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Abstract
Background: Intracranial atherosclerosis  (ICAS) involves diverse histologies 
and several remodeling patterns. Ring finger protein 213 (RNF213) c.14576G>A 
variant (rs112735431), recently reported to be associated with ICAS, may be linked 
with negative remodeling (outer diameter – reducing morphological alteration) of 
intracranial arteries. This study investigated the outer diameter of atherosclerotic 
middle cerebral artery (MCA).
Methods: Patients with unilateral atherosclerotic MCA stenosis/occlusion were 
enrolled in this single‑hospital‑based case‑control study at The University of Tokyo 
Hospital. The patients were divided into two groups by the presence of RNF213 
c.14576G>A (variant group and wild‑type group) and the outer diameter of the 
MCA was measured with high‑resolution magnetic resonance imaging.
Results: Twenty‑eight patients with the wild type and 19 patients with the variant 
type were included. The outer diameter of the stenotic side MCA was smaller in 
the variant group than in the wild‑type group (P = 8.3 × 10‑6). The outer diameter 
of the normal side MCA was also smaller in the variant group than in the wild‑type 
group (P = 5.2 × 10‑3). The ratio of stenotic side to normal side was also smaller 
in the variant group than in the wild‑type group (P = 1.5 × 10‑5).
Conclusions: This study indicates that RNF213 c.14576G>A is associated with 
negative remodeling of ICAS.

Key Words: Atherosclerosis, remodeling, genetics, intracranial artery stenosis, 
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INTRODUCTION

Intracranial atherosclerosis  (ICAS) is one of the main 
causes of ischemic stroke.[36] The degree of intracranial 
artery stenosis is an important predictor of ischemic stroke 
in patients with ICAS, so evaluation of ICAS has mainly 
been based on assessment of the intraluminal status of 
atherosclerotic arteries.[17] However, the morphological 
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characteristics of the arterial wall of the stenotic lesion of 
ICAS have recently received much attention.[44]

Classification of arterial remodeling patterns is one of 
the widely used evaluation methods for arterial wall 
morphological characteristics. Progress in imaging 
technology such as high‑resolution magnetic resonance 
imaging  (MRI) has enabled the visualization of arterial 
morphological changes in ICAS,[12,43] and as reported in 
the coronary and other systemic arteries,[3,4,7,18,20,31,32,38,39] 
cerebral atherosclerotic lesions are known to exhibit 
considerable heterogeneity in morphological structures. 
Several arterial remodeling patterns, such as the 
“positive/negative” remodeling pattern, which is defined 
by the presence of outward expansion of the outer 
diameter, and the “eccentric/concentric” remodeling 
pattern, which is defined by the eccentricity of the wall 
morphology, have been reported previously.[1,8,28,30,40,41,43-45] 
As evaluation methods of wall morphology have 
advanced, differences in wall characteristics have 
emerged in association with the progression of ischemic 
stroke.[5,41,44,46]

Recently, we identified a genetic variant that has a 
strong association with ICAS.[23,24] This genetic variant 
is a single‑base variant  (nonsynonymous variant), 
c.14576G>A  (p.R4859K, rs112735431) variant in ring 
finger protein 213 (RNF213; a gene located in chromosome 
17q; based on the National Center for Biotechnology 
Information Reference sequence NP_065965.4). This 
RNF213 c.14576G>A variant (rs112735431) is present in 
approximately 25% of patients with ICAS in the Japanese 
population.[23,24]

RNF213 c.14576G>A was originally identified as a 
susceptibility gene variant of moyamoya disease (MMD), 
which is characterized by the progressive stenosis of 
the terminal portions of the bilateral internal carotid 
arteries.[2,14,21,22] Recently, negative remodeling has been 
reported to characterize the features of the arterial 
wall in MMD patients, which is defined as outer 
diameter‑reducing morphological alteration of the arteries 
occurring with the progress of luminal stenosis.[13,19,29]

In the present study, we hypothesized that RNF213 
c.14576G>A, the genetic variant associated with ICAS, 
is also associated with negative remodeling of ICAS. To 
prove this hypothesis, we analyzed the outer diameter 
of the intracranial arteries of ICAS patients divided 
into two groups according to the presence of RNF213 
c.14576G>A.

MATERIALS AND METHODS

Patient population
This study prospectively enrolled patients with 
unilateral atherosclerotic middle cerebral artery  (MCA) 
stenosis/occlusion who visited The University of 

Tokyo Hospital, Tokyo, Japan between April 2013 and 
December 2015. The criteria for inclusion were:  (1) 
unilateral MCA  (M1 portion) >50% stenosis/occlusion 
on   magnetic resonance angiography (MRA); and  (2) 
one or more risk factors of atherosclerosis including 
hypertension, diabetes mellitus, dyslipidemia, and history 
of cigarette smoking. Patients with non‑atherosclerotic 
vasculopathy, such as dissection, vasculitis, or MMD, 
and evidence of cardioembolism were excluded. We also 
evaluated for the presence of symptoms. Symptomatic 
patients were defined as having both of MRI finding of 
cerebral ischemia in the distribution of the stenotic MCA 
and consistent focal neurological deficit.

MRI studies
MRI/MRA was performed in all patients. MRA was 
used to evaluate stenosis. Degree of luminal stenosis 
was classified into 5 intracranial artery stenosis  (IAS) 
grades, according to a previously reported study, 
as: normal, no evidence of stenosis  (grade  0); mild 
stenosis, <50% stenosis  (grade  1); moderate stenosis, 
>50% stenosis  (grade  2); severe stenosis, partial 
signal loss with the distal flow signal  (grade  3); and 
occlusion, no distal flow signal  (grade  4).[37] The outer 
diameter of M1 portion of MCA was measured at the 
greatest minor axis on axial fast imaging employing 
steady‑state acquisition  (FIESTA) MRI using a 3T‑MRI 
scanner  (Signa, HDxt 3T; GE Healthcare, Milwaukee, 
WI) and a 12‑channel phased array head neck spine coil. 
Three‑dimensional time‑of‑flight MRA was performed 
with the following parameters: repetition time (TR)/echo 
time  (TE) =  26/2.9 ms, field of view  (FOV) =  20  cm, 
thickness/intervals  =  0.4/0.2  mm, matrix  =  512  ×  512, 
and number of excitations  (NEX) =  1. Then, FIESTA 
MRI was obtained using the following parameters: 
TR/TE  =  4.81/1.86 ms, FOV  =  20  cm, slice 
thickness/intervals  =  0.4/0.2  mm, matrix  =  512  ×  512, 
and NEX  =  1. The voxel size was 0.4  ×  0.4  ×  0.2 mm3 
for both MRA and FIESTA.

Identification of RNF213 c.14576G>A variant 
(rs112735431)
Peripheral blood samples were obtained from all 
enrolled patients. Genomic DNA was obtained from the 
peripheral blood leukocytes at SRL, Inc.  (Tachikawa, 
Tokyo, Japan) using a DNA extraction kit  (Talent Srl, 
Trieste, Italy). Screening for the RNF213 c.14576G>A 
was performed by direct Sanger sequencing in all cases. 
RNF213 exon 61, which includes the c.14576G>A variant 
of RNF213  (GenBank accession number, NM_020914.4), 
was amplified by polymerase chain reaction  (PCR). The 
primers 5′‑CTGCATCACAGGAAATGACACTG and 
5′‑TGACGAGAAGAGCTTTCAGACGA were used for 
amplification and sequencing, as reported previously.[21] 
PCR was performed in a total of 20 μL reaction mixture 
containing 50  ng of genomic DNA, 10 μL of 2×  PCR 
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buffer, 4 μL of 2 mM deoxynucleotide triphosphate, 
1 μL of each forward and reverse primers  (20 μM), and 
0.4 μL of 1 U/μL KOD FX Neo  (TOYOBO Co., Ltd., 
Osaka, Japan). Initial denaturation was performed at 
94°C for 2 minutes, followed by 35 cycles of amplification 
consisting of denaturation at 98°C for 10 s, annealing at 
60°C for 30 s, and extension at 68°C for 30 s. The PCR 
products were treated with QIAquick Gel Extraction 
Kit  (Qiagen N.V., Venlo, Netherlands) after agarose gel 
electrophoresis. Direct sequencing was performed at 
FASMAC Co., Ltd.  (Atsugi, Kanagawa, Japan) using an 
ABI Genetic Analyzer 3130XL or ABI DNA Analyzer 
3730xL  (Applied Biosystems, Foster City, CA). Cycle 
sequencing was carried out using the BigDye Terminator 
v3.1 cycle sequencing kit (Applied Biosystems). Sequence 
chromatographs were analyzed with a Sequence Scanner 
version  1.0  (Applied Biosystems). All investigators 
involved in genotyping were unaware of the phenotypic 
information. All analyses of the sequenced data were 
performed at the Department of Neurosurgery, The 
University of Tokyo.

Statistical analysis
The Pearson Chi‑square test was used to compare 
the clinical characteristics between the wild type 
group (patients with RNF213 c.14576G>A wild type, GG) 
and variant group  (patients with RNF213 c.14576G>A 
variant both heterozygote and homozygote, AG and 
AA). The Mann–Whitney U test was used to compare 
non‑normally distributed continuous variables, such as 

age and diameter of the intracranial arteries between the 
two groups. All analyses were performed using JMP Pro 
version 11.0.0 (SAS Institute, Inc., Cary, NC). P value less 
than 0.05 was considered to be statistically significant.

Ethical considerations
This study was approved by the Human Genome, Gene 
Analysis Research Ethics Committee of the Faculty of 
Medicine, The University of Tokyo (approval number: 3516; 
approval date: September 12, 2011). Written informed 
consents were obtained from all participants in this study.

RESULTS

Clinical characteristics
Table  1 shows the clinical characteristics of the 
patients including 28  patients with the wild type and 
19  patients with the variant type. The distribution of 
IAS grade, mean age, number of women, and number 
of symptomatic patients were similar in the wild‑type 
and variant groups. Patients with diabetes mellitus 
were significantly more common in the wild‑type group 
than in the variant group  (P  =  0.030). The numbers of 
patients with hypertension, dyslipidemia, ischemic heart 
disease, arteriosclerosis obliterans, and history of cigarette 
smoking were not significantly different.

Outer diameter
Figure  1 represents examples of measurement of the 
outer diameter in both groups. Table  2 shows the 

Table 1: Clinical characteristics of the study population

Characteristics RNF213 c. 14576G>A Genotype P

Wild Type (G/G) Variant (A/G + A/A)

Number of patients 28 19
Genotype

GG 28 0
GA 0 18
AA 0 1

IAS grade, n (%)
2 11 (39.3) 8 (42.1)
3 5 (17.9) 5 (26.3)
4 12 (42.8) 6 (31.6) 0.80

Age, mean±SD (range), y 62.1±12.9 (41-83) 61.2±11.3 (38-77) 0.64
Female, n (%) 12 (42.8) 11 (57.8) 0.31
Symptomatic, n (%) 7 (25.0) 4 (23.4) 0.75
Underlying diseases

Hypertension 12 (42.8) 10 (52.6) 0.50
Diabetes 6 (21.4) 0 (0.0) 0.030
Dyslipidemia 5 (17.8) 6 (31.5) 0.27
Ischemic heart diseases 4 (14.2) 3 (15.7) 0.88
Arteriosclerosis obliterans 0 (0.0) 1 (5.2) 0.21

Smoking 6 (21.4) 6 (31.5) 0.43
Alcohol 5 (18.5) 5 (26.3) 0.48
IAS: Indicates intracranial artery stenosis, RNF213: Ring finger protein 213, SD: Standard deviation
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results of measurement. Figure  2 shows the box plots 
of the each value. In the wild‑type group, the mean 
outer diameter was 2.94  ±  0.57  mm on the stenotic 
side and 3.14  ±  0.46  mm on the normal side. In the 
variant group, these values were 2.09  ±  0.32  mm and 
2.80 ± 0.33 mm, respectively. The outer diameter of the 
stenotic side was smaller than the normal side in both 
groups. The outer diameter of the stenotic side was 
significantly smaller in the variant group than in the wild 
type group (P =   8.3 × 10‑6). The outer diameter of the 
normal side was also significantly smaller in the variant 
group than in the wild‑type group  (P  =  5.2  ×  10‑3). 
To investigate the influence of RNF213 variant on 
remodeling, the ratio of the stenotic side to normal side 
was calculated and was found to be significantly smaller 
in the variant group  (0.75  ±  0.11) than in the wild‑type 
group (0.93 ± 0.13) (P = 1.5 × 10‑5).

DISCUSSION

The present study found that the outer diameter of 
MCA atherosclerosis was smaller in patients with 
the RNF213 c.14576G>A than in patients without 
the RNF213 c.14576G>A. In addition, the ratio of the 
outer diameter of the stenotic side to the normal side 
in MCA atherosclerosis was smaller in patients with 
the RNF213 c.14576G>A than in patients without 

RNF213 c.14576G>A. These results indicate that 
RNF213 c.14576G>A is associated with negative arterial 
remodeling in ICAS.

The histology of positive remodeling of atherosclerotic 
arteries in ICAS as well as other systemic arteries is 
known to involve lipid‑rich plaque burden, intraplaque 
hemorrhage, fibrin cap, and infiltration of inflammatory 
cells.[5,7,9,12] However, the histological characteristics of 
negative remodeling is less well known, and few detailed 
histological findings have been reported. Negative 
remodeling of the coronary artery has been observed to 
involve shrinkage of the arterial wall resulting in stenotic 
lumen instead of intraluminal plaque deposition.[25-27,34] 
Assuming that negative remodeling ICAS undergoes 
similar histological changes, RNF213 c.14576G>A might 
manifest as the morphological shrinkage of the arterial 
wall in ICAS. However, detailed histological findings of 
wall shrinkage in negative remodeling atherosclerosis 
have not been elucidated even in the coronary artery. 
To investigate the detailed effects of the RNF213 
c.14576G>A on ICAS, more histological observations of 
negative remodeling in ICAS are required.

The smaller outer diameter on the normal side in the 
variant group indicates that the RNF213 c.14576G>A 
affects the outer diameter of normal intracranial arteries. 
Consequently, the present study identified RNF213 
c.14576G>A as a genetic factor in the structure of 
normal intracranial artery. This important result suggests 
that the RNF213 c.14576G>A may affect either the 
morphogenesis or the morphological change of the 
intracranial artery. The present study investigated only 
ICAS patients classified by the presence of RNF213 
c.14576G>A, hence further study should compare the 
character‑matched groups of healthy individuals classified 
by the presence of RNF213 c.14576G>A to confirm 
the influence of RNF213 c.14576G>A on the normal 
intracranial artery.

RNF213 encodes a protein with 5256 amino acids 
harboring a RING  (really interesting new gene) finger 
motif and an AAA  (adenosine triphosphatase associated 
with various cellular activities) domain, indicating 
the presence of both E3 ubiquitin ligase activity and 
energy‑dependent unfoldase.[14,21] RNF213 mRNA 
is ubiquitously expressed in various human tissues, but 
is especially highly expressed in immune tissues, such as 

Table 2: Results of measurement of outer diameter

RNF213 c. 14576G>A Genotype P

Wild type (G/G) n=28 Variant (A/G + A/A) n=19

Outer diameter on stenotic side, mm 2.94±0.57 (3.22, 1.7-3.8) 2.09±0.32 (2.17, 1.53-2.69) 8.3×10−6

Outer diameter on normal side, mm 3.14±0.46 (3.24, 2.18-4.33) 2.80±0.33 (2.78, 2.17-3.27) 5.2×10−3

Ratio 0.93±0.13 (0.94, 0.54-1.15) 0.75±0.11 (0.76, 0.51-0.93) 1.5×10−5

Data are average±standard deviation (median, range). RNF213: Indicates ring finger protein 213

Figure 1: Representative cases are presented. MRA (a and c) and 
FIESTA images (b and d) of a 70-year-old man with RNF213 variant 
(a and b) and of a 72-year-old woman without RNF213 variant 
(c and d). Outer diameters of the bilateral M1 are shown. >50% 
stenosis or occlusion cases on MRA were included and the outer 
diameter of M1 was measured at the greatest minor axis in the 
proximal portion on axial FIESTA MRI. Rt indicates right side; Lt, 
left side

dc
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the spleen and leukocytes.[14] Knockdown of RNF213 in 
zebrafish caused irregular wall formation in trunk arteries 
and abnormal sprouting vessels, indicating the potential 
function of RNF213 in the development of intracranial 
angiogenesis.[21] On the other hand, transgenically 
generated RNF213‑deficient mice and RNF213‑knock‑in 
mice expressing a missense mutation in mouse RNF213 
p. R4828K on exon 61, corresponding to human 
RNF213 p. R4859K, grow normally, with no significant 
differences in MRA findings or the anatomy of the 
circle of Willis compared with wild‑type littermates.[15,35] 
These findings indicate that other secondary insults such 
as environmental factors besides RNF213 deficiency 
are necessary for the onset of intracranial major artery 
stenosis and intracranial arterial remodeling. In vitro 
studies of induced pluripotent stem cell‑derived 
vascular endothelial cells from patients with MMD and 
carriers of RNF213 c.14576G>A variant showed lower 
angiogenic activities in the tube formation assay than in 
carriers of the wild‑type variant, indicating the potential 
function of RNF213 in endothelial cells.[10] Recently, 
the signaling pathways for the regulation of RNF213, 
such as interferon‑beta signaling, and the relationship of 
RNF213 with the known molecular pathways for vascular 
remodeling, such as non‑canonical Wnt signaling, have 
gradually been identified.[16,33] However, the precise 
molecular mechanism by which the RNF213 c.14576G>A 
causes human intracranial arterial remodeling is not 
completely understood, and further molecular biological 
functional analysis of RNF213 is required.

Remodeling patterns are associated with the risk of 
ischemic stroke,[5,41,44,46] and so influence the therapeutic 
choice of ICAS. Conventionally, evaluation of the severity 
of luminal stenosis has mainly focused on the intracranial 
artery, and transluminal angioplasty has been considered 
as an effective therapeutic choice to improve ICAS and 
subsequent ischemic stroke.[11] The Stenting vs. Aggressive 

Medical Management for Preventing Recurrent Stroke 
in Intracranial Stenosis  (SAMMPRIS) trial evaluated the 
effectiveness of intraluminal angioplasty, but failed to 
prove the efficacy of intracranial artery stenting, as the rate 
of periprocedural stroke after percutaneous transluminal 
angioplasty and stenting was higher than the estimated 
probability.[6] One important possible reason is that the 
SAMMPRIS trial included patients selected on the basis of 
angiographical arterial stenosis but the wall characteristics 
such as outer diameter and eccentricity were not 
evaluated. Therefore, patients with negative remodeling of 
stenotic M1 might have suffered damage to the arteries 
through excess inflation of the balloon and stent. Indeed, 
in previous studies with coronary intervention, it has 
shown that remodeling pattern of coronary artery has 
relationship with the incidence of adverse cardiac events 
including post‑interventional dissection.[39,42] Evaluation of 
wall morphology with high‑resolution MRI may provide 
information about the optimum stent size and inflation 
pressure, and the present study suggests that preoperative 
investigation of the RNF213 c.14576G>A may also 
improve the effectiveness of intracranial artery stenting.

The present study has some limitations. Only the outer 
diameter was measured on MRI as the morphological 
feature of ICAS and wall structure itself was not 
investigated. Wall imaging could observe more detailed 
influence of the RNF213 c.14576G>A on the morphological 
characteristics of ICAS. In addition, to evaluate the effect 
of RNF213 c.14576G>A on the normal intracranial artery, 
character‑matched groups classified by the presence of 
RNF213 c.14576G>A of healthy individuals, not only of 
atherosclerotic patients, must be compared.

CONCLUSION

This study indicates that RNF213 c.14576G>A 
is associated with negative remodeling of ICAS. 

Figure 2: (a) A box plot of the outer diameters of M1 on the stenotic side of wild type and variant groups. Variant group had significantly 
smaller outer diameter on the involved side than the wild type group. (b) A box plot of the outer diameters of M1 on the normal side. The 
variant group also had significantly smaller outer diameter on the normal side than wild type group. (c) A box plot of the ratio of outer 
diameters of M1 on the stenotic side to the normal side. Variant group had significantly smaller ratio than the wild type group

ba c
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Identification of the RNF213 c.14576G>A may lead to 
optimum treatment of ICAS.
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