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ABSTRACT High-density array-based genome-wide association studies (GWAS) are complemented by
exome sequencing and whole-genome resequencing-based association studies. Here we present a
composite resequencing-based genome-wide association study (CR-GWAS) strategy that systematically
exploits collective biological information and analytical tools for a robust analysis. We showcased the utility
of this strategy by using Arabidopsis (Arabidopsis thaliana) resequencing data. Bioinformatic predictions of
biological function alteration at each locus were integrated into the process of association testing of both
common and rare variants for complex traits with a suite of statistics. Significant signals were then filtered
with a priori candidate loci generated from genome database and gene network models to obtain a pos-
teriori candidate loci. A probabilistic gene network (AraNet) that interrogates network neighborhoods of
genes was then used to expand the filtering power to examine the significant testing signals. Using this
strategy, we confirmed the known true positives and identified several new promising associations. Prom-
ising genes (AP1, FCA, FRI, FLC, FLM, SPL5, FY, and DCL2) were shown to control for flowering time
through either common variants or rare variants within a diverse set of Arabidopsis accessions. Although
many of these candidate genes were cloned earlier with mutational studies, identifying their allele variation
contribution to overall phenotypic variation among diverse natural accessions is critical. Our rare allele
testing established a greater number of connections than previous analyses in which this issue was not
addressed. More importantly, our results demonstrated the potential of integrating various biological,
statistical, and bioinformatic tools into complex trait dissection.
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Genome-wide association studies (GWAS), which have uncovered
hundreds of genetic variants associated with complex human diseases
and traits, have revolutionized genetic mapping in humans (Altshuler
et al. 2008; Donnelly 2008; Hindorff et al. 2009a) and are being
adopted in plants (Atwell et al. 2010; Brachi et al. 2010). The under-

lying rationale for GWAS, known as the common disease–common
variant (CDCV) hypothesis (Risch and Merikangas 1996), is that
common phenotypic variation is caused by common genetic variants.
But genes implicated in GWAS often account for only a small frac-
tion of the heritable variation of a phenotype (Hindorff et al. 2009b;
Manolio et al. 2009; Mccarthy et al. 2008). Rare functional alleles are
among the likely culprits (Pritchard 2001; Reich and Lander 2001)
because power to detect association is a function of allele frequency
and rare variants are underpowered when sample sizes are limited. In
some cases, researchers often exclude single-nucleotide polymor-
phisms (SNP) that have a minor allele frequency (MAF) less than
5% from association studies (Nordborg et al. 2005; Yu et al. 2006;
Zhao et al. 2007). However, recent studies on the frequency of human
alleles and their predicted functional effects imply that rare variants
(i.e., MAF , 5%) are more likely to be functional than common
variants (Gorlov et al. 2008), and multiple rare frequency variants
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together may explain a certain proportion of the genetic variation for
certain complex diseases (Bodmer and Bonilla 2008; Johansen et al.
2010; Schork et al. 2009).

Most of the GWAS in human genetics so far were based on single
common variant analyses (Manolio 2010), although it has been shown
that multiple rare variants together may account for a few proportions
of phenotypic variation for complex diseases (Bansal et al. 2010). But
these studies with a focus on rare variants were the analysis of one or
several candidate genes, and resequenced-based association studies are
still not available. Pathway-based approaches have recently been de-
veloped to use prior biological knowledge on gene function to facili-
tate the analysis of GWAS datasets (Wang et al. 2010). Up to now,
a comprehensive approach that combines statistical analyses of com-
mon and rare variants, biological network, function prediction, and
other existing methods has not been proposed.

Several notable, critical advances in relevant areas make it feasible
to conduct a composite analysis of both common and rare variants
beyond the single SNP analysis. First, with next-generation sequencing
technologies, exome sequencing or whole-genome resequencing is
now possible (Ansorge 2009; Ng et al. 2010; Shendure and Ji 2008).
Second, biological functions of nucleotide polymorphisms can be
predicted with the context sequence of genes (Kumar et al. 2009;
Ramensky et al. 2002) and have been examined in Arabidopsis and
rice (Gunther and Schmid 2010). Third, attention has been given to
the rare allele issue (Bodmer and Bonilla 2008; Cohen et al. 2004;
Nejentsev et al. 2009), and some specific statistics have been developed
to assess the significance of rare variants (Li and Leal 2008; Madsen
and Browning 2009; Morgenthaler and Thilly 2007; Morris and
Zeggini 2010). Fourth, genome databases and gene networks have
been developed to aid the search and confirmation processes of
gene-trait associations (Lee et al. 2010a; Lee et al. 2008; Lee et al.
2010b). Comprehensive association analysis calls for an integration
of all these advances (Bodmer and Bonilla 2008). In this study, we
designed a composite resequencing-based GWAS (CR-GWAS) strat-
egy to integrate these advances, and we showcased the analysis with an
Arabidopsis flowering time dataset (Figure 1). We showed specifically
how biological function predictions can be incorporated into testing
rare variants and broadly how function prediction, genome database,
and network information can be integrated into the process of iden-
tifying robust associations. With this approach, we identified both
common and rare variants underlying variation of flowering time in
Arabidopsis.

To date, several GWAS studies with high SNP density have been
conducted in plants, including Arabidopsis (Atwell et al. 2010; Brachi
et al. 2010), rice (Huang et al. 2010), and maize (Kump et al. 2011;
Tian et al. 2011). These two recent Arabidopsis studies, however, used
the array-based genotyping approach, and rare variants (i.e., MAF ,
5%) accounted for only 4.7% of all the SNP variants, limiting rare
variant analysis. The maize studies involved a genetic design that alters
the allele frequency in the final nested association mapping population.
The resequencing dataset used in the current study includes data de-
scribed in earlier publications (Nordborg et al. 2005; Zhao et al. 2007)
and other data of resequenced gene fragments after those publications.
To the best of our knowledge, this dataset is the only resequencing-
based data with adequate frequencies of rare variants (50%) for a com-
prehensive analysis in a plant species for which various tools are
available. This provides an opportunity to demonstrate the CR-GWAS
strategy, particularly the use of rare variant analysis, function predic-
tion, and gene network, which were not conducted in a previous study
(Zhao et al. 2007). It would be interesting to test this strategy again
once data are available from the 1001 Genomes Project.

MATERIALS AND METHODS

Association data
Two resequencing datasets were merged for the current study: one
described in earlier publications (Nordborg et al. 2005; Zhao et al.
2007) and the other based on resequenced gene fragments after initial
publications by Magnus Nordborg’s group (Table S4). Additional
Arabidopsis requencing data is available at http://walnut.usc.edu/.
These 1275 fragments ranged from 454 bp to 942 bp, representing
0.73 Mb of the genome. The average sequence length is 542 bp. All the
reliable alignments involving 1116 genes were sequenced across
a panel of 96 Arabidopsis thaliana lines (Nordborg et al. 2005; Zhao
et al. 2007). A total of 20,810 SNPs were annotated as intergenic,
intronic, synonymous, or nonsynonymous to analyze the relationship
of allele frequency and function prediction, and then used for associ-
ation testing. Given the small genome size of Arabidopsis (i.e., about
4% of human genome), the SNP density in this dataset is similar to
a study with 500,000-SNP exome or candidate-gene sequence capture
in humans. Sixteen traits related to flowering time (Table S1) (Zhao
et al. 2007) were used for various association testing of common and
rare variants. The 3.74% missing entries for phenotypes were imputed
using the clustering method (Scheet and Stephens 2006) because of
significant correlations among these traits, and the resulting complete
data were normalized for association testing.

Brief description of CR-GWAS
To integrate statistical analyses, function prediction, and gene
network, we designed the CR-GWAS strategy (Figure 1). First, we
analyzed the gene fragments with a combination of statistical methods
to identify significant tests for gene fragments. Second, we examined
whether a priori candidate genes that were significant at the 0.001
significance level across all methods could be confirmed by previous
experiments for genes with common variants. Third, for genes with
rare variants (i.e., MAF , 5%), we checked whether the number of
functional SNPs on the basis of function prediction within gene frag-
ments was greater than or equal to three. We used three as a cutoff to
avoid cases of complete linkage disequilibrium between two SNPs
with rare alleles. In addition, we examined the congruency across
different statistical methods. Fourth, if the tested genes were not in
the a priori candidate gene list but were among the top 30 significant
tests out of all tests, we searched these genes in the gene network
AraNet to verify whether they were connected with a priori candidate
genes. The detailed procedures are described in the following sections.

A priori candidate genes
A list of 281 a priori candidate genes with annotations related to
flowering-related traits were retrieved previously from the Arabidopsis
Information Resource (TAIR) version 8 (Atwell et al. 2010; Brachi
et al. 2010). Twelve additional genes were retrieved from TAIR 9,
resulting in a list of 293 a priori candidate genes. Generating the
a priori candidate gene list is justified because Arabidopsis has been
thoroughly studied as a model organism, and its flowering-time path-
ways have been well characterized. Thirty-five of these a priori can-
didate genes overlapped with genes contained in the 1,275 fragments
analyzed for association with flowering time–related traits (Table S1
and Table S4).

Function prediction
Two approaches based on sequence homology, Polymorphism
Phenotype (PolyPhen) (Ramensky et al. 2002) and Sorting Intolerant
from Tolerant (SIFT) (Kumar et al. 2009), were used to evaluate the
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potential impact of nonsynonymous SNPs. Nonsynonymous SNPs
result in amino acid substitutions and are more likely than synony-
mous SNPs to affect the activity of proteins encoded by the genes. For
predictions by PolyPhen, SNPs were classified into three categories:
benign, possibly damaging, and probably damaging. Benign SNPs
were considered as nonfunctional, whereas possibly or probably pro-
tein-damaging SNPs were considered functional. The SNPs predicted
to be intolerant by SIFT were considered functional, and SNPs pre-
dicted to be tolerant were considered nonfunctional. A nonsynony-
mous change may be either missense or nonsense. A missense change
results in a different amino acid, and a nonsense change results in
a premature stop codon. All nonsense SNPs were considered func-
tional because they typically result in more damage to protein struc-
ture and function than probably damaging SNPs.

The MAFs were binned into 20 categories in increments of 2.5%, and
the various types of SNPs in different MAF bins were tabulated (Table
S6). To estimate the relationship between MAF and the proportion of
nonsynonymous SNPs predicted to be protein disturbing, power
regression (pF ¼ a � pb), logarithmic regression (pF ¼ a � lnðpÞ þ b),

and linear regression (pF ¼ a � pþ b) were used to fit the binned
data. With predictions from PolyPhen, a power regression function
of MAF (p), pF ¼ 0:3562ðpÞ21:4162, captured 84.6% of the variation
of proportion of functional SNPs; this was higher than logarithmic
regression (56.9%) or linear regression (27.2%). Similarly, with pre-
dictions from SIFT, a power regression function of MAF (p),
pF ¼ 0:4346ðpÞ21:4863, captured 78.3% of the variation, which was
higher than logarithmic regression (61.4%) and linear regression (32.2%).

We examined the congruency between function predictions by
PolyPhen and SIFT. There was highly significant non-independence
(P-value = 1.8 · 10234) between the two predictions, driven primarily
by the large proportion (66%) of SNPs predicted to be benign by
PolyPhen and tolerant by SIFT. Because these two programs were
developed using different algorithms, this general congruence ob-
served should be satisfactory.

Statistical analysis
The unified mixed model was used to control for population structure
and relative kinship (Yu et al. 2006). The vector of phenotypes, y, is

Figure 1 Schematic diagram of a composite resequencing-based GWAS (CR-GWAS) strategy that integrates function prediction, genome
database, and gene network information, as well as common variant and rare variant testing.
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modeled as y ¼ Xbþ Zuþ e, where b is a vector of subpopulation
effects, i.e., Q (STRUCTURE), nonmetric dimensional scaling (nMDS),
or principal component analysis (PCA), and u is a vector of polygene
background effects. X contains the coordinates from STRUCTURE,
nMDS, and PCA relating y to b; Z is an incidence matrix of ones
and zeros relating y to u; and e is a vector of residual effects. The
phenotypic covariance matrix is assumed to have the form
V ¼ 2Ks2

g þ Is2
e , where K is an n · n matrix of relative kinship

coefficients that define the degree of genetic covariance between a pair
of individuals (Loiselle et al. 1995), I is an n · n identity matrix, s2

g is
the genetic variance attributable to genome-wide effects, and s2

e is the
residual variance. As the effects of population structure on phenotypes
varied, we compared the model fit of 22 relevant models across 16
different phenotypes using Bayesian Information Criterion (Yu et al.
2006; Zhu and Yu 2009) (Table S2 and Table S3).

With the optimal model for each trait, a GRAMMAR approach
was taken in which the adjusted phenotype was computed before
testing of common and rare variants to reduce the computational load
and avoid convergence issues (Aulchenko et al. 2007). For SNPs with
MAF greater than 5% (i.e., common variants), a test of association was
conducted with adjusted phenotypes by comparing models with and
without the specific SNP.

For SNPs with MAF less than 5% (i.e., rare variants), the sum test
(Li and Leal 2008; Morris and Zeggini 2010) and weighted sum test
(Madsen and Browning 2009) were conducted first. A third test, the
function-aided sum test, was adapted by incorporating both biological
function prediction (Ramensky et al. 2002) and allele frequency into
the weighting process (Price et al. 2010). In general, the first step for
pooling the rare variants is to choose the appropriate genomic units
for analysis. One way is to pursue a moving window analysis in which
variants in contiguous, possibly overlapping subregions are tested
(Bansal et al. 2010). In our situation, both collapsed and multivariate
tests are confined to the fragment because the 1275 resequenced frag-
ments were mostly independent short segments. We required the
number of rare variants with a gene fragment to be greater than or
equal to three to be included in the analysis.

For all three tests, the common model was yi ¼ b0 þ b1zi þ ei,
where yi is the adjusted phenotype value, b0 is the intercept, and b1 is
the effect of minor allele vs. common allele, and ei is the residual effect.
For the sum test, zi ¼

Pm
j¼1

xij
m, where m is the number of rare variants

in a gene (or fragment) for ith individual, and xij denotes the reference
allele count of SNP j in sample i. For the weighted sum test,
zi ¼

Pm
j¼1

xijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npjð12pjÞ

p , where pj is the frequency of jth rare variant

and n is the population sample size.
For the function-aided sum test, zi ¼

Pm
j¼1 Sjp

F
j xij, where Sj is

independent of allele frequency and is the average probabilistic score
of amino acid change from the allele substitution of jth rare variant,
and pjF is the predicted proportion of functional SNPs with the same
MAF frequency of jth rare variant. Both Sj and pjF were obtained from
the function prediction (Adzhubei et al. 2010; Ramensky et al. 2002).
S relates the function class of rare variants to weighting and takes one
of three values on the basis of average of delta scores from each
category (Table S5): 0.6772 for benign or synonymous, 1.7051 for
possibly damaging, and 2.4277 for probably damaging for the Arabi-
dopsis data. The probability score of amino score, pF, relates allele
frequency (p) to weighting through the power regression equation

described in the previous section, pF ¼ 0:3562ðpÞ21:4162. With S and
pF, both predicted biological function and allele frequency distribution
were introduced into the statistical testing of the rare variants.

For gene fragments with multiple common SNPs, we used the
multivariate approach (Pan 2009) in which each variant was assigned
the same weight, zi ¼

Pm
j¼1 xij. For the combined multivariate pooled

method, we regarded pooled rare variants (by weighted-sum ap-
proach) as individual variants and then applied a multivariate test
to analyze groups of variants within a gene fragment.

In the current study, one multiple common variant test and three
pooled rare variant tests were examined to determine the significance
of the gene fragments and compare the performance of these tests.
Likelihood ratio (LR) tests were conducted for all individual methods
for single SNP, multiple common variant, sum test, weighted sum test,
function-aided sum test, and combined multivariate pooled test. To
address multiple testing issues, we used Bonferroni correction to
determine significance for the single SNP test because the huge
computational load prevented us from using permutation. For all
other tests, the experiment-wise LR threshold significance level was
determined by computing 1000 permutations (Churchill and Doerge
1994). To compare the results of different tests at the same scale, we
calculated the LR/LR99 values.

Gene network interrogation
With the a priori candidate genes (Table S12) as bait, we searched the
gene network AraNet (Lee et al. 2010a) to find new genes with bi-
ological roles inferred by the annotations of the neighbors of these bait
genes. AraNet is a probabilistic functional gene network that was
constructed for Arabidopsis by a modified Bayesian integration of
24 types of “omics” data from multiple organisms (Lee et al.
2010a). The connection between two genes has an associated log-
likelihood score that measures the probability of a connection repre-
senting a true functional interaction.

In Arabidopsis thaliana, flowering time is known to be regulated
by a complex genetic network composed of four main converging
pathways: the vernalization pathway, the photoperiod pathway, the
autonomous pathway, and the gibberellin pathway. These pathways
connect physiological and environmental factors, such as photoperiod
variation, vernalization, ambient temperature, and plant growth, to
promote or repress flowering at an appropriate time (Roux et al.
2006). It is known that several genes are involved in these biological
networks. After obtaining the list of 293 a priori candidate genes, we
first checked how many genes are connected by entering these can-
didate genes as query genes to find their relationships. Then we per-
formed the receiver-operator characteristic (ROC) analysis for the
connected genes to further verify their connections. Cross validation
(i.e., omitting each seed gene in turn from the seed set) was used,
where a higher retrieval rate is given to genes annotated to have the
same function cluster in the network (positive) than to genes that are
not annotated with that function (negative) in the ROC plot. The
degree of the overall connection was summarized by the area under
the ROC curve (AUC), ranging from 0.5 to 1 (i.e., genes with high
values are deemed to be tightly clustered in a network). In each round,
we removed the least-scored gene until the AUC value was greater
than or equal to 0.95. If the statistically significant a priori candidate
genes were in the connected network, they were regarded as the
promising candidate genes. In addition, we used these connected
a priori genes as bait to identify other flowering-time–related genes
in AraNet. Then we compared the top 30 significant tests that were
not from the list of a priori candidate genes with the top 200 (this
number was suggested by AraNet) network-connected genes that were
retrieved by the bait genes to identify any potentially novel flowering-
time–related genes.

236 | C. Zhu, X. Li, and J. Yu

http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS2.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS3.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS5.xls
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS12.pdf


RESULTS

Distribution of SNPs and function prediction
To obtain an overall view of the potential function of polymorphisms
within gene fragments, we analyzed the SNP frequency distribution
and conducted function prediction with PolyPhen (Ramensky et al.
2002). First, the distribution of SNPs in different MAF categories
showed that the proportion of SNPs with MAF less than 5% (0.5043 6
0.0026) was significantly higher than the expected value (0.3632 6
0.0024) under standard population genetics models (Nordborg et al.
2005) (Figure 2a). Second, nonsynonymous substitutions were more
common than synonymous substitutions for rare SNPs with MAF
less than 5% (Figure 2b). In addition, the distributions of SNPs with
probably damaging or possibly damaging effects were skewed more
to the left than the distributions of SNPs in other categories (Figure
2c, Table S5). The proportion of probably damaging SNPs was high-
est in the MAF 0–0.05 bin (0.74 6 0.00045). These results suggest
the action of weak purifying selection on amino acids in the Arabi-
dopsis thaliana genome (Foxe et al. 2008; Nordborg et al. 2005).

MAF and the proportion of functional SNPs were inversely related
in both PolyPhen and SIFT (Kumar et al. 2009) predictions (Figure
2d, e). The rapid decrease in the proportion of functional SNPs with
increasing MAF was adequately modeled by a power regression func-
tion. The congruency (P-value = 1.8 · 10234) between the two pre-
dictions was mainly driven by the large number of SNPs predicted to
be benign by PolyPhen and tolerant by SIFT (Figure 2f). These results
demonstrate that a high proportion of SNPs predicted to be functional

have low to rare MAF and that analyzing these variants with appro-
priate statistics would facilitate establishing gene-trait association in
GWAS.

Systematic association testing
We used the mixed model to control for population structure by
selecting the optimal model for different traits (Yu et al. 2006; Zhu
and Yu 2009) (Table S2 and Table S3). Detailed inspection with
quantile-quantile plots suggested the need for further adjustment with
an inflation factor (Devlin et al. 2004). The combination of in- and
post-testing adjustments was designed to achieve both accurate in-
dividual tests and overall control of false positives (Table S9, Figure S1,
Figure S2, Figure S3, Figure S4, Figure S5, Figure S6, Figure S7, Figure
S8, Figure S9, Figure S10, Figure S11, Figure S12, Figure S13, Figure
S14, Figure S15, and Figure S16). Single SNP tests were conducted for
all 20,810 SNPs first. For gene fragments without any SNP with MAF
less than 5%, the multiple common variant test was carried out. For
gene fragments with SNP with MAF less than 5%, the sum test,
weighted sum test, and function-aided sum test were carried out.
For gene fragments with a combination of both common and rare
variants, a final combined multivariate pooled test was carried out
(Table S8).

We examined the predicted function of the significant trait-
associated SNPs (TAS). For common variants, 25.6% were non-
synonymous; 10.3%, synonymous; 41.0%, intronic; and 23.1%, intergenic
(Table S10). These intronic and intergenic proportions were lower

Figure 2 A) SNP frequency in different minor allele count categories; B) distribution of synonymous and nonsynonymous SNPs across
different minor allele frequencies; C) distribution of SNPs with different function prediction across different minor allele frequencies; D) PolyPhen-
predicted functional SNP frequency across different minor allele frequencies; E) SIFT-predicted functional SNP frequency across different minor
allele frequencies; and F) SIFT-predicted function class, deleterious or tolerant, and PolyPhen-predicted score value. SNP, single-nucleotide
polymorphism.

Volume 1 August 2011 | Composite Analysis of Rare Variants | 237

http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS5.xls
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS2.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS3.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS9.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS1.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS2.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS3.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS4.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS5.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS6.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS7.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS8.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS8.pdf
http://www.g3journal.org /suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS9.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS10.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS11.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS12.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS13.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS14.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS14.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS15.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/FigureS16.pdf
http://www.g3journal.org/lookup /suppl/doi:10.1534/g3.111.000364/-/DC1/TableS8.pdf
http://www.g3journal.org /lookup/suppl/doi:10.1534/g3.111.000364/-/DC1/TableS10.pdf


than those in human GWAS results (Hindorff et al. 2009b). When
adjusted for the base number of each category, 0.042% of the tests
for nonsynonymous was significant, which was higher than for syn-
onymous (0.012%), intronic (0.020%), or intergenic (0.033%). Even
with the in- and post-testing control, the slightly high number of
TASs was not unexpected because that linkage disequilibrium was
higher among SNPs with similar allele frequency than among SNPs
with different allele frequency (Table S7) and there was a minor
allele dependence issue (Table S11) (Brachi et al. 2010). In addition,
because the LR test has been shown to be liberal (Atwell et al. 2010),
we conducted additional permutation tests to determine the signif-
icance threshold.

Associations of common variants
Under the assumption of CDCV, we inspected the significant results
to identify specific sequence fragments corresponding to genes that
were on the list of a priori candidate genes for flowering time and that
had other biological function evidence. This resulted in four genes
with robust associations (Table 1). First, the vernalization-response
gene, FRIGIDA (FRI), has polymorphisms known to affect flowering

time through their effect on FLC (FLOWERING LOCUS C) (Johanson
et al. 2000; Shindo et al. 2005). The FRI gene was strongly associ-
ated with FRI expression levels and was also associated with FLC
expression levels, consistent with other reports (Atwell et al. 2010;
Zhao et al. 2007). Second, the FCA gene, with a function in the
posttranscriptional regulation of transcripts involved in the flower-
ing process (Macknight et al. 1997), showed significant association
with vernalization response to short days [6V(SD)]. The associa-
tion of FCA with flowering time was confirmed in previous anal-
yses (Atwell et al. 2010; Brachi et al. 2010; Zhao et al. 2007). Third,
the FLC gene, encoding a MADS-domain protein acting as a re-
pressor of flowering time (Ratcliffe et al. 2001), showed a significant
association with day-length response with vernalization [SD/LD
(V)] and short days with 5-week vernalization at University of
Southern California (USC) (SDV). Fourth, the floral homeotic gene
specifying floral meristem identity in Arabidopsis (Gustafson-
Brown et al. 1994), APETALA1 (AP1), was associated with long
days without vernalization at John Inns Centre (JIC) (JIC0W) and
FLC expression levels, and it was also associated with long days
with 4-week vernalization at John Inns Centre (JIC) (JIC4W) and

n Table 1 Candidate genes with either common or rare variants showing associations to flowering time with the composite
resequencing-based association study analysis

Assumption
Gene

(Gene ID)
Single SNP

Test
Multiple
Common

Combined
Multivariate

Pooled

A Priori
Candidate

Gene

Connected
in AraNet

Supporting
Evidence

CDCV AP1
(AT1G69120)

JIC0W (2.91)
FLC (2.85)

JIC0W (3.17)
FLC (3.35)
JIC4W (3.37)
JIC8W (3.09)

JIC0W (3.28)
FLC (3.72)
JIC4W (3.48)
VERN (3.77)

Yes Yes Gustafson-Brown et al.
(1994)
[Brachi et al. (2010)]
Mouradov et al. 2002

CR88
(AT2G04030)

JIC/USC (1.75) JIC/USC
(2.59)

JIC/USC (2.72) Yes No Cao et al. 2000

TIC
(AT3G22380)

JIC4W (5.31) JIC4W (1.87) JIC4W (3.27) Yes No Ding et al. 2007

DCL2
(AT3G03300)

SDV (3.08) SDV (3.55) SDV (3.94) No Yes Henderson et al. 2006

FCA
(AT4G16280)

6V(SD) (4.19) 6V(SD) (3.34) 6V(SD) (3.62) Yes Yes Macknight et al. 1997
[Atwell et al. (2010)]
[Brachi et al. (2010)]
[Zhao et al. (2007)]

FRI
(AT4G00650)

FRI (14.78)
FLC (4.13)

FRI (12.34)
FLC (4.77)

FRI (9.43)
FLC (3.68)
JIC4W (4.23)

Yes Yes Johanson et al. 2000
Shindo et al. 2005
[Atwell et al. (2010)]
[Zhao et al. (2007)]

FLC
(AT5G10140)

SD/LD(V)
(3.81)

SD/LD(V) (3.14)
SDV (3.59)

SD/LD(V) (4.34)
SDV (4.81)

Yes Yes Ratcliffe et al. 2001
[Atwell et al. (2010)]
[Zhao et al. (2007)]

Assumption
Gene

(Gene ID) Sum Test Weighted Sum
Function-
Aided Sum

A Priori
Candidate

Gene
Connected
in AraNet

Supporting
Evidence

CDRV FLM
(AT1G77080)

LD (3.32)
JIC2W (4.78)
JIC4W (3.23)

JIC2W (1.45) JIC2W (3.12) Yes Yes Scortecci et al. 2001
Werner et al. 2005

BAS1
(AT2G26710)

LD (4.19)
SD (2.91)
JIC2W (3.52)

LD (4.55)
SD (3.47)
JIC2W (3.69)

LD (4.33)
SD (3.12)
JIC2W (2.23)

Yes Yes Turk et al. 2005

SPL5
(AT3G15270)

JIC/USC (3.22) JIC/USC (3.47) JIC/USC (3.57) Yes Yes Wu et al. 2009
Wu and Poethig 2006

FY
(AT5G13480)

JIC2W (3.55)
JIC8W (2.24)

JIC2W (4.05)
JIC8W (2.31)

JIC2W (3.67) Yes Yes Simpson et al. 2003
[Brachi et al. (2010)]

Numbers in parentheses indicate the permutation-derived-log10 (P-value). References in brackets are genome-wide association studies. CDCV, common disease–
common variant; CDRV, common disease–rare variant; SNP, single-nucleotide polymorphism.
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response to length of vernalization (VERN) if rare variants were
considered (Table 1). AP1 was detected among the 50 best asso-
ciations in previous GWAS (Brachi et al. 2010). Furthermore,
AP1 shares a biological process (GO: 0003700) with FLC, and
its role in integrating signals from multiple pathways is well
established (Mouradov et al. 2002). The associations of two ad-
ditional genes, CR88 with JIC/USC and TIC with JIC4W, need
further evidence, although both genes were a priori candidate
genes involved in the light-dependent pathway (Cao et al. 2000)
and the circadian clock (Ding et al. 2007). A third gene, DCL2,
containing common variants, is discussed in the association and
gene network section.

If the statistically significant genes were not on the list of a priori
candidate genes, we considered the top 30 significant tests out of
18,448 tests (16 traits · 1153 fragments) (Table S5, Table S8, and
Table S13). Then we checked whether there was at least one significant
functional SNP by functional prediction within each fragment.
T23J18.17 (AT1G11510) and SMD1 (AT4G11130) met the require-
ments. Both genes were associated with SDV (Table S13).

Associations of rare variants
When rare variants were considered, all collapsed methods suggested
an excess of significant genes associated with flowering-time–related
traits (Figure 4). Unlike the sum test, the weighted sum test and
function-aided sum test assign different weights for different MAF.
Accordingly, the results for these two methods were more consistent
than those for the sum test. Consistence among three methods nar-
rowed down the list of the significant candidate genes, which facili-
tated the follow-up validation studies (Figure 3). Considering the
consistency across pooled rare association methods, 4 of the 35 a priori
candidate genes showed a significant association with flowering-time–
related traits (Table 1, Figure 4, and Table S15). First, FLOWERING
LOCUS M (FLM), a MADS-domain gene that acts as an inhibitor of
flowering in Arabidopsis (Scortecci et al. 2001), had significant asso-
ciation between pooled rare variants and long days without vernali-
zation at USC (LD) across all methods. However, there was no
significant association between common variants within the FLM gene
and flowering-time–related traits, and FLM was not detected in
a GWAS with field experiments (Brachi et al. 2010). One explanation
is that FLM contains accession-specific mutations (Werner et al. 2005)
and is less likely to be detected by the regular methods. Under close
examination, we found that rare mutations occur in diverse acces-
sions; this suggests that multiple rare alleles in the FLM gene incre-
mentally increase the proportion of genetic variation contributing to
flowering time. Second, pooled rare variants in FY gene (Simpson
et al. 2003) were significantly associated with long days with 2-week
vernalization at JIC (JIC2W), 4-week vernalization (JIC4W), and
8-week vernalization (JIC8W) (Table 1), agreeing with a previous
GWAS (Brachi et al. 2010). The difference is that common variants
in the FY gene were significant in the previous GWAS, but pooled rare
variants in the FY gene were significant in our study. We suggest that
rare genetic variants generate synthetic associations that may have
been credited to common variants (Dickson et al. 2010). Third,
SPL5 showed significant association with chamber response with ver-
nalization (JIC/USC). SPL5 and two closely related transcription fac-
tors (SPL3 and SPL4) have target sites for MicroRNA miR156, and
these three genes have overlapping functions in regulating vegetative
phase change and floral induction in Arabidopsis (Wu et al. 2009; Wu
and Poethig 2006). Rare alleles were not addressed in the previous
studies, so although SPL5 was not confirmed in two GWAS reports, it
is still a good candidate. Finally, the pooled rare variant in BAS1 was
associated with LD, JIC2W, and short days without vernalization at

Figure 3 Venn diagram for the number of significant tests from
different methods. The numbers in the joined areas indicate the over-
lap between two or among three methods. The number (18,843)
outside of these circles represents tests that are not statistically
significant.

Figure 4 Candidate genes are overrepresented among statistically significant associations. A) LR/LR99 values from the weighted sum test vs. sum
test; B) LR/LR99 values from the function-aided sum test vs. weighted sum test 14; and C) LR/LR99 values from the function-aided sum test vs. sum
test. Four genes with rare variants (FLM, BAS1, SPL5, and FY) are highlighted.
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USC (SD), agreeing with its documented function in photomorpho-
genesis, hypocotyl elongation, and flowering time (Turk et al. 2005).
However, caution is warranted because all three SNPs tested were
intronic (Table S15).

For gene fragments with rare variants, we identified those frag-
ments that not only contained at least three significant functional
SNPs from functional prediction but also were among the top 30 tests
(out of 19,104 tests = 16 traits · 1194 fragments) (Table S5 and Table
S14). This yielded 4 gene fragments: T9E8.100 (AT4G13360),
MXF12.90 (AT5G39080), MWF20.13 (AT5G43420), and K24M7.26
(AT5G52500). All these genes were associated with either JIC/USC or
JIC2W. Results from the function-aided sum tests of these genes were
also significant.

Associations and gene network
First, we entered 293 a priori candidate genes as query genes to find
their relationships. The report showed that 161 genes are connected to
each other (Table S16), 99 genes disconnected (Table S17), and 33
genes not found in AraNet (Table S18). Verification of these connec-
tions by ROC analysis suggested that 150 of these genes should be
retained as query genes to identify other flowering-time–related genes
within AraNet (Figure 5) because the degree of the overall connection
measured by the ROC AUC increased from 0.1013 (293) to 0.9505
(150). Comparing the statistically significant a priori genes with these
150 connected genes, we found that TIC and CR88 were not in the
network. We then use the 150 connected genes as query genes to
identify other flowering-time–related genes. A total of 5501 associated

genes, 18 times the original list, were identified and sorted by their
log-likelihood scores.

This final list of genes provided additional biological filtering
capacity to inspect the statistically significant tests (Table S13, Table
S14, and Table S19). Eight of these genes (Table S20 and Table S22)
were also among the top 30 statistically significant associations (Table
S13 and Table S14). Notably, DCL2 (AT3G03300, ranked 148th
within the 5501 gene list) was significantly associated with SDV (Table
1 and Figure 6).

To determine how DCL2 is associated with flowering time, we
examined its function connections with other a priori candidate genes
(Figure 6, Table S21 and Table S22). In Figure 6, the left five genes
formed a network belonging to the photoperiod/autonomous path-
way, and the right three genes formed a flower development biological
process (GO accession number: 0009908) (He et al. 2010). The two
biological processes are linked by DCL1. Supporting evidence for the
network prediction came primarily from AT-DC (co-occurrence of
domains among Arabidopsis proteins) and AT-GN (gene neighbor-
hoods of bacterial and archaeal orthologs of Arabidopsis) with sup-
plementary evidence from HS-DC (co-occurrence of domains among
human proteins). Indeed, recent research (not in TAIR7 on which
AraNet was built) has shown that DCL2, DCL3, and DCL4 redun-
dantly function in RNA-directed DNA methylation and that triple
mutants had delayed flowering (Henderson et al. 2006).

In summary, 10 candidate genes out of a list of 35 a priori candi-
date genes were determined to have modest to robust associations.
Among them, 8 were overlapped by AraNet either through common

Figure 5 Predictive power of AraNet for
flowering-time–related pathways measured by
cross-validated receiver-operator characteristics
(ROC) curve analyses. A) All 293 a priori candi-
date genes and B) the 150 connected a priori
candidate genes.

Figure 6 DCL2 is organized into a network by connect-
ing to a priori flowering-time–related genes, evidence
for the connections coming from both plant- and
animal-derived data sets. Only part of the network is
shown. The background is the network constructed with
the 150 connected a priori candidate genes.
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variant tests (AP1, FCA, FRI, and FLC) or through rare variant tests
(FLM, FY, BAS1, and SPL5). Six other genes (two through common
variant tests and 4 through rare variant tests) were determined to be
interesting for follow-up studies because they all had top 30 significant
tests and supporting evidence from function prediction. Finally, DCL2
and 7 additional genes had gene network support and statistical sig-
nificance support.

DISCUSSION
While some components of this CR-GWAS strategy have been
proposed individually, our aim was to bridge advances in different
areas. In GWAS, common variants are typically identified though
individual testing, whereas rare variants, each with incommensurable
effects on phenotypic traits, are difficult to identify using the
traditional methods. For multiple rare mutations expected to affect
phenotypic traits of interest, grouping variants from the same genes,
pathways, and segmental conserved regions has provided promising
results (Bodmer and Bonilla 2008; Cohen et al. 2004; Nejentsev et al.
2009). If various rare variants in a group influence phenotype of
complex traits, focusing on the group rather than on an individual
variant helps enrich the association signals, reduce the number of
degrees of freedom in tests, and subsequently increase statistical power
(Mccarthy et al. 2008). In the current study, we further factored
function prediction and allele frequency distribution into a function-
aided sum test of rare variants, establishing a bridge between two
research areas: rare allele testing (Li and Leal 2008; Madsen and
Browning 2009; Morris and Zeggini 2010) and function prediction
(Kumar et al. 2009; Ramensky et al. 2002). Moreover, we addressed
the connection of statistical significance of associate analysis and
biological significance via a priori candidate genes and a gene net-
work, the combination of which has not been widely explored. Sim-
ilar gene networks have been constructed for C. elegans (WormNet),
S. cerevisiae (YeastNet), M. musculus (MouseNet), and O. sativa
(RiceNet). Individual components (i.e., function prediction, statisti-
cal testing for common and rare variants, functional annotation of
genomes, and gene network construction) of the composite analysis
demonstrated in this study should certainly improve over time, and
the overall structure of CR-GWAS should also evolve to accommo-
date additional components. The ultimate goal is to maximize our
capacity in complex trait dissection.

Genetic architecture of flowering time has been extensively
studied in the model species Arabidopsis and other plants. The
complexity and redundancy involved in controlling the transition
from vegetative to reproductive phase involves multiple pathways
with many genes (Izawa et al. 2003; Komeda 2004). Recent asso-
ciation studies tested whether natural allelic variation of these
known genes could account for the flowering-time differences
within a diverse collection or derived populations (Atwell et al.
2010; Brachi et al. 2010; Zhao et al. 2007). The allele frequency
of genes in the association panel directly affects the signal strength
and detection power of standard tests, but this has not been ade-
quately addressed. Following the CR-GWAS strategy, we found
that both common and rare variants in a series of genes (FRI,
FLC, FCA, AP1, FLM, FY, SPL5, and DCL2) contribute to the
flowering-time variation observed in a diverse collection of Arabi-
dopsis ecotypes. Some additional genes identified through this
composite analysis are likely to be further validated.

Although the focus of the current study is on one specific ex-
periment, the proposed approach can be applied quite generally. In
the current study, we used resequenced candidate gene fragment data
to showcase the CR-GWAS analysis. With the next-generation

sequencing technology, we expect similar analysis strategies to be
applied to exome sequencing and whole-genome resequencing studies.
On the other hand, data generated through array-based genotyping
approaches could also be analyzed in a similar framework if the
ultrahigh-density genotyping chip containing rare SNPs provides
adequate context sequence polymorphisms for function prediction.
The capacity of genome databases and gene networks is expected to
grow as similar bioinformatics frameworks spread to more species. In
addition, incorporating various analytical methods developed for
population stratification correction, testing of common variants and
rare variants (with flexible weight assignment), threshold determina-
tion, and computational load reduction (Aulchenko et al. 2007; Devlin
et al. 2004; Kang et al. 2010; Price et al. 2006; Pritchard et al. 2000; Yu
et al. 2006; Zhang et al. 2010) into a common platform would be
challenging but highly desirable.
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