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ABSTRACT

Children and adults residing in densely populated urban centers around the world are
at risk of seasonal influenza-like illness caused by respiratory viruses such as influenza
virus, human metapneumovirus (hMPV), and respiratory syncytial virus (RSV). In
a large metropolitan of Thailand’s capital city Bangkok, most respiratory infections
are rarely confirmed by molecular diagnostics. We therefore examined the frequency
of RSV, hMPV, and influenza virus in 8,842 patients who presented influenza-like
illness and sought medical care at a large hospital in Bangkok between 2016 and 2017.
Using a multiplex real-time reverse-transcription polymerase chain reaction (RT-PCR),
30.5% (2,699/8,842) of nasopharyngeal (NP) swab samples tested positive for one or
more of these viruses. Influenza virus comprised 17.3% (1,528/8,842), of which the
majority were influenza A/H3N2. Such infection was most prevalent among adults
and the elderly. RSV was identified in 11.4% (1,011/8,842) and were mostly ON1 and
BA9 genotypes. Of the hMPV-positive samples (3.6%, 318/8,842), genotypes A2, Bl,
and B2 were detected. A small number of individuals experienced co-infections (1.8%,
155/8,842), most commonly between RSV and influenza A/H3N2. RSV and hMPV
co-infections were also found, but mainly in young children. Viral respiratory tract
infection peaked locally in the rainy season (June to September). These findings support
the utility of rapid nucleic acid testing of RSV, hMPV, and influenza virus in patients
with ILL
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INTRODUCTION

Respiratory tract infection is a major contributor to morbidity and mortality among
children and adults worldwide (Boloursaz et al., 2013; Garg et al., 2015). Most recognized
is the seasonal influenza virus infection, which is responsible for about 290,000 to 650,000
deaths each year (WHO, 2018). Epidemiological studies have shown that infants, young
children, and the elderly are especially at risk of infection by both subtypes of RSV
(designated A and B) (Henrickson et al., 2004). Even hMPV is now recognized as a frequent
cause of acute respiratory tract infections in children predominantly <5 years of age, elderly
adults, and immunocompromised patients (Johnstone et al., 2008; Williams et al., 2004).
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Each of the two genetically and antigenically distinct groups of hMPV (A and B) can be
further divided into genetic subgroups 1 and 2 (Boivin et al., 2002).

Multiple groups of different respiratory viruses frequently co-circulate with a variable
pattern of predominance in Thailand. Data on the prevalence of infection caused by these
viruses are often incomplete and limited due to their similar clinical presentation and
seasonality overlap (Thanasugarn et al., 2003; Horthongkham et al., 2014). The systematic
use of molecular diagnostics such as the real-time reverse transcription-polymerase chain
reaction (RT-PCR) assay has been important in improving accurate diagnosis of viral
respiratory infections and has proven extremely useful for disease surveillance (Mahony,
2008).

Here, we aimed to assess the disease burden caused by RSV, hMPV, and influenza virus
in a large patient population of all ages who presented influenza-like illness (ILI) and
sought medical care at a hospital in Bangkok within the past two years.

MATERIALS AND METHODS

Study design and specimens

We retrospectively tested 8,842 stored respiratory samples obtained from both in-patient
and out-patient individuals of all ages with ILI who sought medical care at Bangpakok 9
International Hospital in Bangkok and collected consecutively between January 2016 and
December 2017. ILI was defined as fever (>38 °C) and accompanying respiratory symptoms
such as cough, sore throat, or pharyngitis. This study analyzed de-identified convenient
samples and extended an earlier investigation of an ongoing influenza virus prevalence in
Thailand (Suntronwong et al., 2017). Available patient information included gender and
age, but not extensive clinical information nor disease severity. The Institutional Review
Board of the Faculty of Medicine of Chulalongkorn University approved this study (IRB
number 609/59).

Real-time RT-PCR

RNA was extracted from 200 L of specimens using the Viral Nucleic Acid Extraction Kit
(RBC Bioscience, Taiwan, R.O.C.) according to the manufacturer’s instructions. RSV and
hMPV detections were performed using an in-house TagMan-based multiplex one-step
real-time RT-PCR. The primers and probes targeted the M gene of RSV and the F gene
of hMPV (Table 1). The RSV probe was labeled with 6-carboxy-fluorescein (FAM) at the
5" end and Black Hole Quencher-1 (BHQ-1) at the 3" end. The hMPV probe was labeled
with 6-carboxy-fluorescein (HEX) at the 5" end and Black Hole Quencher-1 (BHQ-1) at
the 3’ end. The reaction mixture contained 2 pL RNA, 10 pmol of each of the primers
and probes, and SensiFAST Probe No-ROX One-Step reagent (Bioline, London, UK).
Cycling parameters included 1 cycle for 20 min at 42 °C, initial denaturation for 3 min
at 95 °C, 50 cycles for 10 s at 95 °C and 20 s at 60 °C. This assay has a limit of detection
of 100 genome copies per reaction for both viruses. No cross-detections were observed
between the two viruses and other respiratory viruses including influenza A and B viruses,
adenovirus, enterovirus, rhinovirus, and coronavirus. Real-time RT-PCR assay of influenza
A and B viruses was previously described (Suwannakarn et al., 2008). Parallel detection of
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Table 1 Primers and probes used to detect RSV, hMPV, and influenza virus.

Virus Primer/Probe Sequence 5'-3’ Target Position
Assay 1 RSV Aand B RSV_F3251 GGCAAATATGGAAACATACGTGAA M 3251-3274  (+)
RSV_R3334 TCTTTTTCTAGGACATTGTAYTGAACAG M 3334-3361  (-)
RSV_P3303 FAM-CTGTGTATGTGGAGCCTTCGTGAAGCT-BHQI M 3303-3329  (+)
hMPV A and B hMPV_F3604 CAARTGYGACATTGCTGAYCTRAA F 3604-3628  (+)
hMPV_R3683 ACTGCCGCACAACATTTAGRAA F 3683-3662  (-)
HMPV_P3630  JOE-TGGCYGTYAGCTTCAGTCARTTC-BHQI F 3630-3643  (+)
Assay 2*  Influenza A FluA-M-F151 CATGGARTGGCTAAAGACAAGACC M 151-175 (+)
FluA-M-R276 AGGGCATTTTGGACAAAKCGTCTA M 276-252 -)
FluA-M-P218 FAM-ACGCTCACCGTGCCCAGT-BHQ1 M 218-235 (+)
Influenza B FluB-MF439 CTCTGTGCTTTRTGCGARAAAC M 439-460 (+)
FluB-MR CCTTCYCCATTCTTTTGACTTGC M 671-649 -)
FluB-P135 Cy5-TCAGCAATGAACACAGCAA-BHQ3 M 541-559 (+)
Influenza A/HINL  HI1_F ACTACTGGACTCTGCTKGAA H1 750-769 (+)
H1_R AAGCCTCTACTCAGTGCGAA H1 846-827 -)
H1_P FAM-TTGAGGCAAATGGAAATCTAATAGC-TAMRA H1 789-813 (+)
Influenza A/H3N2 ~ H3_F TGCTACTGAGCTGGTTCAGAGT H3 139-160 (+)
H3_R AGGGTAACAGTTGCTGTRGGC H3 322-302 -)
H3_P HEX-AGATGCTCTATTGGGAGACC-BHQI H3 226-245 (+)
GAPDH GAPDH-F85 GTGAAGGTCGGAGTCAACGG GAPDH  85-104 (+)
GAPDH-R191  TCAATGAAGGGGTCATTGATGG GAPDH  191-169 )
GAPDH-P121 HEX-CGCCTGGTCACCAGGGCTGC-BHQ1 GAPDH  121-140 (+)
Notes.
2Previously described in Suwannakarn et al. (2008).

(+) and (-) denote sense and anti-sense strand, respectively.

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene served as an internal control.
Fluorescence signals cycle threshold (Ct) was based on optimization and values <38 were
considered positive.

Conventional RT-PCR

Samples tested positive for RSV and/or hMPV were genotyped. Complementary DNA
was synthesized using the ImProm-II Reverse Transcription System (Promega, Madison,
WI, USA) according to the manufacturer’s instructions. RNA and random hexamers were
incubated at 70 °C for 5 min, followed by extension for 2 h at 42 °C and inactivation at
70 °C for 15 min. Amplification of the partial RSV glycoprotein (G) gene inclusive of the
second hypervariable region (HVR2) and the F gene was performed using semi-nested
RT-PCR as previously described (Auksornkitti et al., 2014). Cycling parameters were initial
denaturation at 94 ° C for 3 min, 40 cycles of denaturation at 94 °C for 20 s, annealing
at 55 °C for 20 s, elongation at 72 °C for 90 s, and a final extension at 72 °C for 10 min.
Identical amplification parameters were carried out in the second-round PCR for 30 cycles.
Partial F-gene of hMPV was subjected to nested-PCR as previously described (Chung et al.,
2008). The PCR conditions were initial denaturation at 95 °C for 3 min, 35 cycles of 95 °C
for 1 min, 55 °C for 1 min, 72 °C for 1 min, and a final extension at 72 °C for 3 min. The
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PCR products for RSV-A (840 bp), RSV-B (720 bp), and hMPV (750 bp) were visualized
using 2% agarose gel electrophoresis and purified using the GeneAll Expin gel extraction kit
(GeneAll Biotechnology, Seoul, South Korea) according to the manufacturer’s instructions.
Purified PCR products were subjected to Sanger sequencing.

Sequence and phylogenetic analyses of RSV and hMPV genotypes
Nucleotide sequences of RSV and hMPV strains were aligned using ClustalW implemented
in BioEdit (version 7.0.9) by comparison to the sequences previously assigned to specific
genotypes (Table ST and Table 52). Phylogenetic trees were constructed using the maximum
likelihood method implemented in the MEGAG6 (Tamura et al., 2013). The reliability of
the tree based on the Tamura—Nei model was estimated using 1,000 bootstrap pseudo-
replications. Sequences were considered the same genotype if they clustered together with
bootstrap values of 70-100% (Venter et al., 2001).

Nucleotide sequences were submitted to the GenBank database under the accession
numbers MH447703=M 447725 (RSV-A), MH447726-MH447818 (RSV-B), and
MH447819-MH447950 (hMPV).

Statistical analysis

The association between virus prevalence and the patient age at infection was assessed
using univariate analyses (SPSS software version 22.0). P-values were calculated using the
Chi-squared test or Fisher’s exact test, where cell counts below 5 were used. A p-value of
<0.05 was considered statistically significant.

RESULTS

The overall prevalence of RSV, hMPV, and influenza virus

We retrospectively tested 8,842 consecutive respiratory samples (48.5% males, age range 0—
106 years). Of these, 30.5% (2,699/8,842) were positive for one or more viruses. Influenza
virus was most commonly identified (17.3%, 1,528/8,842), followed by RSV (11.4%,
1,011/8,842) and hMPV (3.6%, 318/8,842) (Table 2). Influenza virus and RSV were more
prevalent in 2016 than in 2017. To facilitate analysis, samples were categorized into seven
groups in order to examine the distribution of viral infection relative to age (Table 3 and
Table S3). Regardless of gender, the burden of RSV was greatest among children 5 years of
age and younger (21.2% and 15.4% among those <2 and 3-5 years of age, respectively).
Frequency of RSV infection appeared to decrease with increasing age and was <9% in
those older than 5 years of age (p < 0.0001). In contrast, influenza virus infection was more
frequently found among older individuals. Meanwhile, hMPV infection was distributed
among all ages (1.7-5.7%).

Seasonal and genotype distribution of RSV, hMPV, and influenza virus
The prevalence of viral etiology of influenza-like infection differed slightly among the viruses
examined. Among 1,011 RSV-positive samples, subgroup identification was possible for 488
specimens. Of these, 36.3% (177/488) were RSV-A and 66.4% (324/488) were RSV-B. RSV
infection appeared most frequently in the rainy months (between July and November) with
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Table 2 Overall prevalence of samples tested positive for RSV, hMPV or influenza virus.

Year No. of samples Virus-positive samples (%) RSV-positive (%) hMPV-positive (%) Influenza virus-positive (%)
2016 4,178 1,428 (34.2) 590 (14.1) 114 (2.7) 814 (19.5)

2017 4,664 1,271 (27.3) 421 (9.0) 204 (4.4) 714 (15.3)

Total 8,842 2,699 (30.5) 1,011 (11.4) 318 (3.6) 1,528 (17.3)

Table 3 Characteristics of samples and detection frequency of RSV, hMPYV, and influenza virus.

Characteristics Samples (%) RSV (%) (N =1,011) hMPV (%) (N =318) Influenza A+B (%)
(N =8,842) (N =1,528)
Age, year (mean =+ SD age) <2(1.2+£0.6) 1,916 (21.7) 406 (21.2) 105 (5.5) 134 (7.0)
3-5(3.8 4 0.8) 1,541 (17.4) 238 (15.4) 88 (5.7) 160 (10.4)
6-12 (8.4+£1.9) 1,253 (14.2) 100 (8.0) 25 (2.0) 298 (23.8)
13-18 (15.2 +3.2) 371 (4.2) 19 (5.1) 10 (2.7) 101 (27.2)
19-30 (25.4 +£32) 1,148 (13.0) 66 (5.7) 20 (1.7) 211 (18.4)
31-60 (41.4 +8.1) 2,164 (24.5) 144 (6.7) 53 (2.4) 516 (23.9)
>60 (72.0 £ 9.1) 449 (5.1) 38 (8.5) 17 (3.8) 108 (24.1)
p-value 0.0262 0.5695 <0.0001
Gender Male 4,288 (48.5) 514 (50.8) 160 (50.3) 742 (48.6)
Notes.

Statistically significant differences among groups are bolded.

the highest annual prevalence of 37% (206/555) and 17.3% (136/784) in August 2016 and
September 2017, respectively (Fig. 1A). Although RSV-A and RSV-B were equally detected
in 2016, RSV-B was more frequently identified in 2017. From 318 hMPV-positive samples,
subgroup identification was possible for 132 specimens. Of these, 80.3% (106/132) were
hMPV-B, which was the predominant subgroup in both years (Fig. 1B). From 1,528 samples
tested positive for influenza virus, there were more influenza A virus (76.2%, 1,164/1,528)
than influenza B virus (23.8%, 364/1,528). In 2016, high prevalence of influenza virus
occurred twice, 20.5% (59/288) in March and 34.5% (234/678) in September (Fig. 1C).
The following year, peak influenza virus activity occurred in August (25.3%, 185/732).
Overall, A/H3N2 accounted for 70% (815/1,164) of all influenza A virus.

Genotyping and phylogenetic analysis of RSV and hMPV

Partial G gene sequences that were randomly selected to identify the RSV genotypes showed
all of the RSV-A strains (23/23) were genotype ON1 and all of the RSV-B strains (93/93)
were genotype BA9 (Figs. 2A and 2B, respectively). Inter-subgroup diversity between
A_ONI1 and B_BA9Y was relatively high (p-distance value of 2.17-2.44). In contrast, genetic
variations among intra-genotype strains were relatively small (p-distance value of 0-0.073
and 0-0.071 within the ON1 and BA9 genotypes, respectively).

Partial F gene sequences were obtained from 132 of the 318 hMPV-positive specimens.
Phylogenetic analysis of 132 hMPV strains identified in this study showed two main genetic
lineages, A and B. Strains clustered into subgroup A2, B1, and B2, but not subgroup Al
(Fig. 3). The majority of the strains belonged to subgroup B1 (74%, 98/132), while only 6%
(8/132) belonged to subgroup B2. The remaining 20% of the strains (26/132) belonged to
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subgroup A2. The intra-genotype strains were genetically closely related (p-distance values
of 0.001-0.019), while the inter-subgroup comparisons were more diverse (p-distance
values of 0.087-0.116).

Coinfections among RSV, hMPV, and influenza virus

The frequency of single versus multiple infections and the number of co-occurrences of
viruses for each possible virus combination were examined (Table 4). The most common
combination observed was RSV (non-typed) and influenza A H3N2 subtype (n=68). As a
percentage, the virus most often found in coinfections was RSV, which was found in 17.4%
(176/1,011) of the samples, followed by hMPV (10.4%, 33/318), and influenza virus (8.5%,
130/1,528).

DISCUSSION

This study was conducted over a two-year study period between 20162017 among 8,842
patients who presented with influenza-like infections. Two multiplex real-time reverse
transcriptase polymerase chain reaction (RT-PCR) assays were used to rapidly detect three
of the most common viral respiratory pathogens. It was not surprising that influenza was
the most prevalent virus (17.3%), followed by RSV (11.4%) and hMPV (3.6%). Similar to
our findings, previous study examining hospitalized patients with lower respiratory tract
infections in Thailand found that influenza viruses were the most common respiratory
viruses diagnosed among ILI cases (Chittaganpitch et al., 2018). RSV prevalence was highest
among children aged <5 years with rates of infection between 15.4 and 21.2%. On the other
hand, RSV had a lower burden of symptomatic respiratory illness among older children and
adults, and the opposite trend was observed for influenza virus infection. The proportion
of patients with influenza virus infections increased with age, and the rate of infection was
greatest in children 13—18 years of age (27.2%). These findings are supported by previously
reported studies on the epidemiology of respiratory virus infection (Zhang et al., 2014;
Richter et al., 2016).

In the present study, the seasonal distribution of influenza virus infections resembled
those of RSV and hMPV infections, which was similar to data from previous studies (Richter
et al., 2016; Parsania et al., 2016; Chittaganpitch et al., 2018). Although Thailand is located
geographically in the northern hemisphere, the seasonality of respiratory infection is similar
to that of several nearby tropical settings such as Indonesia, Malaysia, the Philippines and
the Southern hemisphere countries of Australia and New Zealand (Weber, Mulholland &
Greenwood, 1998; Paynter et al., 2015). In these regions, respiratory infections generally
peak in the rainy season and declines during the hot and dry months. Moreover, a study
from Bangladesh found an increased risk of respiratory infection following rainy days,
suggesting a link between rainfall and population crowding or proximity (Murray et al.,
2012).In Thailand, the period when students are in school overlaps with the rainy season, so
it is possible that host behavior is associated with an increased risk of respiratory infection.

In our study, both RSV subgroups A and B circulated during the same RSV season, but
the relative proportions varied as subgroup B occurred more frequently than subgroup
A in the 2017 season. Several previous studies including from our group have reported
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Figure 3 Phylogenetic analysis of hMPV subgroup A and B based on the partial nucleotide sequence of
the F gene. Tree was constructed using the maximum likelihood method and the Tamura—Nei model im-
plemented in the MEGAG. The reliability of the tree was estimated using 1000 bootstrap pseudo-replicates.
Bootstrap values > 70% are indicated at the branch nodes. Reference sequences for each genotype (Al,
A2, B, and B2) were obtained from GenBank. The scale bar represents the number of nucleotide substi-
tutions per site between close relatives. Circles denote samples from Thailand 2016, while squares indicate
strains from Thailand 2017. The number of strains are shown in parentheses.
Full-size Gl DOI: 10.7717/peer;j.6748/fig-3
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Table 4 Contribution of respiratory viruses as single or coinfections.

%) g @»n g fy %\

ERE I :

2 & g 2 . g
> = & =) = = &, & & = = = = = = [
RSV (non-typed) 527 397 128 2 25.0 — 0 0 18 1 1 1 23 68 20
RSV-A 176 158 18 0 10.2 0 — 13 1 0 1 0 1 2 0
RSV-B 321 293 27 1 8.7 0 13 1 1 0 2 6 3
hMPYV (non-typed) 186 161 22 3 134 18 1 3 — 0 0 0 1 3 2
hMPV-A2 26 24 2 0 7.7 1 0 1 0 — 0 0 0 0 0
hMPV-B1 98 93 5 0 5.1 1 1 1 0 0 — 0 1 0 1
hMPV-B2 8 7 1 0 12.5 1 0 0 0 0 0 — 0 0 0
Flu-HIN1 349 321 28 0 8.0 23 1 2 1 0 1 0 - 0 0
Flu-H3N2 815 738 75 2 9.4 68 2 6 3 0 0 0 0 - 0
Flu-B 364 338 24 1 6.9 20 0 3 2 0 1 0 0 -

the alternating antigenic pattern of RSV infection over time (Ohno et al., 2013; Hirsh
et al., 2014; Fall et al., 2016; Auksornkitti et al., 2014; Thongpan et al., 2017). It has been
hypothesized that the periodic shifts in the predominant RSV subgroup are driven by the
dynamics of population immunity and subgroup-specific herd immunity (Botosso et al.,
2009). Regarding the relationship between clinical severity of infection and RSV types and
subtypes, some studies have observed that RSV group A infection was associated with an
increased illness severity (McConnochie et al., 1990; Jafri et al., 2013), while other studies
observed that RSV group B infection resulted in more severe disease (Hornsleth et al., 1998;
Tran et al., 2013). In the present study, the emerging genotypes of ON1 and BA9 completely
replaced the previous genotypes, such NA1, and other BA genotypes as was found in other
countries (Dapat et al., 20105 Esposito et al., 2015), although it has been observed that they
do not appear to cause more severe disease than other genotypes (Panayiotou et al., 2014).
Phylogenetic analysis of the hMPV F gene in the present study showed that both A and
B types co-circulated in Thailand over the two-year study period. Similar to our findings,
all three subtypes of h(MPV (A2, B1, and B2) co-circulated each year in other studies,
including South Korea, Italy, Australia, and Norway (Gerna et al., 2005; Mackay et al.,
20065 Chung et al., 2008; Moe et al., 2017). Although hMPV genotype A might be more
virulent than genotype B (Vicente et al., 2006), data in the literature on the association
between clinical symptoms and hMPV genotype remains unclear as some authors show
a higher severity of illness, (Vicente et al., 2006; Arnott et al., 2013), while others did not
(Agapov et al., 2006; Manoha et al., 2007). Furthermore, the prevalence of mostly influenza
A H3N2 contrasts with the limited circulation of influenza B during this two-year study
period. The predominance of influenza A H3N2 in 2016 was observed both in Thailand
(Suntronwong et al., 2017) and the United States (Blanton et al., 2017).
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Regarding multiple infections, RSV was co-detected mainly with influenza virus
infection, which is consistent with an overlap of seasonal RSV and influenza virus infections.
There have been reports showing no relationship between disease severity and multiple
virus infections (Lim et al., 2016), while other studies have shown that viral co-infection
was significantly associated with longer duration of symptoms, especially in RSV, and that
this may increase the clinical severity of acute respiratory infection among children infected
with RSV (Cho et al., 2013; Harada et al., 2013).

This study had several limitations. The convenient samples in this study may not be
representative of the patient population in Bangkok. Since these samples were not tested
for other respiratory viruses such as human parainfluenza virus and rhinovirus, we may
have missed the identification of other respiratory pathogens. Samples were anonymized
and had limited accompanying clinical data, therefore we were unable to examine the
association between viral genotypes and clinical severity, although ILI clinical symptoms
are generally similar regardless of viral etiology.

CONCLUSION

Influenza viruses were the most common respiratory viruses diagnosed among ILI cases
in this study. While RSV and hMPV infections were found mainly in young children and
sporadically in adults, influenza virus infection was prevalent in adults and the elderly. A
small number of individuals had dual infections, most commonly RSV and influenza A
H3N2. Due to overlapping seasonal occurrence of these viral infections, accurate and rapid
molecular detection can potentially assist clinicians and researchers in the treatment and
surveillance to limit viral spread. The data presented here add to our understanding of the
epidemiology of RSV, hMPV, and influenza causing respiratory illness in Thailand.
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