessential genes. SNF1 essentiality has been

most clearly established with a strain homozygous for a fusion of SNF1 to a conditional pro-

moter; the strain is able to grow only when the promoter is active [24]. Viable snf1mutations

with altered function or expression [24–26] have permitted some phenotypic analysis, but it

remains unclear whether the essential role of Snf1 depends upon its activity in the glucose

repression pathway, or whether Snf1 has a novel second role that is essential [21].

Here we investigate the circuitry that drives the transcriptional response of C. albicans to

glucose and the non-fermentable carbon source glycerol. Our findings reveal that Mig1 func-

tions together with its paralog Mig2 to mediate glucose repression. Mig1 and Mig2 have both

selective and shared functions in this glucose repression response. Each repressor also governs

aspects of the snf1Δ/Δ and sak1Δ/Δmutant phenotypes, thus tying them to the Snf1 pathway.

Finally, our results argue that SNF1 is essential because of exuberant repression by Mig1, thus

connecting Snf1 essentiality to its role in the glucose repression pathway.

Results

Carbon control of gene expression

To investigate C. albicans gene expression response to carbon, we compared cells growing on

the non-fermentable carbon source glycerol to those growing on glucose. RNA-sequencing

(RNA-seq) was performed on wild-type C. albicans in YPG (Yeast Peptone Glycerol) and YPD

(Yeast Peptone Dextrose) media grown to log phase at 37˚C. A total of 489 genes were signifi-

cantly altered (>2-fold change in RNA levels and p<0.05) in YPG compared to YPD (S1

Table). Among those, 375 genes (77%) were up-regulated in YPG. These genes were enriched

for processes that include organic acid catabolism, fatty acid catabolism, and hexose transport

(ex. CTN1, ICL1,MLS1, FOX2,HGT1, GAL1; see S2 Table). The remaining 114 genes were

down-regulated in YPG. These genes were enriched for processes that include carbohydrate

metabolism and glycolysis (ex. ENO1, GPM1, CDC19, TDH3, PFK1, PFK2,HXK2; see S2

Table). Overall, the gene expression differences aligned well with known or expected features

of cell metabolism.

We compared the differentially expressed genes in our YPG vs. YPD dataset to published

gene expression datasets (Fig 1A and S3 Table). We focused on datasets in which both up- and

down-regulated genes overlap with our dataset significantly (p<1E-07; Fisher’s Exact Test).

We observed significant similarity to datasets intended to probe glucose repression, including
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growth in YEP lactate vs YEP lactate + glucose (0.01, 0.1, or 1%), incubation in YNB medium

lacking a carbon source or lacking a carbon source and nitrogen, and growth in YEP maltose vs

YEP glucose [20, 27]. There was also significant similarity to C. albicans gene expression changes

upon co-culture with macrophages [28], in keeping with current understanding that C. albicans
adapts to alternative carbon sources in the macrophage phagosome [27, 28]. Some matching

datasets were unexpected; for example, we detected significant similarity to cells in M199 pH 4

vs. YPD, and in M199 pH 8 vs. YPD [29]. The similarity in gene expression changes may reflect

the difference in glucose concentration between M199 (0.1%) and YPD (2%). The greatest simi-

larity detected was to an RNA-Seq comparison of biofilm cells vs. yeast cells [30], with 260 com-

mon up-regulated genes and 38 common down-regulated genes. The growth conditions for the

biofilm study were Spider medium (for biofilm cells), with the carbon source mannitol, and SD

+uridine (for yeast cells), with the carbon source glucose. Therefore, it is reasonable that glu-

cose-repressed genes were expressed at higher levels in the biofilm cells than the yeast cells. (The

mig1Δ/Δmig2Δ/Δ double mutant vs. wild type comparison, shown in the figure, is discussed

below). Similarities were driven by expression of a core set of 116 genes (S1 Fig; S1G Table).

These dataset comparisons underscore the correlations between our results and glucose repres-

sion responses that have been measured previously through a variety of approaches.

Functions of transcription factors Mig1 and Mig2 in gene expression

To define the determinants of C. albicans glucose-repressed gene expression, we investigated

the transcription factors Mig1 and Mig2. Both Mig1 and Mig2 have homology to the S.

Fig 1. Gene expression dataset comparisons. Comparisons were performed using our genome-wide profiling data of wild-type C. albicans
grown in YPG media compared to wild-type grown in YPD media A. Fisher’s Exact Test depicting gene expression datasets most closely

related to YPG gene expression. FET was used as previously described [31]. Up- or down-regulated genes with a 2-fold expression change

cut-off were matched from 91 published expression datasets (S3 Table). B. Heatmap depicting gene expression of 10 metabolic genes chosen

for comparison of glucose-repressed genes. Color scale corresponds to log2 fold change limits of 3.3 up (red) and 3.3 down (blue). Full gene

expression datasets are available in S1 Table.

https://doi.org/10.1371/journal.pgen.1008582.g001
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cerevisiae repressors ScMig1, ScMig2, and ScMig3 (S2 Fig), particularly in the DNA binding

domain. Gene expression profiling has shown that Mig1 represses some carbon utilization

genes in C. albicans [19, 20]. A recent study has implicated Mig2 in control of C. albicans cell

size [32], but Mig2 function has otherwise been examined only in mutant screens.

To investigate the functions of Mig1 and Mig2, we createdmig1Δ/Δ,mig2Δ/Δ, andmig1Δ/Δ
mig2Δ/Δ double mutant strains using a transient CRISPR-Cas9 system [33]. These strains were

then complemented using the CIP10 vector [34] to introduce one copy of a wild-type allele of

MIG1 orMIG2 at the RPS1 locus. For some experiments, we used a reconstituted strain in

which amig1Δ allele was replaced with a wild-typeMIG1 allele at the native locus [35] because

the CIP10-MIG1 plasmid yielded incomplete complementation (S4 Table). Substantial reversal

of the mutant phenotypes in the complemented and reconstituted strains was verified through

expression analysis for 28 genes (S4 Table).

To begin to define Mig1 and Mig2 functions, the wild-type, mig1Δ/Δ,mig2Δ/Δ, and

mig1Δ/Δmig2Δ/Δ double mutant strains were profiled using RNA-Seq in YPD medium.

Additionally, themig1Δ/Δmig2Δ/Δ double mutant strain was profiled in YPG medium to

compare its gene expression levels to the wild-type strain during growth using a non-fer-

mentable carbon source. We found 488 genes that were significantly up-regulated (p<0.05

and >2-fold change in RNA levels) in themig1Δ/Δmig2Δ/Δ double mutant compared to

wild-type during growth in YPD, while only 144 genes were significantly down-regulated

(Fig 2A, S1 Table). These profiling data suggest that Mig1 and Mig2 function mainly as

transcriptional repressors.

To estimate direct regulatory interactions, we searched for the Mig1 binding motif

SYGGRG [18] in the putative promoter regions of Mig1/2 target genes using PathoYeastract

[36]. One or more Mig1 binding motifs were present in 86.4%, 93.6%, and 88.5% of genes

that were up-regulated inmig1Δ/Δ,mig2Δ/Δ, and mig1Δ/Δmig2Δ/Δ strains, respectively

(Fig 2B). The overrepresentation of Mig1 binding motifs in the promoters of up-regulated

genes in all three deletion mutants was statistically significant (p<0.05) compared to pro-

moters from all genes in the genome. Mig1 binding motifs were not enriched in the genes

that were down-regulated in the mutant strains (Fig 2B), so these genes may respond indi-

rectly tomigmutations. These results support the argument that Mig1 and Mig2 function

as transcriptional repressors.

Shared and selective targets of Mig1 and Mig2

The bulk of target genes are shared by both Mig1 and Mig2, but some target genes respond

mainly to Mig1 or Mig2 (Fig 2A). These relationships are evident from both up- and

down-regulated genes (Fig 2A). Because up-regulated genes are likely direct targets of the

repressors, and because they have the most coherent functions, we focus on those genes

below.

There were 67 genes that were significantly up-regulated in both themig1Δ/Δ andmig1Δ/Δ
mig2Δ/Δmutant strains, but not in themig2Δ/Δmutant strain. We call these genes Mig1-selec-

tive targets. GO terms for this set of genes were enriched for transmembrane transporters of

hexoses, with localization to the plasma membrane (S2 Table). Prominent among Mig1-selec-

tive targets were members of theHGT (high-affinity glucose transporters) family. The 20HGT
genes [37] encode transmembrane carbon transporters and at least one glucose sensor, Hgt4

[38]. Expression of these transporters is responsive to both the amount and type of carbon

source available to the cells [37, 39]. Mig1 functions as the main repressor for sixHGT genes

and two predicted sugar transportersHXT5 andMAL31 in YPD (Fig 2C). This result is consis-

tent with a previous RT-PCR experiment showing that Mig1 but not Mig2 repressesHGT1,
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HGT2, andHGT12 [39]. These results indicate that Mig1, and not Mig2, is the major repressor

of 67 Mig1-selective target genes in glucose medium.

There were 115 genes that were significantly up-regulated in both themig2Δ/Δ andmig1Δ/
Δmig2Δ/Δmutant strains, but not in themig1Δ/Δmutant strain. We call these genes Mig2-se-

lective targets. GO term enrichment includes fatty acid catabolic processes and lipid catabolic

processes (S2 Table). Mig2-selective genes include the glyoxylate cycle genes ICL1 andMLS1
[40]; the β-oxidation genes FOX2, POT1-2, and POT1; and the genes DCI1 and ECI1, which

are predicted to encode enzymes involved in the β-oxidation of fatty acids (Fig 2C). We infer

that Mig2, and not Mig1, is the major repressor of 115 Mig2-selective target genes in glucose

medium. While Mig1 and Mig2 each repress genes involved in carbon utilization, there are

functional distinctions among the Mig1- and Mig2-selective target genes.

The majority of the genes that are up-regulated in themig1Δ/Δmig2Δ/Δ double mutant are

not up-regulated in either single mutant (258 genes; Fig 2A) indicating that Mig1 and Mig2

functions largely overlap. This profile is expected for genes where either Mig1 or Mig2 is suffi-

cient for repression, and we refer to them as Mig1/2-shared genes. This gene set was enriched

for metabolic genes with GO terms such as oxidation-reduction, transmembrane transport

and lipid catabolic processes. Many of these genes encode enzymes associated with the peroxi-

some, similar to the Mig2-selective genes. For example, the peroxisome-related genes PEX1,

PEX2, PEX4, PEX6, and PEX12 were repressed only by Mig2, but PEX3, PEX5, PEX8, PEX11,

PEX13, PEX14, and PEX19 were repressed by either Mig1 or Mig2 (S1 Table). In addition, we

Fig 2. Mig1/2 regulatory effects. A. Venn diagram of genes regulated by Mig1, Mig2, or Mig1 and Mig2. Genes included in the diagram were

significantly up- or down-regulated (p<0.05) by at least 2-fold compared to the wild-type strain (CW542) in YPD medium. B. Enrichment of

SYGGRG motif in Mig1/2 target gene promoters. Promoter sequence was defined as 1,000 basepairs upstream of the open reading frame of up-

or down-regulated genes. C. Fold change expression of chosen Mig1 and Mig2 selective genes compared to the wild-type strain analyzed by

RNA-Seq and compared between datasets. Mig1 selective genes were significantly up-regulated in the mig1Δ/Δ and mig1Δ/Δmig2Δ/Δ, but not

the mig2Δ/Δ strain profiles. Mig2 selective genes were significantly up-regulated in the mig2Δ/Δ and mig1Δ/Δmig2Δ/Δ, but not the mig1Δ/Δ
strain profiles.

https://doi.org/10.1371/journal.pgen.1008582.g002
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noticed that many Mig1- and Mig2-selective genes were derepressed further in themig1Δ/Δ
mig2Δ/Δ double mutant than in either single mutant. We infer for these genes that Mig1 or

Mig2 is the major repressor, but that the other Mig1/2 protein can repress weakly in the

absence of the first. Therefore, while Mig1 and Mig2 each have some specific target genes, for

the most part they have redundant roles in gene regulation.

The relationship between Mig1/2-regulated genes and glucose-repressed genes can be seen

in two dataset comparisons. The first comparison is our assessment of gene expression profile

similarity (Fig1A and S3 Table). The differentially regulated gene set from our YPG vs. YPD

samples showed greatest similarity to the differentially regulated gene set from our YPD-

grownmig1Δ/Δmig2Δ/Δ double mutant vs. wild type samples. Thus there is a strong correla-

tion between genes repressed by Mig1 or Mig2 and those repressed by glucose. Second, we

compared the gene expression levels of YPD- and YPG-grown wild-type andmig1Δ/Δmig2Δ/
Δ double mutant strains. We expected that, if Mig1 and Mig2 function primarily to exert glu-

cose repression, then under derepressing conditions (YPG medium) the double mutation

should have greatly diminished gene expression impact (Fig 1B). Indeed, for many genes, this

prediction is fulfilled. Genes that are repressed over 8-fold by glucose in a wild-type strain

(such as ICL1, FOX2, TRY4, and JEN2) are repressed less than 2-fold by glucose in themig1Δ/
Δmig2Δ/Δ double mutant. These analyses support the conclusion that Mig1 and Mig2 are

major mediators of glucose repression.

Though Mig1 and Mig2 repression activities are modulated by carbon source, our RNA-Seq

profile data showed thatMIG1 andMIG2 RNA levels are not (S1 Table). These results are con-

sistent with prior studies of C. albicans MIG1 [41] and distinct from the situation in S. cerevi-
siae, where carbon source affects ScMIG1 and ScMIG2 transcript levels [13, 15] as well as post-

translational control [17, 42]. To determine whether Mig1 or Mig2 may be post-transcription-

ally regulated, we constructed strains with HA epitope-tagged alleles. Mig1-HA was detectable

on Western bots (see below); Mig2-HA was not. We examined Mig1-HA protein levels in cells

grown in YPD, YPG, and Spider medium, which has the non-repressing carbon source manni-

tol. Mig1-HA protein levels were higher in YPD than in YPG or Spider medium, compared to

a tubulin control (Fig 3A). In addition, Mig1-HA in Spider medium was detected in two

Fig 3. Regulation of Mig1 protein accumulation in response to carbon source. A. Western blotting was performed on cells grown in triplicate

expressing HA-tagged Mig1 or the untagged wild-type strain (CW542) grown in YPD as a control. Soluble protein was extracted from strain

KL1026 grown in YPD, YPG, Spider medium, and Spider medium with 2% glucose added 10 minutes before harvesting the cells. B.

Densitometric analysis of Mig1 protein was performed using FIJI. Total HA-tagged signal was compared to total tubulin signal for loading

control (Dunnett test ��, p<0.01).

https://doi.org/10.1371/journal.pgen.1008582.g003
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electrophoretic forms (Fig 3A). Mig1-HA levels were significantly different between YPD and

YPG or Spider medium (Fig 3A and 3B and S3 Fig). In contrast,MIG1 RNA levels were not

significantly different between YPD and YPG or Spider medium (S1 and S5 Tables). To deter-

mine whether protein levels were responsive to glucose, we added 2% glucose to cells grown in

Spider medium 10 minutes before harvesting. This addition of glucose resulted in a rapid

increase in Mig1 protein levels (Fig 3A and 3B). All together, these results show that Mig1 pro-

tein levels are responsive to carbon source, whileMIG1 RNA levels are not. Regulation of

Mig1 at the level of protein accumulation is more similar to regulation of ScMig2 than ScMig1

[17, 42].

Impact of Mig1 and Mig2 on sak1Δ/Δ mutant growth

Sak1 is the main protein kinase that phosphorylates and activates Snf1 in C. albicans [9].

Because a sak1Δ/Δ is viable, we could use growth assays to test the hypothesis that Mig1 and

Mig2 function downstream of Sak1 to control carbon physiology. To test this prediction, we

examined sak1Δ/Δmig1Δ/Δ, sak1Δ/Δmig2Δ/Δ, and sak1Δ/Δmig1Δ/Δmig2Δ/Δmutant strains,

as well as control wild-type and sak1Δ/Δ strains. In agreement with prior studies [9], the

sak1Δ/Δmutant grew poorly on YPG and Spider media (Fig 4). The sak1Δ/Δmig1Δ/Δ strain

grew just as poorly as the sak1Δ/Δmutant on these media, whereas the sak1Δ/Δmig2Δ/Δ strain

had improved growth on both media (Fig 4 and S4 Fig). The sak1Δ/Δmig1Δ/Δmig2Δ/Δ strain

had further improved growth on both media. Reconstitution of a SAK1 allele verified that the

sak1Δ/Δmutation was the cause of observed mutant growth defects (Fig 4). These growth tests

Fig 4. Impact of MIG1/2 mutations on growth of sak1 or snf1 mutant and validated strains. Tenfold serial dilutions of strains KL988(sak1Δ/
Δ), KL951(sak1Δ/Δmig1Δ/Δ), KL960(sak1Δ/Δmig2Δ/Δ), KL955(sak1Δ/Δmig1Δ/Δmig2Δ/Δ), KL992(sak1Δ/Δ +SAK1), KL972(sak1Δ/Δmig1Δ/
Δ +SAK1), KL990(sak1Δ/Δmig2Δ/Δ +SAK1), KL974(sak1Δ/Δmig1Δ/Δmig2Δ/Δ +SAK1), and KL953 (snf1Δ/Δmig1Δ/Δ), KL957(snf1Δ/Δ
mig1Δ/Δmig2Δ/Δ), KL970 (snf1Δ/Δmig1Δ/Δ +SNF1), and KL976(snf1Δ/Δmig1Δ/Δmig2Δ/Δ +SNF1) were spotted on YPD (glucose), YPG

(glycerol), Spider media (mannitol) and Spider media with 2% glucose replacing mannitol. Growth was visualized after 48 h of incubation at

37˚C.

https://doi.org/10.1371/journal.pgen.1008582.g004
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support the hypothesis that Mig1 and Mig2 act downstream of Sak1 to govern carbon

physiology.

Impact of Mig1 and Mig2 on snf1Δ/Δ mutant viability

SNF1 is essential in C. albicans [9, 21–23], a possible consequence of essential genes that are

targets of the glucose repression pathway or, alternatively, a glucose repression-independent

role for Snf1 that is essential [21]. In S. cerevisiae, one major function of ScSnf1 is to phosphor-

ylate and inactivate ScMig1 [42, 43]. Therefore, we hypothesized that a C. albicans snf1Δ/Δ
mutant may be inviable due to the inability to inactivate Mig1 or Mig2, leading to excessive

repression of Mig1 or Mig2 target genes. Thus Snf1 essentiality would be tied to its function

in the glucose repression pathway.

This hypothesis predicts that a snf1Δ/Δmutant may be viable in amig1Δ/Δ,mig2Δ/Δ, or

mig1Δ/Δmig2Δ/Δmutant strain background. To test this hypothesis, we used the transient

CRISPR approach to generate heterozygous and, potentially, homozygous snf1Δmutants in

eachmigmutant strain. We recovered heterozygous snf1Δ/SNF1 transformants in all three

strains. In addition, we recovered homozygous snf1Δ/Δ transformants in both themig1Δ/Δ
andmig1Δ/Δmig2Δ/Δ strains, though not in themig2Δ/Δ strain. These observations support

the hypothesis that a snf1Δ/Δmutant is inviable due to repression of key target genes by Mig1.

Growth properties of representative snf1Δ/Δ derivatives ofmig1Δ/Δ andmig1Δ/Δmig2Δ/Δ
strains suggested that loss of Mig1 does not bypass the need for Snf1 entirely. For example,

snf1Δ/Δmig1Δ/Δ colonies exhibited hyperfilamentation and yellow coloration, whereas snf1Δ/
Δmig1Δ/Δmig2Δ/Δ colonies did not (S5 Fig). In addition, the snf1Δ/Δmig1Δ/Δ strain dis-

played minimal growth on YPG or Spider media, whereas the snf1Δ/Δmig1Δ/Δmig2Δ/Δ
strain displayed substantial growth on both (Fig 4). Poor Spider medium growth of the snf1Δ/
Δmig1Δ/Δ strain was relieved when glucose replaced mannitol as carbon source (Fig 4), so the

Spider medium growth defect represents a carbon utilization defect. These observations sup-

port the hypothesis that Mig1 is the major repressor of genes that are required for snf1Δ/Δ via-

bility, and that Mig2 contributes to repression of genes that enable more flexible snf1Δ/Δ
carbon physiology. Our findings indicate that Snf1 is essential because of its function in the

glucose repression pathway.

Relationships among Mig1, Mig2, Sak1, and Snf1 in expression of glucose-

repressed genes

To investigate how the phenotypic relationships among these regulators relate at the transcrip-

tional level, we used 28 representative probes for Nanostring analysis from different metabolic

pathways (i.e., glycolysis, gluconeogenesis, glyoxylate cycle, fatty-acid catabolism) and selected

Mig1/2 target genes from our genome-wide analysis. RNA levels were assayed in a panel of sin-

gle- and multi-gene mutants. SAK1 or SNF1 reconstituted strains served as controls for sak1Δ/
Δ and snf1Δ/Δmutants, and representedmig1Δ/Δ,mig2Δ/Δ, andmig1Δ/Δmig2Δ/Δmutant

strains. RNA was isolated from cells grown in YPG medium, a condition in which we expected

loss of Sak1 or Snf1 to cause reduced RNA levels from glucose-repressed genes.

We observed that 17 metabolic genes were significantly down-regulated (>2-fold and

p<0.05, compared to wild type) in the sak1Δ/Δmutant (Fig 5 and S6 Table). Of those 17

genes, only three genes (GAL10, JEN2, and PCK1) were significantly down-regulated in the

sak1Δ/Δmig1Δ/Δmutant, and six genes (GAL10, JEN2, PCK1,HGT1,HGT2 andMAL31)

were significantly down-regulated in the sak1Δ/Δmig2Δ/Δmutant (Fig 5 and S6 Table). In the

sak1Δ/Δmig1Δ/Δmig2Δ/Δ triple mutant strain, only GAL10 was significantly down-regulated.

All other genes showed increased expression compared to the sak1Δ/Δmutant, reaching levels
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as high or higher than in the wild-type strain (Fig 5 and S6 Table). Therefore, themig1Δ and

mig2Δmutations showed synergistic effects, reflected in the sak1Δ/Δmig1Δ/Δmig2Δ/Δ strain,

just as they had in their effects on glucose-repressed genes in an otherwise wild-type back-

ground (Fig 2A). The fact that the reconstituted sak1Δ/Δmig1Δ/Δmig2Δ/Δ +SAK1 strain and

the triple mutant sak1Δ/Δmig1Δ/Δmig2Δ/Δ strain had nearly identical gene expression pro-

files (Fig 5) indicates that, for this panel of genes, Mig1 and Mig2 are responsible for almost all

gene expression impact attributable to loss of Sak1. These results support the conclusion that

Fig 5. Epistasis analysis among mutations in MIG1, MIG2, SAK1, and SNF1. Heatmap of log2-fold changes in gene

expression of selected carbon metabolism genes analyzed using Nanostring. RNA was extracted from strains CW542

(wild type), KL988(sak1Δ/Δ), KL951(sak1Δ/Δmig1Δ/Δ), KL960(sak1Δ/Δmig2Δ/Δ), KL955(sak1Δ/Δmig1Δ/Δmig2Δ/
Δ), KL992(sak1Δ/Δ +SAK1), KL972(sak1Δ/Δmig1Δ/Δ +SAK1), KL990(sak1Δ/Δmig2Δ/Δ +SAK1), KL974(sak1Δ/Δ
mig1Δ/Δmig2Δ/Δ +SAK1), and KL953 (snf1Δ/Δmig1Δ/Δ), KL957(snf1Δ/Δmig1Δ/Δmig2Δ/Δ), KL970 (snf1Δ/Δmig1Δ/
Δ +SNF1), and KL976(snf1Δ/Δmig1Δ/Δmig2Δ/Δ +SNF1) grown in triplicate in YPG medium at 37˚C. Fold change

values were calculated by dividing expression of each gene to the wild type. The sak1Δ/Δmutant strain analysis is

duplicated for ease of comparison to the snf1Δ/Δmutant strains because a snf1Δ/Δmutant strain is not viable.

https://doi.org/10.1371/journal.pgen.1008582.g005
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Mig1 and Mig2 mediate repression of Sak1 target genes. The synergistic effects ofmig1Δ and

mig2Δmutations support the conclusion that Mig1 and Mig2 have partially overlapping roles

in mediating repression.

The gene expression profile of a snf1Δ/Δmutant cannot be assayed, so we used the sak1Δ/Δ
strain for comparison to our snf1Δ/Δ strain panel (Fig 5 and S6 Table). Few differences were

seen between the sak1Δ/Δ and snf1Δ/Δmig1Δ/Δ strains except for the glucose transporter

genesHGT1 andHGT2. Inviability of snf1Δ/Δmig2Δ/Δ strain prevented its analysis. The

reconstituted snf1Δ/Δmig1Δ/Δmig2Δ/Δ +SNF1 strain and the snf1Δ/Δmig1Δ/Δmig2Δ/Δ triple

mutant strain had nearly identical gene expression profiles (Fig 5 and S6 Table). This observa-

tion supports the conclusion that Mig1 and Mig2 are responsible for almost all gene expression

impact attributable to loss of Snf1. These results indicate that Mig1 and Mig2 both mediate

repression of Snf1 target genes.

Mig1 and Mig2 promote tolerance of cell wall inhibitors

Carbon source influences C. albicans stress resistance and cell wall composition [44, 45], so it

seemed possible Mig1 and Mig2 may be required for tolerance of cell wall inhibitors. We tested

this idea with growth assays (Fig 6A and 6B) in the presence of the cell wall inhibitor caspofun-

gin. Themig1Δ/Δmutant showed mild caspofungin hypersensitivity, as detected with a quanti-

tative assay (Fig 6B). Themig2Δ/Δ strain was not caspofungin hypersensitive. Themig1Δ/Δ

Fig 6. Growth of Mig1/2 mutant and complemented strains during cell wall stress. A. Plate dilution sensitivity assay. Tenfold serial dilutions

of the indicated strains were spotted on YPD and YPD with 100 ng/mL Caspofungin, 100 ng/mL Caspofungin and 1 M Sorbitol, 20 μM

Calcofluor White, and 100 μg/mL Fluconazole. Growth was visualized after 48 hours of incubation at 37˚C. B. Quantitative caspofungin

sensitivity assay in 96 well plates. Cells were incubated in liquid YPD media at 37˚C containing 2-fold dilutions of Caspofungin. Absorbance was

read at 600nm after 48 hours of incubation. Data was averaged from three biological replicates of duplicate measurements and normalized to

cell growth without antifungal.

https://doi.org/10.1371/journal.pgen.1008582.g006

Functions of C. albicans Mig1 and Mig2

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008582 January 21, 2020 11 / 25

https://doi.org/10.1371/journal.pgen.1008582.g006
https://doi.org/10.1371/journal.pgen.1008582


mig2Δ/Δ double mutant showed strong caspofungin hypersensitivity. Its hypersensitivity was

partially relieved by complementation with one copy ofMIG2, and essentially reversed by

complementation with one copy ofMIG1 (Fig 6B). The double mutant was hypersensitive to

another cell wall perturbing agent, calcofluor white, and its caspofungin hypersensitivity was

relieved by the osmotic stabilizer sorbitol (Fig 6A). Themig1Δ/Δmig2Δ/Δ double mutant was

not hypersensitive to the ergosterol synthesis inhibitor fluconazole (Fig 6A). These results

support the idea Mig1 and Mig2 are required for cell wall integrity or biogenesis, probably

through impact on carbon physiology, rather than general stress tolerance.

Mig1 and Mig2 promote filamentation and biofilm formation

Carbon source also affects one of the most prominent C. albicans virulence traits, the ability

to form hyphae [46]. Therefore, we tested the mutant strains for defects in hyphal formation.

Under our conditions, themig1Δ/Δmutant showed a modest but statistically significant

decrease in hyphal length compared to wild type while themig2Δ/Δmutant showed no hyphal

defect (Fig 7C). Themig1Δ/Δmig2Δ/Δ double mutant had a pronounced defect in hyphal

Fig 7. Mig1/2 promote filamentation, biofilm formation, and affect host cell interactions in vitro. A. Biofilms were grown for 24 h on

silicone squares in RPMI media at 37˚C. Fixed biofilms were stained with Concanavalin A Alexa Fluor 594. Representative side-view projections

were processed and pseudocolored using ImageJ. Scale bar corresponds to depth of the wild-type B. Biofilms were measured using confocal

microscopy. Values shown are triplicate measurements from three biological replicates. ����, p<0.0001. C. Indicated strains were grown for 4 h

in RPMI at 37˚C. Fixed cells were imaged using DIC microscopy and a 20x objective. Hyphal lengths were measured from yeast cell to hyphal

tip from>80 cells from 10 fields of view. ����, p<0.0001 D. J774.1 macrophage cytotoxicity was measured by lactate dehydrogenase release

(LDH) after 5 h of coincubation with C. albicans strains as indicated. Percentage of LDH release was calculated relative to max release wells

containing lysis solution. Values shown are mean with SD from duplicate measurements of three biological replicates. ����, p<0.0001. E.

Human endothelial cell damage was assessed by 51Cr release following coincubation with C. albicans cells for 3 h. Percentage of Chromium

release was calculated by comparison to release from wild-type (release–spontaneous/total incorporation–spontaneous)��, p<0.01.

https://doi.org/10.1371/journal.pgen.1008582.g007
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length compared to the wild type (Fig 7C). This defect was not reversed after integration of

MIG1 at the RPS1 locus (strain labeledmig1Δ/Δmig2Δ/Δ + pMIG1), though it was reversed by

integration of one copy of theMIG1 at the native locus (strain labeledmig1Δ/Δmig2Δ/Δ
+MIG1). The requirement for native locus integration may reflect regulatory sequences that

were absent from the plasmid used to integrate at RPS1. Hyphal formation is required to form

stable multicellular biofilm communities [47], and the double mutant showed a significant

reduction in biofilm depth compared to the wild-type and single mutant strains (Fig 7A and

7B). These results indicate that Mig1 and Mig2 are required for normal hyphal morphogenesis

and biofilm production.

Mig1 and Mig2 affect host cell interaction in vitro
Metabolic plasticity is required for C. albicans to escape from macrophages in vitro. Follow-

ing phagocytosis, C. albicans up-regulates alternative carbon utilization gene expression [27,

48] and undergoes a yeast-to-hyphal transition that disrupts the membrane and triggers

macrophage cell death [49]. Because themig1Δ/Δmig2Δ/Δ mutant up-regulates alternative

carbon utilization gene expression, it seemed possible that the mutant would have increased

capacity to damage macrophages. On the other hand, because themig1Δ/Δmig2Δ/Δmutant

has a defect in hyphal formation, it seemed possible that it would have diminished capacity

to damage macrophages. To determine which of these phenotypes may have overriding

impact, we tested the interaction ofmigmutants with J774.1 murine macrophages. Lactate

dehydrogenase release was used as a readout for macrophage cell damage after incubation

with wild-type, mig1Δ/Δ,mig2Δ/Δ,mig1Δ/Δmig2Δ/Δ, and the relevant complemented

strains. The double mutant strain showed significantly decreased cell damage capacity

compared to the wild-type or single mutant strains (Fig 7D). Thus, despite a head start that

themig1Δ/Δmig2Δ/Δ mutant strain may have in utilizing alternative carbon sources, other

aspects of its phenotype—potentially the hyphal defect—cause decreased macrophage

pathogenesis.

We also assayed host cell interaction through the ability of the mutant strains to cause

endothelial cell damage [50], using primary human umbilical vein endothelial cells. The

double mutant strain showed a significant defect in cell damage compared to the wild-type

and single mutant strains (Fig 7E). These results confirm that Mig1 and Mig2 are redundant

for major biological functions and indicate that Mig1 and Mig2 are required for pathogenic-

ity-associated phenotypes.

Discussion

Carbon metabolism and its regulation are central to the pathogenic capability of C. albicans.
Carbon metabolic genes undergo dynamic expression changes in numerous colonization and

infection models, and defects in carbon metabolism or its regulation disrupt the ability to colo-

nize the GI tract, duel with macrophages and other host cells, and infect host tissues [2, 4].

Here we have extended our understanding of one major carbon regulatory pathway, the Snf1

pathway. We have identified transcription factors Mig1 and Mig2 as mediators of glucose

repression in C. albicans and defined their functional activities and connections to upstream

regulators Snf1 and Sak1. The Mig1/2 orthologs ScMig1/2 mediate glucose repression in S. cer-
evisiae, so in a broad context their functions are conserved in C. albicans. However, our studies

reveal several distinctive features of Mig1/2 in C. albicans. First, Mig1 and Mig2 have relatively

equivalent roles in gene regulation, whereas ScMig1 is the major mediator of glucose repres-

sion in S. cerevisiae. In addition, Mig1 is regulated at the level of protein accumulation, a differ-

ence from the regulation of ScMig1. A third unique feature is that Mig1 and Mig2 are together
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required for several traits associated with pathogenicity, including formation of hyphae and

biofilm, cell wall inhibitor tolerance, and damage of mammalian host cells. Lastly, Mig1 is

required for the essentiality of the Snf1 protein kinase in C. albicans. Snf1 is not essential in S.

cerevisiae, and the riddle of Snf1 essentiality has not been addressed to our knowledge in a

model system. Below we discuss the functions of Mig1 and Mig2 and their roles in C. albicans
biology.

Mig1 and Mig2 function

Our results indicate that Mig1 and Mig2 largely overlap in function as repressors of glucose-

repressed genes, yet each has some selective bias in target genes (summarized in Fig 8). We

defined selective targets based on their significant up-regulation in one single mutant and not

the other. Mig1-selective targets include carbon transporters; Mig2-selective targets include β-

oxidation genes. This outcome was unexpected from work in S. cerevisiae; ScMig2 does not

regulate specific glucose-repressed genes without ScMig1 [14]. In fact, we observed that Mig2

had more selective target genes than Mig1 (115 vs 67; Fig 2A). However, most selective target

genes have further increased RNA levels in themig1Δ/Δmig2Δ/Δ double mutant compared to

themig1Δ/Δ ormig2Δ/Δ single mutants (Fig 2C). Therefore, Mig1 and Mig2 both contribute

to repression of most selective target genes.

The majority of genes that are up-regulated in amig1Δ/Δmig2Δ/Δ double mutant strain

show little expression change in either amig1Δ/Δ ormig2Δ/Δ single mutant strain. These

258 genes (Fig 2A) represent targets that can be fully repressed by either Mig1 or Mig2. The

large number of such genes argues that Mig1 and Mig2 most often function

interchangeably.

We note that 228 genes are significantly up-regulated in amig1Δ/Δmig2Δ/Δ double mutant

vs wild type in glucose but not in the wild type grown in glycerol vs glucose. This gene class

might be taken to indicate that Mig1 and Mig2 have functions beyond a role in glucose repres-

sion. The 228 genes are enriched for functions in oxidation-reduction and peroxisome biogen-

esis. In yeast, peroxisomes function as sites for hydrogen peroxide reduction and fatty acid

metabolism [51] and the abundance of these specialized organelles increases in response to

non-glucose media such as oleic acid [52]. Therefore, some of the genes may have medium-

specific glucose repression responses. Indeed, we find that 65 of the genes are up-regulated in

Fig 8. Summary diagram of the roles of Mig1 and Mig2 in the glucose repression pathway in C. albicans. Sak1 and Snf1 connections drawn

from published data by Ramirez-Zavala et al. [9]. Black dotted arrows indicate unclear regulatory connections. Dotted Mig1 indicates reduced

protein levels in cells grown on an alternative carbon source. No Mig2 protein level data exist to our knowledge.

https://doi.org/10.1371/journal.pgen.1008582.g008
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the YEP maltose vs YEP glucose comparison [20]; another 43 of the genes are up-regulated in

the YEP lactate vs 0.01, 0.1, or 1% glucose datasets [53]. The remaining genes are still enriched

for oxidation-reduction and peroxisomal functions. It is possible that Mig1 and Mig2 respond

to some signal in addition to presence of glucose, though the functional enrichment among

these target genes suggests that the signal is related to carbon metabolism.

Some genes respond only in themig1Δ/Δ ormig2Δ/Δ single mutants, and not in themig1Δ/
Δmig2Δ/Δ double mutant. Most of these genes are down-regulated in themigmutants.

Because Mig1 and Mig2 seem to function primarily as repressors, we infer that down-regulated

genes respond indirectly to Mig1/2 through compensatory responses to altered metabolism or

other biological processes. About 10% of up-regulated genes respond only in one single

mutant, and we suggest that they reflect compensatory responses as well.

Mig1 and Mig2 regulation

In S. cerevisiae, ScMIG1 and ScMIG2 RNA levels vary with carbon source [13, 15]. In addition,

ScMig1 is regulated at the level of nuclear translocation [17], whereas ScMig2 is regulated

through protein degradation [16]. In C. albicans we found no evidence that RNA levels vary

forMIG1 orMIG2, in agreement with priorMIG1 studies [18]. However, our data show that

Mig1 protein accumulates at higher levels in glucose media than in non-repressing glycerol

or mannitol media. It is possible that changes in Mig1 accumulation reflect carbon-responsive

differences in its degradation rate, though this mechanism is not proven.

Connection between Mig1/2 function and pathogenicity

Amig1Δ/Δmig2Δ/Δ double mutant expresses many metabolic genes that are induced upon

interaction with host cells. On that basis we anticipated that the double mutant would be “pre-

adapted” to growth after uptake into macrophages and endothelial cells, and might then cause

excessive damage to host cells. We observed the opposite result though; themig1Δ/Δmig2Δ/Δ
double mutant caused reduced damage. One explanation is that metabolic flexibility is critical

for effective host cell interaction, and the fact that themig1Δ/Δmig2Δ/Δ double mutant is

locked in the glucose-derepressed state impedes interaction, perhaps at an early time when

glucose is available. A second possibility is that the double mutant’s cell wall integrity defect

impairs its host cell interaction. Finally, we observed that themig1Δ/Δmig2Δ/Δ double mutant

has impaired filamentation, a phenotype closely tied to host interaction. Sak1, Snf1, and now

Mig1-Mig2 have all been connected to filamentation [9, 24, 25], though the mechanisms

underlying this connection is unclear. Two major activators of filamentation, BRG1 and

UME6, are down-regulated in themig1Δ/Δmig2Δ/Δ double mutant during growth in YPG (S1

Table). A simple possibility is that levels of Brg1 and Ume6 mediate effects of Mig1/2 on

filamentation.

Placement of Mig1 and Mig2 in the Snf1 pathway

Conservation of the Snf1 pathway and the prior connection of Mig1 to glucose-repressed

genes has suggested that Mig1 acts downstream of Snf1 [4], and these same arguments pertain

to Mig2. In addition, here we have presented epistasis tests that support the hypothesis that

Mig1 and Mig2 act downstream of Snf1 and Sak1. For example, sak1Δ/Δmutant growth

defects on YPG and Spider medium were partially suppressed by amig2Δ/Δmutation; sup-

pression was more effective with amig1Δ/Δmig2Δ/Δ double mutation. Also, snf1Δ/Δmutant

inviability was relieved by amig1Δ/Δmutation to yield a phenotypically abnormal strain; phe-

notypic abnormalities were relieved by amig1Δ/Δmig2Δ/Δ double mutation. Nanostring gene

expression readouts also supported this hypothesis. Specifically, sak1Δ/Δ gene expression
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defects were partially reversed in either sak1Δ/Δmig1Δ/Δ or sak1Δ/Δmig2Δ/Δ strains, and a

sak1Δ/Δmutation had only minor gene expression impact in amig1Δ/Δmig2Δ/Δ double

mutant background. Similarly, a snf1Δ/Δmutation had only minor gene expression impact

in amig1Δ/Δmig2Δ/Δ double mutant background. These observations are consistent with the

hypothesis that Mig1 and Mig2 function downstream of Sak1 and Snf1 to mediate effects on

gene expression and biological phenotype.

Mig1 and the nature of Snf1 essentiality

The requirement of Snf1 for C. albicans viability [9, 21–24] can be explained by two hypothe-

ses, first proposed by Kwon-Chung and colleagues [21]. Snf1 may be essential because of its

function in the glucose repression pathway; for example, essential genes may be under glucose

repression in C. albicans. Alternatively, Snf1 may be essential because it has a novel second

role in C. albicans in addition to its role in glucose repression pathway, and that second role is

essential for viability. The fact that loss of Mig1 permits recover of viable snf1Δ/Δmutants

provides strong support for the first hypothesis. Moreover, the finding helps refine the hypoth-

esis in providing candidate genes that may be the essential targets of glucose repression. Given

that snf1Δ/Δmutants could be recovered in amig1Δ/Δ background and not in amig2Δ/Δ back-

ground, we infer that repression of Mig1-selective targets is the cause of snf1Δ/Δmutant invia-

bility in an otherwise wild-type background. Based on our analysis, there are thus only 67

candidate genes (Fig 2A and S1 Table). Although many Mig1-selective target genes are known

to be nonessential, we suspect that reduced expression of multiple Mig1-selective targets may

have additive effects that impact viability. One simple hypothesis is that snf1Δ/Δmutant invia-

bility is the result of a profound glucose uptake defect, given that glucose transporter genes are

major Mig1-selective targets.

Methods

Media and culture conditions

Frozen strains were maintained in 15% glycerol frozen stocks at -80˚C. Streaked strains were

maintained on YPD agar plates (2% dextrose, 2% Bacto peptone, 1% yeast extract, 2% Bacto

Agar) and overnight cultures were grown in liquid YPD media (2% dextrose, 2% Bacto pep-

tone, 1% yeast extract) rotating at 75 rpm at 30˚C in 15 ml culture tubes. Transformants were

selected on synthetic media plates (2% dextrose, 1.7% Difco yeast nitrogen base with ammo-

nium sulfate and necessary auxotrophic supplements) or selected for nourseothricin-resistance

on YPD + 400 μg/ml nourseothricin (clonNAT, Gold Biotechnology). For alternative carbon

source phenotyping, strains were spotted on YPG Plates (2% glycerol, 2% Bacto peptone, 1%

yeast extract, 2% Bacto Agar) and Spider Medium Plates (1% Difco Nutrient Broth, 1%

D-Mannitol, 0.2% Potassium Phosphate Dibasic (K2HPO4), 2% Bacto Agar). For transcript

profiling, strains were grown in filter sterilized, liquid YPD, YPG, or Spider Medium. For

hyphal growth and macrophage assays, strains were grown in filter sterilized Roswell Park

Memorial Institute medium 1640 media (RPMI) pH 7.4.

Strain construction

PCR products or linearized plasmids were transformed into Candida albicans cells using the

lithium acetate transformation method [54]. Homozygous mutants were constructed in the

SN152 or SN250 background strains [55] using the pSN69 (Candida dubliniensis ARG4),

pSN52 (Candida dubliniensis HIS1), pSN40 (Candida maltosa LEU2), or pNAT [33] deletion

cassettes. Homozygous mutants were created using a sgRNA targeting the gene of interest, a
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repair DNA template containing a selection marker, and a transient CRISPR-Cas9 system as

previously described in detail [33].

For western blotting analysis, a hemagglutinin (HA) epitope-tagged Mig1 strain was con-

structed using strain SN152. Primers KL44 and KL45 were used to amplify the HA tag and

HIS1 selection marker from plasmid pED3-HA (S2 Text) and contained homology to the 3’

end of theMIG1 coding region. A single guide expression cassette targeting the genomic

region downstream of theMIG1 coding region was created using primers KL46 and KL47.

The transformation mix contained the DNA amplified from pED3-HA, Cas9, and the single

guide expression cassette. Transformants were selected on CSM media lacking Histidine. To

construct a prototrophic strain a single guide targeting the junction between the leu2 upstream

sequence and the deletion scar was created using primers KL48 and KL49 and CmLEU2 and

CdHIS1 amplified from SN250 genomic DNA. The transformation mix contained the single

guide expression cassette, Cas9, CmLEU2, and CdHIS1DNA. Transformants were selected

on CSM media lacking Leucine and Histidine.

For a detailed description of strain construction, see Supplemental file S1 Text.

For a complete strain and primer list, see Supplemental files S7 and S8 Tables.

Spotting plate assays

Strains were diluted in H2O to an OD600 of 3.0 measured with a spectrophotometer. Five-fold

dilutions were spotted using a multichannel pipette on the indicated media. Plates were incu-

bated for 1–3 days at 37˚C or 30˚C as indicated.

Hyphal microscopy and quantification

Cells from an overnight culture were diluted to an OD600 of 0.5 in glass culture tubes contain-

ing 5 ml pre-warmed RPMI media. Cultures were grown rotating at 60 rpm at 37˚C for 4 h.

Cells were fixed with 4% formaldehyde and stained with Calcofluor white. Cells were visual-

ized with a Zeiss Axio Observer Z.1 fluorescence microscope and a 20x objective.

For quantification of hyphal length, 10 fields of view were acquired for each strain analyzed

using a 20x DIC objective with 1.6x optical zoom. Cells were measured from the beginning

yeast cell to the end hyphal tip using the segmented line tool from ImageJ (https://imagej.nih.

gov/ij/). Only cells where the entire hyphal cell was clearly visible in the field of view were mea-

sured. Significance was calculated using the GraphPad PRISM one-way ANOVA test followed

by Tukey post hoc analysis, p<0.05 significance.

RNA-sequencing

RNA-sequencing and data analysis were performed as previously described [56] 5 μg of

extracted RNA was treated with 2 units of TurboDNAse (Invitrogen) in a 50 μl reaction. To

inactivate the DNAse, NaCl, Tris-HCl pH7.5, and EDTA, were added to a final concentration

of 500 mM, 200 mM, and 10 mM respectively. The RNA was PCI extracted and the superna-

tant containing the RNA was purified over a Zymo Research RNA clean up column and eluted

with 15 μl of nuclease free water. 2 μg of total RNA was used as input for the Lexogen mRNA

sense kit v2. The kit was used according to the manufacturer’s instructions for shorter ampli-

cons. 11 PCR cycles were performed, and the libraries were run on a D1000 DNA tape (Tapes-

tation) to assess the size and quality of the library. The concentrations of the libraries were

measuring using the High sensitivity DNA assay for the Qubit (Invitrogen) The libraries were

diluted to 8 nM and subjected to one lane of Illumina sequencing (Novogene), resulting in an

average of 16 million reads per library.
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Raw fastq reads were trimmed using cutadapt (v 1.9.1) with options “-m 42 -a AGATCG-

GAAGAGC” to remove Illumina 3’ adapter sequence and “-u 10 -u -6” to remove the Lexogen

random priming sequences. Trimmed reads were mapped using tophat (v 2.0.8) [57] with

options “–no-novel-juncs” and “-G” to align to the C. albicans SC5314 reference genome

assembly 22. Primary alignments were selected using samtools (v 0.1.18) [58] with options

“view -h -F 256”. Gene counts were created using “coverageBed” from bedtools (v 2.17.0) [59]

with option “-S” to count stranded alignments. RNA-Seq reads mapped to the two alleles of

each gene were combined for further analysis. Differential expression was assessed using

DEseq2 (v 1.18.1) [60] in RStudio (v 1.1.383) using default options (alpha = 0.05).

Biofilm microscopy and quantification

Biofilms were prepared and imaged as previously described in detail [61]. Overnight cultures

were diluted to an OD600 of 0.2 in 2 ml RPMI media in 6 well culture plates containing 1.5 cm

x 1.5 cm sized medical-grade silicone squares. After 90 minutes, the biofilm squares were

dipped in sterile PBS to wash unadhered cells and placed in a new 6 well culture plate contain-

ing 2 ml of RPMI media. Biofilm cultures were incubated at 37˚C with orbital shaking at 60

rpm. After 24 h, biofilms were fixed with 4% formaldehyde/2% glutaraldehyde for 20 minutes.

Fixed biofilms were washed 2x with PBS and stained with Alexafluor 594-concanavalin A for

24 h at room temperature.

Stained biofilms were indexed matched by a series of dehydration steps followed by immer-

sion in methyl salicylate (50:50 methanol:H2O 2x, 100% methanol 2x, 50:50 methanol:methyl

salicylate 2x, and then 100% methyl salicylate2x). The index matched biofilm was viewed

through a coverglass and imaged using a slit-scan confocal optical unit on a Zeiss Axiovert 200

microscope with a Zeiss 40x/0.85 NA oil immersion objective.130 images were obtained at a

time using a focus increment of 0.9 μm. Biofilm image stacks were processed using ImageJ

(https://imagej.nih.gov/ij/) for concatenation, background subtraction, reslicing, and max

projection.

For biofilm depth quantification, 3 measurements from 3 biological replicates were mea-

sured using a slit-scan confocal optical unit on a Zeiss Axiovert 200 microscope with a Zeiss

40x/0.85 NA oil immersion objective. Significance was calculated using the GraphPad PRISM

one-way ANOVA test followed by Tukey post hoc analysis, p<0.05 significance.

Data analysis software

Venn diagrams analysis of gene expression data was performed using (http://bioinformatics.

psb.ugent.be/webtools/Venn/). Area-proportional venn diagram images were created using

the eulerr package in R. Statistical analyses were performed using GraphPad Prism version

8.00 (Graphpad Software, Inc., La Jolla). Heatmaps were created using MultiExperiment

Viewer (MeV). Caspofungin minimum inhibitory concentration heatmap was created using

JavaTreeView.

Macrophage cytotoxicity

The macrophage cytotoxicity protocol was performed as described previously [62]. The

J774A.1 murine macrophage cell line was graciously provided by Sai Gopalakrishna Yerneni

from the lab of Dr. Phil Campbell. Cells were maintained in RPMI media without phenol red,

with 10% Serum and 5% penicillin/streptomycin at 37˚C in 5% CO2. Cells were used from pas-

sages 8–16. 100 μl of macrophage suspension was plated at a concentration of 2.5x105 cells/ml

overnight in a 96 well tissue culture treated polystyrene plate.

Functions of C. albicans Mig1 and Mig2

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008582 January 21, 2020 18 / 25

https://imagej.nih.gov/ij/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://doi.org/10.1371/journal.pgen.1008582


The following day, overnight cultures of C. albicans were subcultured in YPD media for 5

h. Subcultured cells were washed twice in PBS and diluted to a concentration of 3x106 in

pre-warmed RPMI media without FBS, without phenol red, with 5% penicillin streptomycin

at 37˚C. Media was removed from overnight macrophage cultures and replaced with 150 μl

of RPMI without FBS. 50 μl of C. albicans cells were added to each well for a MOI of 3. (3 C.

albicans cells:1 macrophage). 6 wells of macrophages were not incubated with C. albicans
cells for 3 spontaneous release control wells and 3 max release control wells. Cells were incu-

bated for 5 h. Following incubation, the Pierce LDH Cytotoxicity Assay kit was used accord-

ing to the manufacturer’s instructions. To achieve max lactate dehydrogenase release, 10 μl

lysis solution was added to each max release control well. For positive control wells, 200 μl of

a 10 mL PBS + 1% BSA freshly made stock was added to 3 blank wells and 2 μl of positive

control mix from the kit was added. Supernatant from all wells was diluted 1:5 in PBS and

100 μl was pipetted into a new 96 well plate. 50 μl of substrate mix was added to each well

and incubated for 30 min. at RT. Following incubation, 50 μl of stop solution was added to

each well.

Absorbance was read on a Tecan at 490 nm and background absorbance was read at 680

nm. The background absorbance was subtracted from the 490 nm reading. Percent cytotoxic-

ity was calculated according to the manufacturer’s guidelines. The assay was performed in trip-

licate to calculate percent cytotoxicity. Significance was calculated using the GraphPad PRISM

one-way ANOVA test p<0.05 significance.

RNA extraction

For RNA-sequencing experiment and Nanostring experiment for Mig1/Mig2 strains, over-

night cultures of cells were diluted to an OD600 of 0.2 in 25 ml filtered YPD media. Cells were

grown for 4 h shaking at 225 rpm at 37˚C.

For Nanostring experiment of Sak1/Snf1 strains, overnight cultures of cells were washed in

H2O and diluted to an OD600 of 0.4 in 25 ml filtered YPG media. Cells were grown for 4 h

shaking at 225 rpm at 37˚C.

Cells were harvested via vacuum filtration and frozen at -80˚C. RNA extraction was per-

formed using Qiagen RNeasy Mini Kit (cat#74104) with modifications. Cells were washed

from the membrane and resuspended with 1 ml of cold H2O. The cell suspension was centri-

fuged at top speed for 30 sec. The supernatant was removed, and the cell pellet was resus-

pended with 600 μl of RLT + 1% β-Mercaptoethanol. The cell suspension was transferred to

a screw cap tube containing 300 μl Zirconia beads (Fisher Scientific) and 600 μl phenol:chloro-

form:isoamyl alcohol 25:24:1. Tubes were vortexed using a mini-beadbeater (Biospec Prod-

ucts) for 3 min, and centrifuged at top speed for 5 min at 4˚C. 550 μl of the top aqueous phase

was transferred to a new screw cap tube containing 550 μl of 70% ethanol. The mixture was

transferred to a RNeasy Mini Spin Column and RNA isolation was followed according to the

manufacturer’s guidelines.

Nanostring

Nanostring analysis was performed as previously described [25]. Gene expression was mea-

sured using the nCounter SPRINT Profiler. For our analysis, 28 target genes and 5 normaliza-

tion genes (ARP3, FKH2, GIN4, TUP1, and CDC28) were selected for the codeset. For each

Nanostring assay, 100 ng of RNA was added to the Nanostring codeset mix and incubated at

65˚C overnight (16–18 h). The samples were loaded onto the cartridge according to the

manufacturer’s instructions and placed in the instrument for scanning and data collection.
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Heatmaps of Nanostring gene expression data represent were created using MultiExperi-

mentViewer v4.8.1 (MeV) software. Colors represent log2-transformed ratios of gene expres-

sion comparisons. Hierarchical clustering was performed using average linkage clustering

based on Manhattan distance and optimized for gene leaf order.

Endothelial cell damage assay

Endothelial cell damage by C. albicans cells was assessed as previously described [63] by mea-

suring 51Cr release. Human endothelial cells were maintained in M199 medium as previously

described [63] and loaded with 5 μCi/ml Na2
51CrO4 overnight. Cells were washed, and inocu-

lated with C.albicans cells at a concentration of 4×104 organisms per well. Cells were incubated

for 3 h and the 51Cr release was quantified using the formula: (experimental release—sponta-

neous release)/(total incorporation—spontaneous release). The assay was performed in tripli-

cate using three biological replicates. Statistical significance was calculated using GraphPad

Prism one-way ANOVA test p<0.05 significance.

Western blotting

Total soluble protein was extracted for Western blotting analysis from strain KL1026 and

strain CW542 (for untagged negative control) in 50 ml cultures of the indicated media at

37˚C, shaking at 225 rpm for 4 h. Cells were harvested by centrifugation and resuspended in

FA lysis buffer (50 mM HEPES-KOH, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%

Sodium deoxycholate, 1 mM PMSF, and 1x proteinase inhibitor). Resuspended cells were

homogenized by bead-beating with glass beads. Protein concentration was measured using a

Bradford Assay(Bio-Rad). 30 μg of protein was loaded for each gel.

Protein extracts were separated on an 8% SDS polyacrylamide gel and transferred to PVDF

membranes (Bio-Rad Laboratories). Ponceau S solution (Sigma) was used to assess equal

loading. Membranes were blocked for 16 h at 4˚C in 5% milk (Blotting-grade Nonfat dry

milk, Bio-Rad Laboratories) in TBST (tris-buffered saline containing 0.05% Tween 20, pH

7.4). After washing in TBST, membranes were incubated with anti-HA monoclonal antibody

(Roche; #11 583 816 001) at a 1:6,000 dilution for 1 h RT, washed with TBST, and then incu-

bated with the secondary antibody, anti-mouse IgG-HRP(Santa Cruz Biotechnology; sc-

516102), at a 1:5,000 dilution for 1 h RT. Signal was detected by enhanced chemiluminescence

(Thermo Fisher Scientific, #32106) For loading control, the membranes were stripped for 10

min. using buffer containing 0.2 M glycine, 0.1%SDS, and 1% Tween 20 adjusted to pH 2.2.

Membranes were washed in PBS and TBST before blocking again with 5% milk. The steps

above were repeated for the stripped membrane except incubating with anti-tubulin rat mono-

clonal antibody(Abcam, #ab6046) at 1:6,000 dilution and Goat anti-Rat IgG HRP(Abcam

#ab6734) at 1:5,000 dilution for the secondary antibody.

Blots were imaged using ChemiDoc Touch Imaging System (Bio-Rad Laboratories). Signal

was quantified by densitometric analysis using FIJI (https://fiji.sc/). Mig1-HA signal was nor-

malized to the Tubulin signal among the samples within the same blot.

Supporting information

S1 Fig. Intersections of YPG vs YPD responsive genes and related datasets. Venn Diagram

includes upregulated genes frommig1Δ/Δmig2Δ/Δ vs wild-type YPD, wild-type YPG vs wild-

type YPD, wild-type engulfed by macrophages vs non-engulfed [28], pH4 vs YPD [29], and

biofilm cells vs yeast cells [30]. A list of the 116 shared genes can be found in tab S1G of S1

Table. The gene set is enriched for the GO terms “monocarboxylic acid catabolic process,”
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“fatty acid catabolic process,” and related terms (tab S2D of S2 Table).

(PDF)

S2 Fig. Multiple sequence alignment of Mig proteins from Saccharomyces cerevisiae and

Candida albicans. Protein sequences were aligned using Clustal Omega and visualized using

Jalview Clustal color scheme.

(PDF)

S3 Fig. Western blot of Mig1-HA tagged protein grown in media with various carbon

sources. A. Western blots are from biological triplicates used to quantify Mig1-HA tagged

protein levels. Protein extracts from strains KL1026 and CW542 were made from overnight

cultures washed in H2O, inoculated at OD 0.2, and grown in 50 ml cultures of the indicated

medium for 4 h at 37˚C. For Spider + Glucose medium, 5 ml of 20% glucose was added to a

culture grown in Spider medium at 3 h and 50 min. CW542 protein extracts were used as a

non-tagged negative control. Ponceau S was used as a control for proper protein transfer. Sam-

ples were visualized with an antibody against HA and membranes were stripped and reprobed

with an antibody against Tubulin for loading control. B. Functional phenotyping of Mig1 pro-

tein in the Mig1-HA strain using a caspofungin sensitivity plate dilution assay from Fig 6A.

The Mig1-HA strain is not more sensitive to caspofungin compared to the wild-type.

(PDF)

S4 Fig. Independent isolates of sak1Δ/Δmig1Δ/Δ and sak1Δ/Δmig2Δ/Δ strains show similar

growth phenotypes on Spider media. Strains: Wild-type (CW542), sak1Δ/Δ (KL988), sak1Δ/Δ
mig1Δ/Δ (KL951 and KL952), sak1Δ/Δmig1Δ/Δmig2Δ/Δ (KL955) and sak1Δ/Δmig2Δ/Δ (KL960

and KL962) were grown overnight in YPD and tenfold serial dilutions of the indicated strains

were spotted on YPD and Spider plates. Growth was visualized after 2 days of incubation at 37˚C.

(PDF)

S5 Fig. The snf1Δ/Δmig1Δ/Δ strain shows abnormal filamentation and coloration com-

pared to wild-type and the snf1Δ/Δmig1Δ/Δmig2Δ/Δ strain. Strains: Wild-type (CW542),

snf1Δ/Δmig1Δ/Δ (KL953 and KL954), snf1Δ/Δmig1Δ/Δmig2Δ/Δ (KL957 and KL958) and

snf1Δ/Δmig1Δ/Δmig2Δ/Δ + SNF1 (KL974) were spotted at an OD of 0.1 on YPD media and

grown at 30˚C for 7 days.

(PDF)

S1 Text. Strain construction. Details of strain constructions are provided.

(DOCX)

S2 Text. Plasmid ED3-HA sequence. The sequence of plasmid ED3-HA is provided.

(DOCX)

S1 Table. RNA-seq. RNA-seq data are provided.

(XLSX)

S2 Table. GO terms. GO terms associated with gene subsets are provided.

(XLSX)

S3 Table. FET YPG vs YPD. Comparisons of datasets via Fisher’s Exact Test are provided.

(XLSX)

S4 Table. NanoString complementation. Gene expression data for mutant and comple-

mented strains are provided.

(XLSX)
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S5 Table. NanoString spider medium. Gene expression data for cells grown in Spider

medium are provided.

(XLSX)

S6 Table. NanoString carbon codeset. Detailed gene expression data underlying Fig 5 are

provided.

(XLSX)

S7 Table. Primer list. Sequences of primers used in this study are provided.

(XLSX)

S8 Table. Strain list. Genotypes of strains used in this study are provided.

(XLSX)
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