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Abstract 

Background  This study aims to determine phase transformation temperatures of EndoSequence Reciprocating Sys-
tem (ESR), Wave One Gold (WOG), and Reciproc Blue (RB) via differential scanning calorimetry (DSC). Further, to evalu-
ate the cyclic fatigue behaviors by applying static (SF) and dynamic fatigue (DF) tests.

Methods  All files’ systems were evaluated using DSC (Netzch 200 F3, Germany) with scans ranging from 80°C 
to -80°C to compare phase transformation. Twenty files from each file system (n = 20) were tested by cyclic fatigue 
in SF (n = 10) and in DF (n = 10) and the number of cycles to failure (NCF) was calculated for all groups. The files were 
rotated in a clockwise motion in a metal tube at 350rpm. The NCF was calculated by multiplying the time until frac-
ture in minutes by speed (350 rpm). The NCF was analyzed statistically using a One-Way Analysis of Variance (ANOVA) 
to determine if there were significant differences among the experimental groups.

Results  All files exhibited a single peak in the cooling curve marking martensitic transformation with RB showing 
martensitic transformation start temperature at around 37oC . ESR and WOG exhibited single endothermic peaks 
marking austenitic transformation. RB exhibited two endothermic peaks marking R-phase and austenitic transfor-
mations. In cyclic fatigue testing, WOG presented the lowest NCF in DF testing compared to ESR and RB (p < .05) 
with a nonsignificant difference between the latter two. In the SF, ESR showed a statistically significant larger NCF 
compared to RB, which also showed statistically significant larger NCF compared to WOG (p < .05).

Conclusions  RB shows martensite transformation start temperature close to body temperature. RB and ESR show 
improved cyclic fatigue resistance compared to WOG in the SF mode. In the DF mode, WOG showed the lowest cyclic 
fatigue resistance.
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Introduction
The manufacturing of nickel-titanium (NiTi) endodon-
tic instruments with improved properties such as super 
flexibility [1], shape memory [2], and low modulus of 
elasticity, led to reduced instrumentation errors dur-
ing root canal treatment [3–5]. Single-file reciprocat-
ing nickel-titanium systems were introduced for root 
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canal instrumentation by YarEd, 2008 [6]. Reciprocat-
ing files engage and cut dentine when rotating in coun-
terclockwise motion (CCW) and disengage in clockwise 
(CW) reverse motion. Reciprocating motion appears 
to decrease the risk of file separation caused by cyclic 
fatigue failure compared to continuous rotation [7, 8].

One of the most important advancements in producing 
engine-driven files is represented by the development of 
thermomechanical treatment of the conventional nickel-
titanium alloy. Lately, special heating–cooling treatments 
have resulted in the formation of a titanium oxide layer 
on the surface of the instrument. VDW Germany (VDW, 
Munich, Germany) introduced Reciproc Blue (RB) files, 
an evolution of Reciproc M wire [9]. RB is thermally 
treated to improve the mechanical properties of the file, 
such as flexibility, cutting efficiency, and fatigue resist-
ance [9, 10]. RB has an S-shaped cross-section, two cut-
ting edges, and a noncutting tip, and it is manufactured 
by proprietary “blue heat treatment” [11]. De-Deus 
et al. studied the effect of Blue thermomechanical treat-
ment on fatigue resistance and flexibility [10, 12]. The 
study concluded that thermally blue-treated files showed 
improved flexibility and enhanced fatigue resistance 
compared with the original Reciproc files [10].

Wave One Gold (WOG) (Dentsply Sirona, Charlotte, 
NC, USA) is another reciprocating single file system that 
is manufactured with a parallelogram cross-section and 
has an off-centered design with two cutting edges. Gold-
wire technology is performed by heating and then slowly 
cooling the file after machining. The thermal treatment 
results in a special surface color corresponding to the 
titanium oxide layer [13]. The file features a single cut-
ting edge that contacts the canal wall during movement, 
alternating with its noncentral cross-section. This design 
helps reduce both the attachment and the screwing effect 
of the file on the canal wall [14]. Both manufacturers 
claim that the heat treatment of both WOG and RB has 
been proven to be superior to Wove One and Reciproc in 
curved canals due to their superior flexibility and cyclic 
fatigue resistance [9, 10, 15].

EndoSequence Reciprocating System (ESR) (Brasseler, 
Savannah, GA USA) has a reverse cutting flute design, 
progressive rectangular cross-section, and heat treat-
ment to increase its resistance to fracture [10, 16]. The 
manufacturer claims that the ESR file system preserves 
more coronal tooth structure than WOG because of its 
taper. ESR Files are electropolished to remove the sur-
face imperfections naturally present in NiTi. This process 
yields a cleaner, safer, and more efficient file. Previous 
reports show that electropolishing of NiTi instruments 
improves cyclic corrosion behavior with varying effects 
on cyclic fatigue resistance [17, 18].

These files’ super-flexibility and shape memory effects 
are related to martensitic transformation. At room tem-
perature, nickel-titanium alloy consists of an austenite 
phase while at lower temperatures nickel-titanium con-
sists of a martensitic phase [19]. A decrease in the tem-
perature can induce phase transformation from austenite 
to martensite (martensite or reverse transformation) and 
conversely increase in temperature causes forward trans-
formation from martensite to austenite. This transfor-
mation can also be induced by stress [20]. The reverse 
martensitic transformation is the reason for the super 
flexibility of nickel titanium instruments which facilitate 
the preparation of curved canals [21]. Furthermore, the 
rhombohedral (R phase) precedes austenitic or martensi-
tic transformation under certain conditions. Phase trans-
formation behavior is influenced by heat treatment and 
manufacturing processes [22, 23].

Differential scanning calorimetry (DSC) indicates 
which of the three phases (martensitic, R-phase, or aus-
tenitic) will be present at a given temperature. Struc-
tural transformations in the NiTi alloys are revealed 
as endothermic peaks on the heating DSC curve which 
represents the austenite transformation temperatures. 
Structural transformations in the NiTi alloys are revealed 
as exothermic peaks on the cooling DSC curve which 
represents the martensitic transformation temperatures. 
Information is obtained about the temperature ranges 
and enthalpy changes for the phase transformations [24, 
25].

Instrument separation during canal preparation 
remains a major concern and it can be caused by either 
torsional or cyclic fatigue [26–29]. Several studies have 
reported that cyclic fatigue is the most common cause 
of failure in curved canals [30]. Cyclic fatigue is attribut-
able to repetitive tensile and compression stresses in the 
instrument as it rotates in a curved canal [29]. Increas-
ing resistance to cyclic fatigue has been the focus of the 
advancement of NiTi rotary instrument technology, and 
improvements in the manufacturing process are among 
the strategies proposed to increase these NiTi instru-
ments’ mechanical properties. The shift to reciprocating 
rotary instruments and the use of heat-treated wires have 
been shown to increase NiTi instruments’ cyclic fatigue 
resistance [9].

The three NiTi mentioned previously are all used in 
reciprocation motion and are all heat-treated. In this 
study, we aim to characterize phase transformation 
temperatures of RB, WOG, and ESR and to compare 
the cyclic fatigue resistance of these files in both static 
(SF) and dynamic (DF) modes. Fractured instruments 
were examined using SEM. The null hypothesis was that 
there would be no difference between the three systems 
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regarding their phase transformation and cyclic fatigue 
resistance (SF and DF).

Materials and methods
This study was approved by the Research Ethics Com-
mittee of the Faculty of Dentistry, King Abdulaziz Uni-
versity, proposal no. 195–12–20. Three reciprocating 
NiTi instruments were used in this study: ESR size # 25 
with variable taper by Brasseler, WOG size #25/0.07 by 
Dentsply, and RB size # 25/0.08 by VDW. Form each 
NiTi system, five instruments were used (n = 5) for phase 
transformation analysis. The sample size was based on 
previous reports [31].

The working part of each file starting from the tip 
was cut into 10 mm long samples weighing approxi-
mately 10–15 mg each. All files’ systems were evaluated 
using DSC (Netzch 200 F3, Germany) with scans rang-
ing from 80°C to −80°C to compare phase transforma-
tion and thermal behavior. Each sample was placed in 
an aluminum pan. The pan was sealed and placed in the 
measuring chamber of DSC which was equipped with a 
controlled cooling device. Nitrogen was used as a purge 
gas. The temperature was increased from room tempera-
ture to 80°C at a rate of 10°C / min and then cooled to 
−80°C at a rate of −10°C /min to obtain the cooling curve 
to evaluate transformation temperature and phase trans-
formation. The temperature was subsequently increased 
back to 80°C at a rate of 10°C to obtain the heating curve 
to evaluate phase transformation and phase thermal 
behavior.

The transformation temperatures obtained from the 
DSC curves for each specimen include the martensitic 
transformation start temperature (Ms) and finish tem-
perature (Mf), the austenitic transformation start tem-
perature (As) and finish temperature (Af), as well as the 
R-phase transformation start temperature (Rs) and finish 
temperature (Rf). The interpretation of the DSC curves 
was based on methodologies and findings reported in 
previous studies [22, 32, 33].

Moreover, individual or combined peak areas were cal-
culated from the DSC curve. The heating and cooling rate 
was carried out 5 times per file. The tangent lines, where 
the DSC curve deviates from and returns to the baselines, 
were denoted as starting and finishing temperatures. The 
transformation temperatures were calculated from the 
intersection between the extrapolation of the baseline 
and the maximum gradient line of the DSC curve.

A total of 60 instruments, 20 instruments from each 
group (n = 20), were subjected to a universal testing 
machine (MultiTest 2.5-i, Mecmesin, Slinfold, UK). 
The sample size was selected based on previous reports 
[34, 35]. A sample size calculation was conducted using 
G-Power (v. 3.1) and showed that a sample size of n = 20 

per group was adequate to obtain a type l error rate of 
5% and a power of 80%. Contra-angle handpiece with 
1:16 reduction (Sirona, 64,625 Bensheim, Germany) and 
Electric endodontic motor (Setelec I- Endo Dual, Acteon, 
France) were used. Using a particular setup, the endo-
dontic motor’s handpiece was attached to the universal 
testing machine’s moving arm in the vertical direction. In 
the lower part of the universal testing machine, an arti-
ficial canal made of stainless steel was attached to the 
chuck vice. The vice was attached to a two-dimensional 
horizontal micro-positional stage to accurately align the 
artificial canal with its descending instrument. According 
to the Pruett method, the artificial canal’s angle was 60 
degrees with a radius of 5 mm [36]. The artificial canal 
was designed to accommodate the rotary instruments 
tested with a tip size of 25 and 8% taper. Each artificial 
canal depth was luster-milled to the instrument’s maxi-
mum diameter of + 0.2 mm, allowing the instrument 
to rotate freely inside the canal. The artificial canal was 
covered with glass to prevent the fractured part of the 
instrument from sliding out before further investigation. 
Following Nguyen et al., a drop of synthetic oil (WD-40 
Company, Milton Keynes, England) was used while test-
ing the rotary instrument to reduce the friction between 
the instrument and the artificial canal, which prevents 
the temperature from increasing [37].

In the SF mode, ten instruments from each group were 
rotating freely in a CW direction within the stainless-
steel artificial canal, and the maximum curvature was 
located 3 mm from the instrument’s tip. In the DF mode, 
the instruments were moving vertically to simulate the 
clinical pecking motion. A continuous axial oscillat-
ing motion was applied at 1 (Hz) cycle per second. Each 
instrument cycled 3 mm above and 3 mm below the 
starting point, resulting in a net oscillation movement of 
6 mm. Custom-made software (Mecmesin, Slinfold, UK) 
was used to control the axial motion.

The time to fracture in seconds was calculated using a 
video recording with a high-resolution camera (D3200; 
Nikon, Tokyo, Japan). A digital stopwatch was started 
when the instrument began to rotate until the first sign of 
fracture. The number of cycles to failure (NCF) was cal-
culated by multiplying the time until fracture in minutes 
by speed (350 rpm).

Two fractured segments per file system were selected 
randomly for fractographic analysis under scanning 
electron microscope (SEM) (AURA 100 Scanning Elec-
tron Microscope, Seron, Korea). To determine the 
characteristics of the fractured segments, a single evalu-
ator examined the fractured segments under 300 × and 
500 × magnification to confirm that instrument separa-
tion was attributable to cyclic fatigue. During fracto-
graphic analysis, the evaluator identified crack origin and 
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propagation, as well as striations and dimples that caused 
the instrument to fail.

Statistical analysis
Prior to analysis, the data for the NCF was transformed 
using the Box-Cox method to approximate normality and 
meet the assumptions of ANOVA. The NCF was ana-
lyzed statistically using a One-Way Analysis of Variance 
(ANOVA) to determine if there were significant differ-
ences among the experimental groups. Following a sig-
nificant ANOVA result (p < 0.05), pairwise comparisons 
were performed using Tukey’s Honest Significant Differ-
ence (HSD) test to identify specific group differences at a 
95% confidence level. Statistical analyses were conducted 
using SPSS (v. 11.0, SPSS Inc., Chicago, IL, USA) and 
Python for transformation and validation.

Results
All files showed thermal transformation and displayed 
reproducible DSC scans but with different phase trans-
formations at varying transformation temperatures. 
As shown in Fig. 1, the typical DSC curve of the RB file 
exhibited two endothermic peaks on the heating curve. 
The first peak coincides with the transformation from 
martensite to R-phase and the second peak coincides 

with the transformation from R-phase to austenite. The 
cooling curve shows a single peak, which marks the 
transformation from austenite to martensite. Figures  2 
and  3 show the typical DSC curves for ESR and WOG, 
respectively. Both figures show two heating curves and 
one cooling curve. Each heating curve shows a single 
peak, which marks the transformation from martensite 
to austenite. The cooling curves show a single peak, 
which marks the transformation from austenite to mar-
tensite. Comparison between the heating curves shows 
that the austenitic transformation peak was identified at 
higher temperatures for WOG compared to RB and ESR. 
The thermal peaks for RB were nearly equal to 23.7°C for 
R-phase transformation and around 35°C for austenitic 
transformation. The thermal peak for ESR was nearly 
equal to 29.19°C for austenitic transformation. For WOG, 
the thermal peak for austenitic transformation was 
around 45.73°C. In reverse transformation, the peak mar-
tensitic transformation temperature was around 28.61°C 
for RB, 21.45°C for ESR, and 41.47°C for WOG. Tables 1 
and 2 summarize phase transformation temperatures and 
average enthalpy for each transformation for all three 
files.

In forward transformation, all phase transformation 
temperatures were higher for WOG (As: 32.82 ± 0.31 

Fig. 1  DSC curves of RB during Cooling and Heating. The images show two heating (endothermic) curves (black and red) and one cooling curve 
(exothermic) (blue). The heating curves show two peaks, one coincides with the transformation from martensite to R-phase and the second peak 
coincides with the transformation from R-phase to austenite. The peak on the cooling curve marks the transformation from austenite to martensite
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◦ C, Af: 61.8 ± 0.5 ◦ C) than for ESR (As: 9.5 ± 0.32 ◦ C, 
Af: 36.62 ± 0.87 ◦ C) and RB (As: 31.32 ± 0.92 ◦ C, Af: 
43.62 ± 0.47 ◦ C) but ΔH values were higher for ESR 
(11.7416 ± 0.2644 H (J g −1)) than RB (1.5594 ± 0.195 (J g 
−1)) and WOG (2.59316 ± 0.3532 (J g −1)).

Twenty instruments from each system were sub-
jected to a cyclic fatigue test with 10 in statements 
(n = 10) subjected to SF and 10 in statements (n = 10) 
subjected to DF. In SF, ESR had a mean of 3701 ± 629.07 
NCF which was statistically significant (p < 0.05) com-
pared to RB with 2860.55 ± 572.39 NCF. In the same 
mode (SF), WOG had 976.85 ± 215.13 NCF which 
was statistically significant (p < 0.05) from both ESR 
(3701 ± 629.07 NCF) and RB (2860.55 ± 572.39 NCF). 
In DF, WOG showed 1748.25 ± 254.63 NCF which was 
statistically significant (p < 0.05) compared to both 
ESR (6495 ± 1366.63 NCF) and RB (6662.95 ± 1410.20 
NCF). Overall, all systems examined in this experiment 
exhibited a statistically significant larger NCF in the DF 
mode than in the SF mode (p < 0.05) (Table 3).

The fractographic analysis demonstrated the common 
features of cyclic fatigue failure, as shown in Figs. 4 and 
5. Fractographic analysis revealed larger areas of stria-
tions in the DF mode groups compared to the SF mode 
groups.

Discussion
The results and data analysis of the phase transformation, 
thermal behavior, and cyclic fatigue resistance revealed 
significant differences among the 3 file systems. Thus, 
the null hypothesis was rejected. Multiple factors affect 
the phase transformation behaviors of NiTi endodontic 
instruments. These factors could be intrinsic to the metal 
or extrinsic such as temperature, stress, manufacturing 
process, and heat treatment [38–40]. The transforma-
tion temperature is one of the most important factors 
that affect the mechanical properties of nickel-titanium 
alloy. A complete understanding of the phase transforma-
tion influenced by temperature changes is crucial for the 
efficient and safe use of NiTi rotary instruments. Miyai 
et al. and Brantley et al. concluded that differences in the 
transformation temperatures of nickel-titanium instru-
ments cause differences in the mechanical properties and 
behavior of these instruments under different conditions 
[25, 32]. The results of the present study showed that 
Ms and Mf points of WOG were higher than those for 
RB and ESR. This could indicate decreased flexibility of 
WOG files as its martensitic starting temperature is very 
high compared to body temperature.

RB shows two endothermic peaks on the heating 
curve indicating that the transformation of the alloy 

Fig. 2  DSC curve of ESR during heating and cooling. The images show two heating curves (endothermic) (black and red) and one cooling 
curve (exothermic) (green). The cooling curve shows a single peak that coincides with the transformation from austenite to martensite. The peak 
on the heating curve marks the transformation from martensite to austenite
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passes through the intermediate R-phase that shows 
complex transformation behavior tracing back to the 
manufacturing process. R-phase transformation has 
been reported in other rotary systems such as Hyflex 
EDM, ProTaper Gold files, and Vortex Blue files [41, 
42]. The intermediate R-phase may exist in Nickel-rich 

files, this phase may exist between austenite and mar-
tensite transformations [43, 44]. The R-phase is char-
acterized by superior fatigue resistance [45] and it 
is favored by the presence of Ti3Ni4 particles [41]. 
According to a study by Hieway et al., an R-phase peak 
was detected during the martensitic transformation of 
vortex blue, and it was found that the Af temperature of 
vortex blue is 38°C [41, 46].

RB file shows martensitic transformation starting 
temperature close to body temperature. This could indi-
cate greater flexibility and resistance to fracture during 
clinical use. The calculated associated energy (Δ H) was 
lower for RB and WOG than ESR. RB file shows Af tem-
peratures higher than working temperature, which may 
indicate that this file has stable martensite and R-phase 

Fig. 3  DSC curve of WOG during heating and cooling. The images show two heating curves (endothermic) (black and red) and one cooling 
curve (exothermic) (blue). The cooling curve shows a single peak that coincides with the transformation from austenite to martensite. The peak 
on the heating curve marks the transformation from martensite to austenite

Table 1  Phase transformation temperatures ( ◦ C) and associated energy enthalpy H (J g −1) for RB, ESR, and WOG during heating

(Mean ± standard deviation)

Δ H (J g −1) Af ( 
◦ C) As ( 

◦ C) Δ H (J g −1) Rf ( 
◦ C) Rs ( 

◦ C) Files

11.7416 ± 0.2644 36.62 ± 0.87 9.5 ± 0.32 - - - ESR

2.59316 ± 0.3532 61.8 ± 0.5 32.82 ± 0.31 - - WOG

1.5594 ± 0.195 43.62 ± 0.47 31.32 ± 0.92 2.58338 ± 0.3639 30.26 ± 0.43 15.84 ± 0.78 RB

Table 2  Phase transformation temperatures ( ◦ C) and associated 
energy enthalpy H (J g −1) for RB, ESR, and WOG during cooling

(Mean ± standard deviation)

Δ H (J g −1) Mf ( 
◦ C) Ms ( 

◦ C) Files

−3.16628 ± 0.0805 12.57 ± 0.59 33.27 ± 0.91 ESR

−1.81946 ± 0.0642 30.96 ± 0.79 55.2 ± 0.49 WOG

−1.86056 ± 0.453 22.06 ± 1.18 37.35 ± 0.76 RB
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while being used, which will favor super elasticity [47]. 
The increased austenitic transformation temperatures 
of NiTi files could be due to heat treatment during 
manufacturing [48].

In this study, we used CW continuous rotation rather 
than reciprocation motion in cyclic fatigue testing to 
standardize the kinematics between the files and to 
avoid any friction caused by rotating the file in its cut-
ting direction. Various cyclic fatigue test devices can be 
utilized with either SF or DF test models. In SF models, 
the instrument rotates at a fixed length within the artifi-
cial canal without any axial movement [49]. The DF test 

model was also used with an axial movement of 3 mm, 
as it is considered to more accurately replicate clinical 
conditions compared to SF models [35, 50]. The results of 
SF and DF resistance indicate that WOG has the fewest 
NCF compared to other brands. These results were con-
sistent with previous reports that WOG has fewer cycles 
to failure compared to Reciproc, which could be due to 
the cross-sectional diameter [8, 10, 51–53]. Zhang et al. 
reported that the cross-sectional design influences the 
instruments’ mechanical properties. Further, the larger 
the cross-sectional area, the less flexible the file  will be 
[54]. In addition to the metallurgical differences between 

Table 3  Mean ± standard deviation of NCF to failure of three reciprocating files RB, ESR, and WOG in the SF mode and the DF mode

a indicates statistical significance between systems in the SF and
b indicates statistical significance between systems in the DF
c indicates statistical significance for each system between SF and DF modes

Group Number Minimum NCF Maximum
NCF

Mean ± SD
NCF

Statistical significance

ESR (SF) 10 2898 5075 3701 ± 629.07a ap < 0.05

ESR (DF) 10 5033 9513 6495 ± 1366.63 cp < 0.05

WOG (SF) 10 717.5 1431.5 976.85 ± 215.13a ap < 0.05

WOG (DF) 10 1515.5 2285.5 1748.25 ± 254.63 bp < 0.05 cp < 0.05

RB (SF) 10 1753.5 3888.5 2860.55 ± 572.39a ap < 0.05

RB (DF) 10 4581.5 8809.95 6662.95 ± 1410.20 cp < 0.05

Fig. 4  Fractographic analysis images of ESR, RB, and WOG taken at 300X magnification using SEM. A, C, and E show fractured segments of ESR, 
RB, and WOV, respectively, after cyclic fatigue in static mode. B, D, and E show fractured segments of ESR, RB, and WOV, respectively, after fatigue 
in dynamic mode. Red arrows show multiple areas of fatigue crack initiation
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these files, their cross-sectional shape may also influence 
their cyclic fatigue resistance. WaveOne Gold features 
a unique parallelogram-shaped cross-section, whereas 
both Reciproc Blue and Reciproc possess S-shaped cross-
sections [55]. While there is no consensus on the impact 
of cross-sectional shape on cyclic fatigue resistance, 
several studies suggest that the dimensions of the cross-
sectional area play a more critical role than the alloy type 
[8, 36]. Previous research has indicated that instruments 
with a larger metal core mass tend to have reduced frac-
ture resistance [56]. Further investigation is needed to 
compare the cross-sectional areas of RB and WOG.

The DF mode groups exhibited a greater NCF than the 
SF mode groups. These results are consistent with pre-
vious studies [57, 58]. Hulsmann et al. reported that the 
DF mode has up to 150% greater fatigue resistance than 
the SF mode [59]. Further, the alloy phase transformation 
during the DF test prevents microcrack initiation, which 
also extends the instrument’s lifespan [39].

ESR, WOG, and RB were tested in the SF and DF 
modes using an artificial canal with a 60°-angle curvature. 
One of the drawbacks of laboratory studies is their lack 
of clinical relevance. It is challenging to assess the instru-
ments’ fatigue behavior and mimic the clinical situation, 
given that instrument separation may be the combined 
result of torsional and cyclic stresses [60]. Several studies 
have used the SF and DF modes to evaluate cyclic fatigue 

resistance [11, 53, 61, 62]. However, the DF test simu-
lates the clinical situation [59]. Hence, we applied both 
modes to assess cyclic fatigue resistance. Extracted teeth 
are suitable specimens to assess these instruments’ cyclic 
fatigue. However, they are not standardized because of 
the differences in the length of the canal, degree, and 
radius of curvature, and dentin hardness. In this study, 
we choose to use an artificial canal rather than extracted 
teeth in our study to ensure standardization [63, 64].

In fatigue behavior studies, fractographic analysis iden-
tifies the fractured surface characteristics to determine 
the fracture mechanism [65]. In past decades, the lon-
gitudinal view was used to study the mode of fracture. 
More recently, the lateral view with magnifying loupes 
[65, 66] followed by an operating microscope [67, 68] 
has been adopted for fractographic examination. Sat-
tapan et al. used SEM to examine the features of instru-
ment separation [28]. In fractographic analysis, striations 
characteristics could give an idea about the NCF. The 
presence of multiple crack initiation sites is known to 
extend the cyclic fatigue life of a material, as the applied 
stresses are distributed among the cracks. This reduces 
strain localization and slows the propagation of fatigue 
cracks [69]. Hence, a large striation area indicates slow 
crack propagation. By contrast, dimples in the center 
area indicate rapid crack propagation because of overload 
that exceeds the maximum level [70]. In this study crack 

Fig. 5  Fractographic analysis images of ESR, RB, and WOG taken at 500X magnification using SEM. A, C, and E show fractured segments of ESR, 
RB, and WOV, respectively, after cyclic fatigue in static mode. B, D, and E show fractured segments of ESR, RB, and WOV, respectively, after fatigue 
in dynamic mode. Yellow arrows show areas of fatigue striations, and green arrows indicate a dimpled surface
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initiation was at the cutting edges [71, 72] with multiple 
crack origins suggesting a similar fracture mechanism.

Fractographic analysis of the fractured segments con-
firmed that the failure was attributable to cyclic fatigue 
in all groups. Moreover, we observed large striation areas 
in the DF mode groups compared to the SF mode groups. 
In the DF test, the files were subjected to back-and-forth 
axial movements that allowed stress to be distributed 
along with the instruments [49, 50]. This explains why 
the DF testing mode has a greater number of cycles, and 
a large striation area compared to the SF testing mode. 
Further studies are needed to investigate the DF resist-
ance tests with various speed limits to explain the impact 
of speed on cyclic fatigue resistance.

Conclusions
Considering the limitation of the present in-vitro study, 
the following conclusions can be drawn; RB shows 
martensite transformation temperatures close to body 
temperature. ESR shows martensite transformation 
temperatures much lower than body temperature. Heat 
treatment of the evaluated files results in Af temperature 
higher than working temperatures, which results in more 
stable martensite and R-phase. RB and ESR show better 
cyclic fatigue resistance compared to WOG. The results 
suggest using RB and ESR in curved and narrow canals.
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