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Abstract: Aureobasidium melanogenum has been used as an animal feed additive for improving
thehealth of pets, however, it has not yet been applied in honey bees. Here, a fungal strain CK-CsC
isolated from bee bread pollen, was identified as A. melanogenum. Following characterizing CK-CsC
fermentation broth, the 4-days fermentation broth (SYM medium or bee pollen) of the CK-CsC
was used to feed newly emerged adult honey bees in cages under laboratory-controlled conditions
for analysis of survival, gene expression of nutrient and antibacterial peptide, and gut microbiota
of honey bees. It was found that the CK–CsC fermentation broth (SYM medium or bee pollen) is
nontoxic to honey bees, and can regularly increase nutrient gene expression of honey bees. However,
significant mortality of bees was observed after bees were fed on the supernatant liquid of the
fermentation broth. Notably, this mortality can be lowered by the simultaneous consumption of bee
pollen. The honey bees that were fed bee pollen exhibited more γ-Proteobacteria, Bacteriodetes, and
Actinobacteria in their gut flora than did the honey bees fed only crude supernatant liquid extract.
These findings indicate that A. melanogenum CK–CsC has high potential as a bee probiotic when it
was fermented with bee pollen.

Keywords: bee bread; fungi; nutrient genes; antibacterial peptide genes

1. Introduction

Honey bee health and nutrition are closely related. Aside from honey, which mainly
contains carbohydrates, honey bees feed on bee pollen, which provides comprehensive
nutrition [1]. It has been found that owing to the improved environmental quality of land
under the US Conservation Reserve Program (CRP) with regards to the abundance of
diverse nectar plants, the nutritional and immune status of bee colonies on CRP land are
better. Moreover, these bees have a high survival rate in the winter [2]. Feeding on high-
quality pollen from diverse plants benefits bee physiology; for example, it supports the
healthy development of the hypopharyngeal gland, the high expression of vitellogenin and
immune genes, and even greater pathogen tolerance [3,4]. A favorable nutritional status
protects bees from the numerous factors that threaten their health, both nonbiological
(e.g., chemical drugs, electromagnetic waves, and climate change) and biological (e.g.,
pathogenic bacteria and Varroa mites) [5–8].

Honey bees make bee bread by mixing plant pollen with nectar and their saliva. Bee
bread composition depends on the nectar sources, but in general, bee pollen contains
approximately 13%–55%, 1%–20%, and 2%–60% carbohydrates, fat, and protein, respec-
tively [9–13]. After its transport back to the hive, pollen is stored in the honeycomb and
made into bee bread. Bee bread contains an abundance of microorganisms, including bac-
teria and fungi. Bacterial communities in bee bread, which typically include Lactobacillus
spp. and Acinetobacter spp., secrete organic acids that help preserve the bee bread [14,15].
As for fungi, Aspergillus spp., Cladosporium spp., Penicillium spp., Rhizopus spp., and Aure-
obasidium spp. have been observed in bee bread. These fungi can secrete multiple types
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of extracellular enzymes to convert carbohydrates, fats, and proteins into organic acids,
antibiotics, and other metabolites [16]. Fungi that are typically present in bee bread assist
in its preservation and the conversion of its nutrients [15,17,18].

The use of probiotics for honey bees to improve bee health has recently gained pop-
ularity [19–22]. In honey bees, probiotics have been found that not only improve the gut
metabolism (e.g., carbohydrate breakdown), resulting in increased body weight [23–25],
but also reduce diseases by preventing intestinal infection and stimulating host immune
responses [26,27]. Most of probiotics used/ tested in honey bees belong to lactic acid
bacteria which show beneficial effects on honey bees [22]. Only few of probiotics tested in
honey bees possess fungal strains. For example, a yeast strain was included in a commercial
probiotic mixture can increase colonies’ strength and help honey bees against the Nosema
spp. [28]. The fungal strains, Botrytis cinerea, Cladosporium sp. and Colletotrichum acutatum
are assumed to have a nutrition value for honey bees [29].

In Taiwan, pollen from tea tree (Camellia sinensis) has the highest production output of
approximately 150 tons per year [30]. We are interested in examining the microbial flora
within the bee bread made from this type of pollen. This study centered on fungi. During
the screening process, Aureobasidium melanogenum was observed. The fungus, which is
common in the natural world, has been isolated from soil, mud, rotted wood, limestone,
and water as well as from wet environments such as bathroom surfaces. It has been found
in honey [31–35]. Studies have demonstrated that exopolysaccharides (EPSs) produced
by Aureobasidium melanogenum promote anti-inflammatory and anti-tumor activities in
mammals [36,37] as well as cholesterol metabolism [38]. This explains the use of this
fungus in animal feed additives [39]. Furthermore, this fungus secretes numerous enzymes,
including amylase, cellulase, proteinase, lipase, xylanase, mannanase, polygalacturonase,
and transferases [32–34,40], which are used widely in the food processing industry [41].
Despite the development potential of A. melanogenum in animal feed, research on its bio-
logical effects on honey bees is lacking. Therefore, we conducted a preliminary discussion
of the fermentation characteristics of the CK–CsC and further assessed the effects of the
CK-CsC fermentation broth on honey bees via monitoring the expression of genes encoding
nutrient related genes, i.e., major royal jelly protein 1 (mrjp1) and vitellogenin (vg), and
immune related genes, i.e., antibacterial peptide genes apidaecin and hymenoptaecin. To
the best of our knowledge, this is the first study to explore the effects of A. melanogenum
CK–CsC, isolated from bee bread, on honey bee.

2. Materials and Methods
2.1. Honey Bees

The honey bee (Apis mellifera) colonies were maintained in the apiary at National
Chung Hsing University. Each bee colony contained a young egg-laying queen, had a
working population of eight frames of comb with eggs, larvae, pupae, and food (i.e., honey
and bee bread). The healthy honey bee colonies were maintained in accordance with
standard beekeeping guidelines. For evaluation of fungi fermentation broth effect on honey
bees, the sealed brood frames were removed from the bee colony and maintained in the
insect growth chamber (temperature: 33 ± 1 ◦C, relative humidity: 60% ± 10%, dark)
until the pupae emerged as adult bees. The emerging worker bees were then subjected to
further experiments.

2.2. Isolation and Preservation of Fungal Strains in Camellia sinensis Bee Bread

Bee bread produced from C. sinensis pollen was obtained from the honeycombs, and
200 mg portions were homogenized in 1 mL sterile water. Next, an inoculation loop was
used to sample the pollen solution and create a streak culture in potato dextrose agar (PDA)
containing 35 mg/L of chloramphenicol. The streak culture was incubated at 28 ◦C for
48 h; this was followed by a second round of streaking. The new growth colonies were
then examined and confirmed to be of a single type—that is, a pure strain. After the strain
had sporulated, the surface of the colony was washed with phosphate buffer (pH 7.0),
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and impurities and hyphae were removed from the collected spore mixture using a sterile,
defatted cotton swab. The obtained spore filtrate, which contained 20% glycerol, was
divided into separate samples and stored at −80 ◦C.

2.3. Molecular Identification of FUNGAL Strains

The fungal DNA was extracted using PureLink DNA Purification Kit (Thermo Fisher
Scientific, Rockford, IL, USA) according to the manufacturer’s instructions. Specific primers
ITS1 and ITS4 (Supplementary Table S1) were used to perform the polymerase chain
reaction (PCR) and amplify the gene fragments in the internal transcribed spacer region (ITS;
including 5.8S rDNA) [42]. The amplification settings were as follows: Stage 1 involved
one cycle of denaturing at 94 ◦C for 5 min. Stage 2 involved 35 cycles of denaturing at
94 ◦C for 30 s, 50 ◦C for 20 s, and 72 ◦C for 45 s. Each PCR sample had a total volume
of 25 µL, contained 10× PCR buffer, 0.1 µM of primer pair, 10 mM dNTP, 25 ng of DNA,
and 0.25 µL of Taq DNA polymerase (Takara Bio Inc., Shiga, Japan). The amplified ITS
gene fragments were then cloned into a pGEM-T vector (Promega, Madison, WI, USA)
for bidirectional sequencing. The obtained sequences were analyzed using Vector NTI
software V10 (Invitrogen), and the nucleic acid sequences were deposited into the GenBank
database established by the US National Center for Biotechnology Information (NCBI).
The phylogenetic tree was constructed by using MEGA X [43] with a neighbor-joining
method [44]. Bootstrapping was performed for 1000 replicates, and the evolutionary
distances were computed using the Kimura two-parameter model [45,46].

2.4. Analysis of the CK–CsC Fermentation Broth

A total of 107 spores of the CK–CsC strain was inoculated into 10 mL of YPD medium
(a seed culture, 10 g of yeast extract, 20 g of peptone, 100 g of glucose, and 0.5 g of
chloramphenicol in 1 L) [33] and incubated in a shaking incubator at 28 ◦C for 1 day. Then
10 mL of seed culture was added to 90 mL of SYM culture medium (140 g of sucrose, 3 g of
yeast extract, 0.6 g of (NH4)2SO4, 5 g of K2HPO4, 1 g of NaCl, and 0.2 g of MgSO4·7H2O in
1 L) [33], which was incubated with shaking at 28 ◦C and sampled after incubation for 24,
48, 72, 96, and 120 h, respectively. The pH, protein content, biomass, and EPS output of the
samples were then determined. The pH values were measured by applying a pH meter
(Sartorius PB-10, Sartorius Lab Instruments GmbH & Co. KG, Goettingen, Germany) to the
supernatant liquid obtained from the centrifugation of 10 mL of the fermentation broth.
Protein content was measured by applying the Pierce BCA Protein Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA) to 1 mL of the supernatant liquid. To measure the
biomass, 10 mL of fermentation broth was freeze dried, and the weight of the control
group (i.e., 10 mL of powder from freeze-dried SYM culture not containing spores) was
subtracted from the weight of the obtained powder. The EPS output was the dry weight
of the freeze-dried precipitate from the mixture of the 10 mL of supernatant liquid with
20 mL of cool absolute ethanol [33]. The characteristic analysis of the fermentation broth
was performed in three replicates.

2.5. Effects of the CK–CsC SYM Fermentation Broth on Honey Bee
2.5.1. Effects of the CK–CsC SYM Fermentation Broth on the Honey Bee Survival Rate

The experiment was performed on three groups of 50 newly emerged adult honey
bees, which were given 50% sucrose syrup (S), SYM broth that had fermented for 4 days
(F), and supernatant liquid from that fermentation broth (FS), respectively. The honey bees
were placed in a transparent acrylic cage (15 cm × 10 cm × 15 cm) that were transferred
to a growth chamber with no light in which the temperature and relative humidity were
maintained at 33 ± 1 ◦C and 60% ± 10% [47]. The syrup or fermentation broth was replaced
every 3 days, and the bees were observed for 1 week, during which the mortality rate was
recorded and the dead bees were removed. This experiment was conducted three times
using three honey bee colonies.
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2.5.2. Effects of the CK–CsC SYM Fermentation Broth on Gene Expression of Bees

Due to the supernatant liquid of the SYM fermentation, broth is toxic to adult honey
bees, only the SYM fermentation broth was assessed with 50 newly emerged adult honey
bees for its effects on gene expression. The SYM medium or fermentation broth given to
the honey bees was replaced every 3 days. On the seventh day, the bees were anesthetized
with CO2, and 10 honey bees were randomly selected for dissection, specifically to purify
and extract RNA from the head and abdomen. This experiment was conducted three times
using three honey bee colonies.

2.6. Effects of Polyfloral Bee Pollen Fermented by CK–CsC on Honey Bee

The polyfloral bee pollens, used in this study, were collected with a pollen trap in
the university apiary from March to May (spring season in Taiwan) [47]. A total of 107

CK–CsC spores were inoculated into YPD medium that was then incubated with shaking
for 1 day at 28 ◦C. Afterward, 10 mL of seed culture was mixed with 30 g of bee pollen,
and fermented at 28 ◦C for 4 days.

2.6.1. Effects of the Fermented Pollen on the Honey Bee Survival Rate

Three groups of 50 newly emerged adult honey bees were given 50% sucrose syrup
and polyfloral pollen (S + P), 50% sucrose syrup and pollen mixed with SYM medium
(S + SYM-P), and 50% sucrose and CK-CsC fermented pollen (S + CK–CsC-P), respectively.
The syrup and pollen cakes were replaced every 3 days, and the bees were observed for
a week, during which the mortality rate was recorded and the dead bees were removed.
This experiment was conducted four times using four honey bee colonies.

2.6.2. Effects of the Fermented Pollen on Gene Expression of Bees

After 6 days of feeding, 10 bees from the S + SYM-P and S + CK–CsC-P groups were
randomly selected for dissection, specifically to purify and extract RNA from the head and
abdomen. This experiment was conducted four times using four honey bee colonies.

2.7. Purification and Extraction of Total RNA of Honey Bees

The purification and extraction of honey bee RNA were performed using TRIzol
reagent and the PureLink RNA Mini Kit (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. After the RNA was extracted, the residual
DNA in the samples was removed using a TURBO DNA-free Kit (Thermo Fisher Scientific).
The purified RNA samples were then quantified using a Qubit fluorometer (Thermo Fisher
Scientific) and stored at −80 ◦C.

2.8. Purification and Extraction of Gut DNA of Honey Bees

DNA was extracted from the midguts and hindguts of 10 honey bees using the
PureLink DNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA). After
purification, the DNA was quantified using a Qubit fluorometer (Thermo Fisher Scientific)
and stored at −20 ◦C.

2.9. Gene Expression Measurement Using Reverse Transcription-Quantitative PCR (RT-qPCR)

The iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) was used to reverse
transcribe 1 µg of total RNA into cDNA. Next, qPCR was performed to determine the
expression of nutrient genes mrjp1 and vg and antibacterial peptide genes apidaecin and
hymenoptaecin. The primers used are presented in Supplementary Table S2 [23,47–49].
Each qPCR assay was conducted in a 96-well plate, and every 20 µL of reaction solution
contained 10 µL of 2 × iQ SYBR Green Supermix (Bio-Rad, Taipei, Taiwan), 2.5 µL of
1.6 µM of each gene-specific primer, and 5 µL of diluted cDNA. After the reaction agents
were added, the 96-well plate was placed inside a CFX Connect Real-Time System (Bio-
Rad) and allowed to react. The reaction conditions were one cycle at 95 ◦C for 3 min,
followed by 40 cycles at 95 ◦C for 10 s and at 59 ◦C for 30 s. For each cycle, the fluorescent
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reaction signals were detected, and Bio-Rad CFX Maestro software was used to collect
and normalized to the reference gene rpS18 [50]. The relative gene expression data were
analyzed using the 2−∆∆CT method [51]. Each RT-qPCR assay involved at least three
independent biological replicates with three technical repetitions.

2.10. Gut Microflora Quantification with qPCR

The primers used are presented in Supplementary Table S1 [52,53]. The primer pairs
were used to determine the abundance of total bacteria, Lactobacillus kunkeei, and the
amounts of bacteria from five phyla, namely α–Proteobacteria, γ–Proteobacteria, Bacte-
riodetes, Firmicutes, and Actinobacteria in the bee guts. Every 20 µL of qPCR reaction
solution contained 10 µL of 2 × iQ SYBR Green Supermix, 2.5 µL of 1.6 µM of each gene-
specific primer, and 5 µL of diluted gut DNA. The cyclic procedure included one cycle at
95 ◦C for 3 min, followed by 40 cycles at 95 ◦C for 10 s and at 55–59 ◦C for 30 s. For each cy-
cle, the fluorescent reaction signals were detected, and Bio-Rad CFX Maestro software was
used to collect and normalized to the reference gene actin [50]. The relative bacterial abun-
dance was analyzed using the 2−∆∆CT method [51]. Each qPCR assay involved at least four
independent biological replicates (10 guts for each repeat) and three technical repetitions.

2.11. Statistical Analysis

Analyses were performed using SAS software, Version 9.4 of the SAS System (SAS
Institute Inc., Cary, NC, USA) and graphs were created using SigmaPlot 14.0 software
(Systat Software Inc., San Jose, CA, USA). Honey bee survival rate was analyzed using a
Kaplan-Meier survival curve, and the significant differences among groups were subjected
to Log-Rank test and Holm-Sidak test for multiple comparisons when applicable. The
data on gene expression and gut microflora changes were analyzed using Mann–Whitney
U tests.

3. Results and Discussion
3.1. Isolation and Molecular Identification of Fungi from Pollen Bee Breads

Taiwan’s location in subtropical and tropical climate zones explains its abundant flora,
consisting of over 500 nectar plants for honey bees [54]. With tea being a widely planted
crop, pollen from C. sinensis, which is commonly collected by local apiarists, accounts
for more than one third of Taiwan’s bee pollen output [30]. This fueled our interest in
understanding the fungal microbial composition of bee bread made from the storage of
this type of bee pollen in honeycombs. We isolated at least ten fungal strains from the
bee bread, but only four fungal strains could be identified according to the results from
the ITS sequence analysis (including 5.8S rDNA) of approximately 600 base pairs with
genetic sequence similarities of 98% or higher. Furthermore, the ITS phylogenetic tree was
drawn by analyzing 26 sequences. Aside from CK–CsAf, CK–CsC, CK–CsCt, and CK–CsP,
four Aspergillus spp. sequences, four Aureobasidium spp. sequences, five Cladosporium spp.
sequences, and nine Penicillium spp. sequences were obtained from the NCBI dataset.
The results indicate that strain CK–CsAf (MT890015) was a monophyletic group among
Aspergillus spp., CK–CsC (MT791349) was a monophyletic group among Aureobasidium spp.,
CK–CsCt (MT890016) was a monophyletic group among Cladosporium spp., and CK-CsP
(MT890014) was a monophyletic group among Penicillium spp. (Figure 1). Furthermore,
the CK–CsAf and CK–CsC sequences were a 100% match with Aspergillus flavus and A.
melanogenum, respectively. The CK–CsCt and CK–CsP sequences were a 99.8% and 98.7%
match with Cladosporium tenuissimum and Penicillium oxalicum, respectively (Supplementary
Table S3). These four strains have all been recorded to be isolated from hive-stored bee
bread, and these results are consistent with previous studies on fungi in bee bread made by
A. mellifera [15,16].
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A. flavus, C. tenuissimum, and P. oxalicum can often be isolated from the air [55] and are
opportunistic animal pathogens [56–59]. Previous studies have found that Aspergillus spp.
and Penicillium spp. can repress the growth of honey bee pathogenic fungi [60]. However,
honey bees’ consumption of A. flavus conidia was found to express a reduced survival
rate [59]. On the other side, Parish et al. observed that the addition of Cladosporium sp.
spores to pollen significantly increased bees’ survival rates and extended their life cycles.
The researchers postulated that the cause may have been linked to the existence of β-glucan
on the spore walls [29]. A. melanogenum, which is widespread in nature, is a fungus that
can produce EPSs and secrete various extracellular enzymes. It is widely used in the food
processing industry and is a component of animal feed [31,34,39,41]. Since A. flavus, C.
tenuissimum, and P. oxalicum have been studied in honey bees, A. melanogenum would be a
good animal probiotic but has not been investigated in honey bees. Therefore, we focus on
exploration of the effects of A. melanogenum CK–CsC on survival and gene expression of
honey bees.

3.2. Characterization of the Aureobasidium melangenum CK-CsC Fermentation Broth

By day 5 of the preliminary experiments involving the fermentation of CK–CsC in a
PDA medium, the EPSs produced were at a relatively low concentration of 4.1 mg/mL.
The culture medium was later changed to a SYM medium, which has a higher sucrose
concentration (140 g/L); as a result, the EPS output by day 5 was also higher, at 15.8 mg/mL
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(Table 1). However, this output was lower than the typical output of A. melangenum for
industrial use (30–80 mg/mL) [61]; this may be related to the expression of polysaccharide
synthesis genes of the fungal strain [33]. Regarding fermentation and cultivation in the
SYM medium, the pH value of the fermentation broth gradually decreased over time,
from 7.5 on day 1 to 3.1 by day 5. This trend is comparable to that observed in multiple
fungal strains isolated from bee bread pollen, which create an acidic environment that
inhibits microbial growth and preserves the bee bread [14,15]. The biomass increased
from 21.4 mg/mL on day 1 to 43.4 mg/mL by day 5. As for the protein content, it nearly
quadrupled from 5.5 to 21.6 mg/mL over the same period (Table 1). Furthermore, the
activity of pectinase and cellulase in the CK–CsC strain can be observed in the pectinase
and cellulase screening agar (Supplementary Figure S1) and might play a role in degrading
the pectin and cellulose on pollen wall surfaces.

Table 1. Characterization of the A. malanogenum CK–CsC fermented broth.

Time
(Day) pH Protein

(mg/mL)
Biomass
(mg/mL)

Exopolysaccharides
(mg/mL)

1 5.8 ± 0.6 5.5 ± 0.0 21.4 ± 3.6 4.4 ± 1.6
2 5.4 ± 0.6 12.4 ± 0.4 26.4 ± 2.3 6.7 ± 2.7
3 4.0 ± 0.2 18.2 ± 0.7 25.0 ± 3.8 10.6 ± 2.1
4 3.5 ± 0.1 20.0 ± 0.3 33.9 ± 3.3 14.1 ± 1.9
5 3.1± 0.0 21.6 ± 0.6 43.4 ± 4.5 15.8 ± 2.1

3.3. Effects of the CK–CsC SYM Fermentation Broth on Honey Bee

The CK–CsC strain was fermented in a sucrose-rich SYM culture medium to facilitate
the production of EPSs [33]. The effects of CK–CsC on honey bees were assessed through
the examination of this fermentation broth and the crude EPS extract.

Newly emerged adult bees were divided into three groups according to how they
were fed CK–CsC fermented in a SYM culture medium: 50% sucrose syrup (S), SYM
fermentation broth (F), and the supernatant liquid of the SYM fermentation broth (FS). After
6 days, the survival rates in the S, F, and FS groups were 94%, 94%, and 57%, respectively
(χ2

2, 450 = 74.44, p < 0.05; Figure 2a). The SYM fermentation broth (F) was not toxic to the
honey bees, and their survival rate was the same as that of the group that was fed syrup
(S). However, the supernatant liquid of the SYM fermentation broth was toxic to the honey
bees; after 5 days of feeding, the mortality rate rose to 20%. By day 7, the mortality rate
had exceeded 40%. Honey bee mortality was initially presumed to be ascribable to the
EPS in the supernatant liquid under the assumption that its molecular weight may have
been excessively high, resulting in indigestion. Barker found that some sugars, including
arabinose, xylose, galactose, mannose, lactose, melibiose, and raffinose are toxic to honey
bees, shortening their lifespan if ingested [62]. However, no studies have attributed EPS
to honey bee mortality. The reason for the high survival rate among the F group honey
bees speculated is that the presence of CK–CsC mycelium in fermentation broth can secrete
various extracellular enzymes to metabolize and utilize high-molecular-weight EPSs in
culture media [16].
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To further investigate the lethality of EPSs to honey bees, we used alcohol to extract
the EPSs from the supernatant of the CK–CsC fermentation broth [33], feeding the crude
extract to the honey bees at a 1% concentration. After 3 days, the mortality was 40%;
by day 7, the mortality rate was over 80% (χ2

3, 800 = 419.38, p < 0.05; Supplementary
Figure S2). Therefore, we concluded that EPS extract was mainly responsible for the honey
bee mortality. Notably, this mortality rate was lowered by the honey bees simultaneously
feeding on bee bread. The survival rate of the honey bees feeding on bee bread was 90%
on day 3 and 70% on day 7 (the E + P group in Supplementary Figure S2). Although
we did not examine the lethal mechanism of the crude EPS extract, we assume that the
presence of CK–CsC mycelium and microflora obtained from bee bread helped the honey
bees break down the extract. Although studies have not indicated that honey bees can
die from feeding on polysaccharides, they have noted that polysaccharides derived from
honey bee-collected pollen, such as cellulose and pectin, must be broken down by honey
bee gut microbes for effective utilization [63–66].

After the nontoxicity of the CK–CsC fermentation broth in the SYM medium was
confirmed, its effects on gene expression were assessed. Relative to the honey bees that were
only given SYM culture medium, those that fed for 6 days on the broth that was fermented
for 4 days expressed 10 and 5 times more mrjp1 (Z = −1.7457, p > 0.05) and vg (Z = −1.7457,
p > 0.05; Figure 2b), respectively. Statistically, the differences of both gene expressions were
not significant between SYM medium and fermented broth treatments, this may be due
to the wide variation responses of bees from the three tested colonies. Nevertheless, all
bees from the three colonies responded positively to CK–CsC fermentation broth which
upregulates the mrjp1 expression of bees by 2.5, 5.9 and 20.8 fold in three tested colonies,
respectively, and the vg expression of bees by 9.2, 1.9 and 5.0 fold in three tested colonies,
respectively. This stimulation effect was inferred to be caused by the progressive growth
of CK–CsC over the fermentation period and the gradual increase in the protein content
of the fermentation broth (Table 1). In honey bees, increased protein intake stimulates the
expression of nutrient genes. Such results from fungal fermentation broth are similar to
the previous reports of the positive effects of fermentation broth containing lactic acid
bacterial strains on honey bee nutrition [23,48]. However, the expression of the immune
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genes apidaecin and hymenoptaecin were not significantly increased by fermentation
broth consumption; in fact, it was suppressed 1.5 times (Z = 0.4364, p > 0.05 for apidaecin;
Z = 0.8729, p > 0.05 for hymenoptaecin; Figure 2b). This suppression contrasts with past
findings that probiotics can stimulate the expression of antibacterial peptides in honey
bees [26,27,48]. The exact effects of CK-CsC fermentation broth on bees’ immune system
needs to be further addressed in future.

3.4. Effects of the CK–CsC Fermented Pollen on Honey Bee

Pollen is known to be a vital food for honey bees, improving their nutritional status
and bolstering their immune function [67–69]. The present strain of CK–CsC, isolated
from bee bread, can secrete extracellular enzymes such as pectinase and cellulase and is
speculated to be able to degrade polysaccharides on pollen cell walls. In using the CK–CsC
strain for pollen fermentation, the pollen changed from a solid to a liquid with increasing
viscosity (Supplementary Figure S3). The fungal strain was surmised to degrade the wall
structure and thereby change the nutrient composition. This is consistent with findings
from studies on fungal contributions to nutrient conversion in bee bread [16,18]. Therefore,
pollen was used as the base of the broth, which was fermented over 4 days, to assess the
effects of CK–CsC on the honey bees.

Newly emerged adult bees were divided into three groups according to how they
were fed CK–CsC fermented in a SYM culture medium: 50% sucrose syrup and bee pollen
(S + P), 50% sucrose syrup and bee pollen with added SYM broth (S + SYM-P), and 50%
sucrose syrup and CK-CsC fermented bee pollen broth (S + CK–CsC-P). Six days later, the
survival rates in the S + P, S + SYM-P, and S + CK–CsC-P groups were 98%, 99%, and 98%,
respectively (Figure 3a, χ2

2, 600 = 1.3, p > 0.05). This indicates that pollen fermented by
CK–CsC is not toxic to honey bees.
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Figure 3. The effect of CK-CsC fermented pollen on honey bees. (a) The cumulative survival of honey bees after 6-day
feeding treatments. New emerged bees in groups of 50 bees fed with 50% sucrose syrup and bee pollen (S + P), 50% sucrose
syrup and bee pollen with addition of SYM broth (S + SYM-P) and 50% sucrose syrup and CK-CsC fermented bee pollen
broth (S + CK-CsC-P). Each point represents the cumulative survival rate (N = 4 cages from four colonies). There is no
significant difference between survival curves (Log-Rank test: p = 0.524). (b) Gene expression profile of honey bees after
6-day feeding treatments. C: control, bees feeding with 50% sucrose syrup and bee pollen with addition of SYM broth; F:
bees feeding with 50% sucrose syrup and CK-CsC fermented bee pollen broth. The relative gene expression was analyzed
using the 2−∆∆CT method. Data represent the mean of four replicates, with error bars indicating the standard deviation. Bar
with the label * is significantly different (p < 0.05) accordingly to the Mann-Whitney U test.
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With regard to the addition of CK–CsC to pollen, the originally solid pollen became a
viscous liquid after 4 days of fermentation. This indicates that the CK–CsC reacted with
the pollen. Compared to the honey bees fed 50% sugar syrup and pollen with added
SYM broth (the S + SYM-P group), those that fed for 6 days on the pollen broth that was
fermented for 4 days (the S + CK–CsC-P group) expressed 15 and 5 times more mrjp1 and vg
(Z = −1.299, p > 0.05 for mrjp1; Z= −2.3067, p < 0.05 for vg; Figure 3b). The stimulation effect
is attributable to the secretion of extracellular enzymes such as cellulase and pectinase by
the CK–CsC (Supplementary Figure S1). Specifically, these enzymes degraded the pollen
cell walls, allowing the honey bees to absorb the nutrients more easily and promote their
nutrient gene expression. Simultaneously, the consumption of the pollen fermentation
broth increased the expression of apidaecin and hymenoptaecin by 1.8 times, respectively
(Z = −0.1443, p > 0.05 for apidaecin; Z = 0.433, p > 0.05 for hymenoptaecin; Figure 3b). This
immune gene expression increase is likely ascribable to the pollen contents or pollen-borne
microbes [67,69,70].

3.5. Gut Microflora Changes

Honey bees digest and metabolize carbohydrates with the enzymes they secrete as
well as their gut microbes [66]. This premise is similar to that presented by Zheng, et al. [24],
who confirmed that Gilliamella apicola isolated from honey bee guts can utilize arabinose,
mannose, rhamnose, and xylose, sugars that honey bees cannot metabolize. The bacterium
is speculated to promote honey bees’ dietary sugar tolerance. The EPS extract obtained
from fermentation with CK–CsC led to a high mortality rate that would have been lower
if the honey bees had fed on bee bread at the same time. Therefore, the microflora in the
pollen were speculated to assist with the metabolism of the crude EPS extract. Further
analysis was conducted to determine whether the gut microflora of the honey bees fed
syrup containing crude EPS extract (E group) differed from that of the honey bees fed both
syrup containing crude EPS extract and bee pollen cakes (E + P group).

Newly emerged adult bees obtain food from honeycombs, such as honey and bee
bread; this contributes to gut microflora establishment [71]. In our experiment, we col-
lected 12-h-old newly emerged bees which have obtained microflora from food stored
in honeycomb, and fed these newly emerged bees syrup containing crude EPS extract
for 3 days, after which we determined the counts of midgut and hindgut bacteria. No
differences in total bacterial count were found between the E group and E + P group (Z = 0,
p > 0.05; Supplementary Figure S4). However, the E + P group exhibited 23.5 times the
amount of γ-Proteobacteria (Z = −1.0445, p > 0.05), 15.9 times the amount of Bacteroidetes
(Z = 2.0889, p < 0.05), and 10.3 times the amount of Actinobacteria (Z = 0.6267, p > 0.05)
bacteria of the E group. Nevertheless, only the amount of Bacteroidetes showed statistically
significant difference. The amount of γ-Proteobacteria and Actinobacteria show wide
variation from the four tested colonies, causing non-significant difference statistically. The
counts of α-Proteobacteria (Z= −1.0445, p > 0.05) and Firmicutes (Z = −0.7178, p > 0.05)
did not show difference between the E group and E + P group (Figure 4).

Studies on genome sequences have revealed the secretion of glycoside hydrolases by
bacteria from the γ-Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, which
have also been speculated to have the ability to metabolize polysaccharides [24,25,72]. This
premise is consistent with our findings. Although we did not observe an increase in the Fir-
micutes count in the E + P group, we noted that the counts of Lactobacillus kunkeei increased
by 136.4 times (Z = 1.2534, p > 0.05), through the intake of pollen (Supplementary Figure S4).
Despite the finding that the difference of L. kunkeei between the E group and E + P group
is not statistically significant, bees from four tested colonies show the trend of increased
amount of L. kunkeei in the E + P group. This phenomenon also matches with previous stud-
ies which show L. kunkeei is a dominant bacterium in bee pollen [14,73]. The present results
further highlight the vital role of honey bee gut microbes in carbohydrate metabolism.
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Figure 4. Bacterial abundance in the guts of honey bees fed with EPS and bee pollen. The bacterial
loads of α-Proteobacillus, γ-Proteobacillus, Bacteriodetes, Firmicutes and Actinobacteria in the guts
of bees were assessed through quantitative polymerase chain reaction (qPCR). DNA samples obtained
from the guts of 7-day-old workers fed with 50% sucrose syrup containing 1% EPS (E only) or 50%
sucrose syrup containing 1% EPS and bee pollen (E + P), were prepared for qPCR. The relative
bacterial abundance was analyzed using the 2−∆∆CT method. Data represent the mean of four repeats
(10 guts for each repeat), with error bars indicating the standard deviation. Bar with the label * is
significantly different (p < 0.05) accordingly to the Mann-Whitney U test.

4. Conclusions

This study was an exploration of the effects of broth fermented with A. melanogenum
CK–CsC isolated from bee bread, on survival, expression of nutrient and immune related
genes, and gut microbiota of honey bees. The crude EPS extract was toxic to the honey
bees, causing a high mortality rate that would have been reduced if the honey bees had
simultaneously fed on bee bread pollen. Comparison of the midgut and hindgut microflora
of the honey bees fed crude EPS extract and the honey bees fed crude EPS extract with
pollen revealed that feeding on pollen increased the populations of γ-Proteobacteria, Bac-
teroidetes, and Actinobacteria in the gut. Bacteria in these phyla may help honey bees break
down crude EPS extract. Furthermore, in honey bees fed the CK–CsC fermentation broth
in SYM medium or the pollen fermentation broth, nutrient gene expression was stimulated.
However, the expression of antibacterial peptide genes apidaecin and hymenoptaecin was
not stimulated by the consumption of broth fermented with the CK-CsC strain. Their
expression was only promoted when the honey bees fed on pollen fermented with CK–CsC.
This highlights the importance of bee pollen to honey bee physiology and the mainte-
nance of honey bee gut microflora, along with the major contribution of gut bacteria to
host metabolism. These findings serve as a reference on A. melanogenum fermentation for
scientists studying honey bee health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7070508/s1, Figure S1: Pectinase (A) and cellulase (B) activity of the CK-CsC. Figure S2:
The cumulative survival of honey bees after 6-day feeding treatments. Figure S3: Pollen fermented
by Aureobasidium melanogenum CK–CsC for four days. Figure S4: Bacterial abundance in the guts of
honey bees fed with EPS and bee pollen. Table S1: Primers used for fungi classification and bacterial
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quantification. Table S2: Primers used for quantification of honey bee gene expression. Table S3: The
information of the fungi isolated in this study.
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28. Tlak Gajger, I.; Vlainić, J.; Šoštarić, P.; Prešern, J.; Bubnič, J.; Smodiš Škerl, M.I. Effects on some therapeutical, biochemical, and
immunological parameters of honey bee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. Insects
2020, 11, 638. [CrossRef] [PubMed]

29. Parish, J.B.; Scott, E.S.; Hogendoorn, K. Nutritional benefit of fungal spores for honey bee workers. Sci. Rep. 2020, 10, 1–8. [CrossRef]
30. Lu, M.-C. Beekeeping on Taiwan Island. In Asian Beekeeping in the 21st Century; Chantawannakul, P., Williams, G., Neumann, P.,

Eds.; Springer Nature: Cham, Switzerland, 2018.
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