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ABSTRACT

Objective: Clinical prediction models for surgical aortic valve replacement mortal-
ity, are valuable decision tools but are often limited in their ability to account for
changes in medical practice, patient selection, and the risk of outcomes over
time. Recent research has identified methods to update models as new data accrue,
but their effect on model performance has not been rigorously tested.

Methods: The study population included 44,546 adults who underwent an isolated
surgical aortic valve replacement from January 1, 1999, to December 31, 2018, state-
wide in Pennsylvania. After chronologically splitting the data into training and vali-
dation sets, we compared calibration, discrimination, and accuracy measures
amongst a nonupdating model to 2 methods of model updating: calibration regres-
sion and the novel dynamic logistic state space model.

Results: The risk of mortality decreased significantly during the validation period
(P< .01) and the nonupdating model demonstrated poor calibration and reduced
accuracy over time. Both updating models maintained better calibration (Hosmer-
Lemeshow c2 statistic) than the nonupdating model: nonupdating (156.5), calibra-
tion regression (4.9), and dynamic logistic state space model (8.0). Overall accuracy
(Brier score) was consistently better across both updating models: dynamic logistic
state space model (0.0252), calibration regression (0.0253), and nonupdating
(0.0256). Discrimination improved with the dynamic logistic state space model
(area under the curve, 0.696) compared with the nonupdating model (area under
the curve, 0.685) and calibration regression method (area under the curve, 0.687).

Conclusions: Dynamic model updating can improve model accuracy, discrimina-
tion, and calibration. The decision as to which method to use may depend on which
measure is most important in each clinical context. Because competing therapies
have emerged for valve replacement models, updating may guide clinical decision
making. (JTCVS Open 2023;15:94-112)
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CENTRAL MESSAGE

Prediction models used in prac-
tice typically demonstrate poor
performance over time and are
infrequently updated. Dynami-
cally updating these models over
time can improve model
performance.
PERSPECTIVE
Patient selection and outcomes of SAVR have
continuously changed over time but existing pre-
diction models have not. Failing to update SAVR
prediction models leads to inaccurate risk assess-
ment and risk stratification, which can lead to sub-
optimal treatment decisions and quality
assessment. Regularly updating models can
improve prediction accuracy and may lead to
improved patient care.
arch 13, 2023; revisions received June 7, 2023; accepted

2023; available ahead of print Aug 24, 2023.

en E. Kimmel, MD, MSCE, Department of Epidemiology,

004 Mowry Rd, PO Box 100231, Gainesville, FL 32610

du).

thor(s). Published by Elsevier Inc. on behalf of The Amer-

acic Surgery. This is an open access article under the CC

/creativecommons.org/licenses/by-nc-nd/4.0/).

jon.2023.07.011

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:skimmel@ufl.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.xjon.2023.07.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xjon.2023.07.011&domain=pdf


Abbreviations and Acronyms
AS ¼ aortic stenosis
CPM ¼ clinical prediction model
BS ¼ Brier score
CR ¼ calibration regression
DPM ¼ dynamic prediction model
DLSSM ¼ dynamic-logistic state space model
EuroSCORE ¼ European System for Cardiac

Operative Risk Evaluation
H-L ¼ Hosmer-Lemeshow
LASSO ¼ least absolute shrinkage and

selection operator
MAE ¼ mean absolute error
PHC4 ¼ Pennsylvania Health Care Cost

Containment Council
SAVR ¼ surgical aortic valve replacement
STS ¼ Society of Thoracic Surgeons
TAVR ¼ transcatheter valve replacement

Pollack et al Adult: Aortic Valve
Aortic valvular diseases such as aortic stenosis (AS) and
aortic insufficiency are leading causes of valvular morbidity
and mortality in the United States and their prevalence is ex-
pected to continue rising as the population ages.1,2 It is pro-
jected that there will be nearly 0.8 million patients with
severe symptomatic AS in 2025 and 1.4 million by 2050.3

Surgical aortic valve replacement (SAVR) is a life-saving
treatment option for those with severe symptomatic AS.
However, the procedure is not without substantial risk
because estimates of mortality range from 1.0% to 16.4%.4

Well-calibrated clinical prediction models (CPMs) can
serve as valuable, quick, and objective tools for risk assess-
ment. They help determine treatment options and optimize
patient care through enhanced risk communication and
shared decision making.5 CPMs typically are developed at
a singular point in time in a select patient population.
Although they may be validated in a separate population,
they are often used for years without further updating, lead-
ing to deterioration in model performance. Even when they
are updated, the process generally relies on collecting new,
large samples of patients—which can take years to accrue.
Moreover, with lengthy intervals between updates, models
can quickly become inaccurate. This article refers to this
approach as a static model approach.

The limitations of the static approach and its performance
drift in the context of postoperative mortality for SAVR have
been well documented in the European System for Cardiac
Operative Risk Evaluation (EuroSCORE I and II) and the So-
ciety of Thoracic Surgeons (STS) models6-13With decreasing
mortality trends for SAVR procedures, evolving care
practices, and shifting patient demographics, worsening
performance is a natural limitation of static models.1,14
Further, the introduction of transcatheter valve replacement
(TAVR) in 2011 as a treatment option for patients initially
deemed as too high-risk for SAVRhas created a dramatic shift
in the patient population of SAVR procedures.Within the past
few years, TAVR became the dominant treatment option for
AS, even for those with intermediate mortality risk.15-19

Dynamic prediction models (DPMs) are a proposed solu-
tion that incorporate underlying changes over time.
Although there are several time-dependent updating strate-
gies proposed in the literature, our recent research suggests
that calibration regression (CR) possesses the best set of
features for dynamically updating models.20,21 Another
recently developed method, dynamic logistic state-space
modeling (DLSSM), holds promise to improve on CR but
has not been compared with CR in the literature. This study
aimed to compare a static model’s predictive ability to 2 dy-
namic model updating methods: CR and DLSSM in predict-
ing 30-day postoperative mortality among patients
undergoing SAVR from the state of Pennsylvania.
We hypothesize that CR and DLSSMwill outperform the

nonupdating approach and that DLSSM will perform the
best due to its ability to examine the trend of model coeffi-
cient change over time and to potentially improve both cali-
bration and discrimination.

MATERIALS AND METHODS
Data

The data used in this analysis are from the Pennsylvania Health Care

Cost Containment Council (PHC4), which collects inpatient hospital

discharge and ambulatory/outpatient procedure records from nonfederal

hospitals and freestanding ambulatory surgery centers throughout Pennsyl-

vania. Each record may document up to 18 comorbidities per patient visit.

These data are collected every quarter and verified by PHC4 staff. A

detailed data dictionary is available online.22 International Classification

of Disease Codes 9 and 10 were used to identify new, isolated SAVR pa-

tients along with a list of potential predictors of 30-day postoperative

mortality.

Study Population
Adults aged 30 years or older who underwent an isolated SAVR from

January 1, 1999, to December 31, 2018, in the state of Pennsylvania

were included. This period was selected because it ensured sufficient sam-

ple size and study power, incorporated temporal changes and medical ad-

vances in the treatment of AS that likely influence one’s estimated

probability of survival following the surgery (eg, TAVR), and provided

complete follow-up data at the time of the study. Nonresidents were

excluded because out-of-state patients may not have complete follow-up

information available. Patients with a history of aortic valve procedures,

TAVR procedures, and concomitant cardiac procedures were excluded.

We also excluded those with a primary diagnosis of shock, mechanical cir-

culatory support, intra-aortic balloon pump, extracorporeal membrane

oxygenation, cardiogenic shock, cardiac arrest, and cardiopulmonary

resuscitation because they are rare events in this population and influenced

the stability of the model. Lastly, we excluded those with missing mortality

data (n¼ 29 [0.07%]) and admissions type (elective vs emergency, n¼ 60

[0.13%]) (See Figure 1).

The data were chronologically split into training and validation sets.

The training set included 14,070 participants from 1999 to 2006. The vali-

dation set contained 30,476 participants between 2007 and 2018.
JTCVS Open c Volume 15, Number C 95
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FIGURE 1. Derivation of the study sample. This figure maps the inclusion and exclusion criteria for the population used for this analysis and also shows

how the data were split into the development and validation sets. AVR, Aortic valve replacement; TAVR, transcatheter valve replacement; CABG, coronary

artery bypass graft; SAVR, surgical aortic valve replacement.
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Outcome
The outcome was 30-day postoperative mortality, which includes

in-hospital mortality and deaths within 30-days following the procedure.

Mortality status was verified by PHC4 linking all patient records with

the Pennsylvania Department of Health Mortality Data files.
Predictors
Initially, 40 candidate predictors were identified through literature re-

views and medical expertise. We excluded 6 variables for which we could

not reliably distinguish between preoperative events and perioperative/

postoperative complications (arterial embolism and thrombosis, atrial

fibrillation/flutter, heart block, pulmonary embolism, stroke, and ventricu-

lar fibrillation/flutter). Univariable analyses between candidate predictors

and the outcome were conducted. At this stage, we found 4 variables

(diabetes, depression, hypertension, and hypercholesterolemia) to have

an unexplainable, significant protective association with 30-day mortality

(see Table E1 for sensitivity analysis and further discussion). Because

this finding is contradictory to well-established risk factors, we deemed

these variables unreliable and excluded them as potential predictors. All

predictors except for age were treated as binary variables. The continuous

age variable was modeled linearly after examining for nonlinear

associations.
Statistical Analysis
To evaluate differences in the distribution of baseline characteristics be-

tween the training and validation cohorts, the standardized mean difference

was calculated for each variable. Values�0.1 were considered meaningful

differences.23

We compared 3 approaches: the standard (static) nonupdating approach,

model updating via CR, and DLSSM. Models were developed in the

training set and evaluated for performance in the validation set.
96 JTCVS Open c September 2023
Model Development and Updating
Nonupdating method. We fit logistic regression models for pre-

dicting 30-day postoperative mortality using least absolute shrinkage and

selection operator (LASSO) regression for variable selection in the devel-

opment cohort. The tuning parameter was selected based on minimizing

model deviance and ensuring model parsimony without substantially

affecting the C-statistic (see Appendix E1). We refer to this model as the

LASSO model. In this approach, the LASSO model is unchanged in the

validation set.

Logistic CR. Logistic CR starts with the LASSO model (ie, initial

model) in the static method and annually updates the model coefficients

each year within the validation set. Beginning in 2007, a logistic regression

model is fit with the predicted probability of mortality (in log odds scale)

estimated from the initial model as the only covariate. The coefficients

from the logistic CR are subsequently used to update the predicted proba-

bilities estimated from the initial model (see Figure E1 and Appendix E1

for further details).

DLSSM. For the DLSSMmodel, we used the R DLSSM package (RStu-

dio, PBC, 2023) to fit amodel using the same covariates as the LASSOmodel.

DLSSM can examine the trend of model coefficient change over time, which

is modeled using smoothing splines. The corresponding smoothing parameter

is chosen bymaximum likelihood.Wefit 8DLSSMmodelswithin the training

set, each ofwhich allows the coefficient for 1 of the 8 covariates to change over

time in addition to the a priori specified time-varying intercept. A variable is

considered to havemeaningfully changed over timewhen the 95% confidence

bands excludes the initial point estimate. We found no evidence that the coef-

ficient for any of the 8 covariates is time-varying (see Figure E2). Therefore,

the final DLSSM model from the training set included only the time-varying

intercept; the other coefficients remain time-invariant (see Figure E3).

In the validation set, DLSSM continuously updates model parameters

every year. Unlike CR, which rescales the predicted probability using

only the recalibrated intercept and slope, DLSSM is more flexible by
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updating each model coefficient individually. For a more detailed explana-

tion refer to Jiang and colleagues24 and Appendix E1.

Model assessment. Both calibration and discrimination are impor-

tant measures of prediction performance. Calibration refers to the differ-

ences between observed and predicted probabilities of the outcome. We

assessed calibration through the Hosmer-Lemeshow (H-L) statistic, cali-

bration plots of predicted versus observed mortality, and by the calibration

intercept and slope.25 Discriminationmeasures howwell models can differ-

entiate between those who did and did not develop the outcome and was

measured with the C-statistic. Overall accuracy was measured by the Brier

score (BS) and mean absolute error (MAE).26

Data analyses and graphical outputs were performed using R version

4.1.2 (R Foundation for Statistical Computing). The study was reviewed

by the University of Florida’s Internal Review Board and received authori-

zation as nonhuman subject research and deemed exempt (entry ID 17591;

February 2, 2023).
RESULTS
Participants

Figure 1 shows the derivation of the study cohort. A total
of 44,546 SAVR procedures were included in this analysis.
The LASSO and DLSSMmodels were developed using par-
ticipants from 1999 to 2006 (N ¼ 14,070; 557 deaths). The
validation set included patients undergoing SAVR from
2007 to 2018 (N ¼ 30,476; 802 deaths). Each year within
the validation set had approximately 2000 to 3000 partici-
pants. The annual risk of mortality ranged from approxi-
mately 2.0% to 4.5% and decreased significantly
(P<.001) over the study period (Figure 2).

The distribution and characteristics of the study popula-
tion stratified by training and validation set are presented
in Table 1. The average age of patients undergoing SAVR
in the development set was 66.6 � 13.3 years and 67.4 �
12.3 years in the validation set. Within both sets, patients
undergoing SAVRwere predominately men and undergoing
an elective (nonemergency) procedure. In general, patients
in the validation set had more comorbidities than those in
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FIGURE 2. Risk of 30-day postoperative mortality after surgical aortic valve

mortality among patients undergoing SAVR over time throughout the study pe
the training data (standardized mean difference >0.1).
Only chronic kidney disease stage 5 and an emergency
admission were more common in the training set.
Model Specification
The LASSO and DLSSM models specified 8 covariates

with similar values between the 2 models. The model cova-
riates and performance are shown in Table 2.
Comparison of Updating Strategies
Calibration. The static model demonstrated worse cali-
bration, overpredicting the probability of mortality in the
validation cohort with a H-L statistic ¼ 156.490
(P<.001) (Figure 3 and Table 3). The H-L statistic also pre-
dominantly increased each year (Table E2).
The CR and DLSSMmodels demonstrated better calibra-

tion and similar performance in the validation cohort (Table
3 and Figure 3). Within each year of updating (Table E2),
the updating methods demonstrated better calibration (H-
L statistic) than the static method, as reflected in the calibra-
tion plots (Figure E4). Consistent with these results, the
intercept (ie, calibration-in-the-large) was closer to zero
(better calibration) and the slopewas closer to 1 for both up-
dating methods compared with the static method (Table 3).
Although there was more variability in the year-to-year
evaluation of the intercepts and slopes across the 3 models
(Table E2), overall, the updating models showed better per-
formance compared with the static model.
The static model consistently overpredicted the risk of

30-day postoperative mortality. For example, a 64-year-old
patient who survived and was admitted for an emergency
procedure with diagnoses of aortic aneurysm/dissection
and heart failure had a predicted probability consistently
around 10% under the static model. Both updating methods
8
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TABLE 1. Characteristics of patient population stratified by development and validation cohorts

Participants

Characteristic

Development Validation

SMD*1999-2006 (n ¼ 14,070) 2007-2018 (n ¼ 30,476)

Mean age (y) 66.6 � 13.3 67.4 � 12.3 0.068

Acute myocardial infarction as primary diagnosis 169 (1.2) 187 (0.6) 0.062

Admission type: Emergency 4826 (34.3) 7822 (25.7) 0.189

Alzheimer/dementia 24 (0.2) 172 (0.6) 0.065

Anemia 2615 (18.6) 14,791 (48.5) 0.669

Aortic aneurysm and/or dissection 2150 (15.3) 6351 (20.8) 0.145

Aortic root surgery: concomitant 1715 (12.2) 5065 (16.6) 0.126

Asthma 612 (4.3) 1736 (5.7) 0.062

Cardiomyopathy 864 (6.1) 3043 (10.0) 0.142

Cachexia 12 (0.1) 47 (0.2) 0.020

Chronic pericardial disease 165 (1.2) 379 (1.2) 0.006

Chronic kidney disease stage 1-4 254 (1.8) 3286 (10.8) 0.376

Chronic kidney disease stage 5þ 468 (3.3) 512 (1.7) 0.106

Chronic liver disease 169 (1.2) 678 (2.2) 0.079

Chronic obstructive pulmonary disease 2107 (15.0) 4000 (13.1) 0.053

Other chronic lung diseases 145 (1.0) 396 (1.3) 0.025

Coronary artery disease 4017 (28.6) 10,278 (33.7) 0.112

Endocarditis 465 (3.3) 1075 (3.5) 0.012

Excision of other lesion/heart tissue same day 325 (2.3) 1754 (5.8) 0.176

Heart failure 4834 (34.4) 10,307 (33.8) 0.011

History of chronic steroid use 13 (0.1) 199 (0.7) 0.092

Lupus 65 (0.5) 141 (0.5) <0.001

Oxygen dependence therapy 26 (0.2) 518 (1.7) 0.157

Obstructive sleep apnea 51 (0.4) 2935 (9.6) 0.435

Parkinsonism 46 (0.3) 137 (0.4) 0.020

Peripheral arterial disease 2160 (15.4) 6477 (21.3) 0.153

Percutaneous transluminal coronary angioplasty/stent 375 (2.7) 1379 (4.5) 0.100

Pulmonary hypertension 405 (2.9) 855 (2.8) 0.004

Rheumatoid arthritis 124 (0.9) 340 (1.1) 0.024

Sex: Female 6067 (43.1) 11,956 (39.2) 0.079

Values are presented as mean � SD or n (%). SMD, Standardized mean difference. *Values � 0.1 were considered meaningful differences between the development and vali-

dation cohorts and appear in bold font.

Adult: Aortic Valve Pollack et al
yielded more appropriate, lower predicted probabilities
consistent with the decreasing risk of the procedure over
time and the survival of the patient. From the beginning of
the validation period, DLSSMgenerated a slightly lower pre-
dicted probability of 8.6% and by 2018, after 11 years of up-
dating, the predicted risk was nearly half that of the static
model at 5.5%. As expected, DLSSM also demonstrated a
smoother change in the predicted risk over time. The CR
method also demonstrated a decreasing trend over time
(from 10.2% down to 4.1%), though the trend was not as
smooth (see Appendix E1 and Figure E5).
98 JTCVS Open c September 2023
Discrimination (C-statistic). CR does not change the rank
order of predicted risk, so as expected, it did not change the
year-to-year C-statistic in the validation data (Table E2).
However, when examined across years, CR yielded margin-
ally higher C-statistics (0.687) than nonupdating (0.685) as
ranking can change when combining data across updating
intervals (Table 3). DLSSM demonstrated the best discrim-
ination (C-statistic ¼ 0.696) (Table 3), and yearly compar-
isons show that the DLSSM model had better areas under
the curve in most years compared with CR or non-
updating models (see Appendix E1 and Table E2).



TABLE 2. Specification of logistic regression models developed from the training data (years: 1999-2006; N ¼ 14,070)

Variable

LASSO-derived models DLSSM-derived models

b Coefficient Odds ratio (95% CI)* b coefficient Odds ratio (95% CI)*

Age 0.04 1.04 (1.03-1.05) 0.04 1.04 (1.03-1.05)

Acute myocardial infarction as primary diagnosis 0.82 2.27 (1.37-3.60) 0.83 2.29 (1.82-2.77)

Admission type: Elective vs emergency 0.57 1.77 (1.47-2.12) 0.55 1.73 (1.42-2.10)

Aortic aneurysm and/or dissection 0.88 2.42 (1.93-3.01) 0.84 2.31 (1.82-2.94)

Chronic kidney disease stage 5þ 0.54 1.72 (1.20-2.40) 0.63 1.88 (1.30-2.73)

Chronic liver disease/cirrhosis 1.22 3.40 (1.99-5.50) 1.24 3.46 (1.99-5.94)

Endocarditis 1.06 2.88 (1.97-4.10) 1.06 2.88 (2.00-4.19)

Heart failure 0.54 1.71 (1.43-2.05) 0.52 1.68 (1.38-2.04)

Model performance

Hosmer-Lemeshow statistic 9.36y 11.703y
C-Statistic 0.724 0.750

Brier score 0.037 0.034

Mean absolute error 0.074 0.066

The LASSO derived model was used for the nonupdating and calibration regression models. The DLSSMmodel uses the same variables identified by the LASSO and allows the

intercept to change over time. LASSO, Least absolute shrinkage and selection operator; DLSSM, dynamic-logistic state space model. *The intercept coefficient for the LASSO

model is �6.73. The intercept for the DLSSM model varied over time. For more details refer to Figure E2. yP>.15.

Pollack et al Adult: Aortic Valve
Overall accuracy. Although differences between the BS
are difficult to interpret, the BS was consistently better
(lower) in the updating models, both within yearly compar-
isons and overall (Tables 3 and E2). DLSSM had the best
BS (0.0252). The MAE demonstrated similar results, with
lower MAEs in the updating versus static strategies (Table
3). Again, DLSSM was the best model with the lowest
MAE (0.050) compared with CR (MAE ¼ 0.052) and non-
updating (MAE ¼ 0.063). The improvement in MAE pro-
gressively widened among the strategies with each
successive update (see Appendix E1 and Table E2).

DISCUSSION
This study evaluated 2 methods for dynamically updating
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TABLE 3. Comparison of model performance in the validation set

2007-2018 Model

Performance metric Nonupdating Calibration regression DLSSM

Calibration

Hosmer-Lemeshow 156.490 4.491 7.999

Intercept* �0.737 �0.273 �0.202

Slopey 0.897 0.933 0.935

Discrimination

C-Statistic 0.685 0.687 0.696

Overall accuracy

Brier score 0.0256 0.0253 0.0252

Mean absolute error 0.063 0.052 0.050

DLSSM, Dynamic-logistic state space model. *The intercept measures calibration-in-the-large and refers to the difference between mean expected and mean observed mortality.

Values closer to 0 are better with 0 indicating a perfectly calibrated model. yA slope of 1 is a perfectly calibrated model.

Adult: Aortic Valve Pollack et al
when assessing individual risk while improving calibration
may have greater influence on risk-adjustment and institu-
tional comparisons. HowDPMmight alter measures of cen-
ter or operator performance is an important question.
However, the methods to make these comparisons in a
dynamically updating approach are still being developed
and is an important topic for future research. Because the
purpose of our analysis was to evaluate the summative per-
formance of DPM, measures of calibration, discrimination,
and accuracy were considered; thus, overall, DLSSM was
the best method in our setting.

The findings of our analysis are similar to and expand
upon our previous work of predicting 1-year survival after
lung transplant, in which DPMs outperformed nonupdat-
ing.20 Other studies have also documented dynamically up-
dating models, but they have primarily focused on the
estimation of model coefficients rather than prediction ac-
curacy. McCormick and colleagues27 applied a modeling
strategy similar to DLSSM among children receiving either
laparoscopic or open appendectomies. Their approach did
not model the smoothing trend of model coefficient change
as DLSSM and the work focused primarily on the relation-
ship between covariates and procedure type, rather than pre-
diction.27 Hickey and colleagues28 compared periodic
refitting at varying 1- and 2-year intervals by updating strat-
egy for in-hospital mortality following cardiac surgery, but
they focused on the changing model coefficients over time
and did not differentiate between types of cardiac surgeries.

There are several prediction models for SAVR mortality,
but we are unaware of any models that systematically up-
date on a regular basis. In North America, the STS Adult
Cardiac Surgery Database is used to develop prediction
models for major cardiac procedures, including isolated
SAVR, to estimate a patient’s probability of mortality,
among other outcomes. The STS database has been the pro-
totype for other surgical disciplines and has enabled risk
stratification for individual patients, facilitating both indi-
vidual patient counseling as well as clinical research trial
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design. Furthermore, the influence on improved quality
that has emerged from STS database efforts must be empha-
sized. However, these models are based on data that are
several years old, before development and the process of
training, validating, and deploying the model can be sub-
stantial.6-8 The STS regularly updates the database and
applies a year and procedure type-specific correction factor
to its institutional reports annually,8 but the model itself is
not updated annually. As a result, the online risk calculator,
a decision support tool used by providers throughout the
United States, is used until a new model is developed.8

Further, the annual correction done in STS only recalibrates
the models so that the observed-to-expected mortality ratio
is equal to the overall event rate for that calendar year.8 This
method only updates the intercept as opposed to CR, which
updates the intercept and slope.

In 2015, Vassileva and colleagues29 compared the 2008
STS predicted risk of operative mortality online calculator
for aortic valve replacement patients following a previous
coronary artery bypass grafting to a cohort-specific recali-
brated risk model. The online risk calculator overestimated
the risk of operative mortality, demonstrating a need to
move away from static approaches and towards more
frequent updating, especially given some centers’ reliance
on online risk calculation for individual treatment deci-
sions.29 The latest 2018 STS predicted risk of operative
mortality (online calculator version 4.2) showed good cali-
bration and moderate discriminatory ability at the time, but
runs the risk of becoming outdated because the model was
developed from data 9 to 12 years ago (between 2011 and
2014).30

Another prominent example in cardiac surgery is the
EuroSCORE model, which was published in 1999 and
tended to overestimate mortality for low-risk patients un-
dergoing SAVR and underestimate mortality for high-risk
patients in other cardiac surgeries over time.9-11 The
model was subsequently updated in 2012 (EuroSCORE
II) but has not been updated since.12 Emerging evidence
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suggests that EuroSCORE II performance may be deterio-
rating for some patients undergoing SAVR, particularly
those aged 75 years or older.13

Our study is not without limitations. Our data did not
demonstrate any meaningful time-varying covariates in
the training set that could be used to inform predictions in
the validation set. More studies are needed to examine
how DLSSM would perform in other dynamic prediction
settings with time-varying coefficients that might inform
future updates.

Several other time-dependent updating strategies pro-
posed in the literature such as calibration-in-the-large, the
closed testing procedure, and model revision were not eval-
uated here.31-33 In our previous work with the Lung
Allocation Score, we found that CR required minimal
data, led to more consistent improvements, and exhibited
less variability over time, making it more suitable for
adapting to variations in the prevalence of a binary
outcome compared with other updating strategies.20,21 We
therefore chose to validate this method here. We were not
able to incorporate some common measures used in prom-
inent CPMs of mortality for patients undergoing SAVR in
our initial models, such as hypertension, hypercholesterole-
mia, diabetes, or laboratory measurements. This may limit
the generalizability of our findings but because our goal
was to assess the effectiveness of dynamic updating, not
to develop a new model for clinical practice, our inferences
are still valid. The generalizability of our finding in other
datasets with more granular data, such as STS, will need
to be addressed in future studies. Still, the variables we
were able to incorporate have documented prognostic
importance, and our models had moderate discriminatory
ability.

Strengths
This study has several strengths. First, this is, to our

knowledge, the first study to empirically evaluate the per-
formance of DLSSM compared with CR (ie, a more conven-
tional updating strategy) in a large, statewide sample of
patients undergoing SAVR. Second, the PHC4 is a statewide
agency that includes data from all nonfederal hospitals in
the state, ensuring a mix of complicated and less compli-
cated procedures across a broad range of practices. This
case mix helps mitigate selection bias in terms of partici-
pants. Third, our sample is sufficiently large to satisfy a
minimum of 10 events per predictor in our training set, al-
lowing for a more accurate estimation of the regression co-
efficients in our models. Our large sample also permitted
yearly updating with approximately 50 events per year,
the same number that we used to demonstrate benefit in
the Lung Allocation Score.20 Lastly, our outcome measure
of 30-day postoperative mortality is robust as we restricted
our sample to Pennsylvania residents and linked patient re-
cords with death certificates in Pennsylvania.
CONCLUSIONS
Our study adds insight into the reliability of dynamic up-

dating. Prior studies have not examined the performance of
repeatedly updating models over time. Our findings suggest
that DPMs are superior to static models and that updates can
be done with standard computing resources. In our study,
DLSSM was the optimal updating strategy because it has
the advantage of being able to improve both discrimination
and calibration, whereas CR can only improve calibration.
The decision as to which updating strategy to use may be
dependent on the clinical context and logistical consider-
ations such as the availability of data (both in terms of
size and frequency of collection), computational resources,
and which performance metrics one wants to optimize. In
the current era of rapidly evolving transcatheter strategies
for valvular interventions, dynamically updating CPMs
can guide clinicians toward the best valve replacement
option.
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APPENDIX E1. SUPPLEMENTAL MATERIAL
Data Dictionary
A detailed data dictionary of PHC4 data is available

onlineE1 with the hyperlink below.
https://www.phc4.org/services/datarequests/docs/special

requests1990-Current_inpatient.pdf.

Sensitivity Analysis
Univariable analyses between candidate predictors and

our primary outcome were conducted. At this stage, we
found 4 variables (diabetes, depression, hypertension, and
hypercholesterolemia) to have a significant protective asso-
ciation with 30-day mortality.

Sensitivity analyses were done to determine if these co-
morbidities may be undercoded/not included due to the
limited number of fields available per patient. Each patient
can have up to 18 diagnosis codes per visit, so we looked at
the proportion of fields for those with and without diabetes,
depression, hypertension, and hypercholesterolemia. We
found no difference in the proportion of codes used between
patients with and without these conditions. We also
searched the records to determine if any of these 4 condi-
tions may have been missed by being listed as a complica-
tion of an existing condition. For example, if an individual
had an International Classification of Diseases 10 code of
I13- “Hypertensive heart and chronic kidney disease with
heart failure and stage 1 through stage 4 chronic kidney dis-
ease, or unspecified chronic kidney disease” but was not ac-
counted for in the hypertensive population. After
conducting the sensitivity analysis and assessing the rela-
tionships after multivariable adjustment the protective asso-
ciation remained.

We also considered the influence of retaining these vari-
ables and fit a model using least absolute shrinkage and se-
lection operator (LASSO), which selected diabetes,
hypertension, and hypercholesterolemia despite their pro-
tective association with mortality. However, the C-statistic
for this model was 0.75 (which included the same 8 covari-
ates from the baseline plus diabetes, hypertension, and hy-
percholesterolemia) compared with 0.72 from our baseline
model without them. Because there was a nominal gain in
discrimination with these variables, the relationship was
biologically implausible, and the associations contradictory
to the literature, we deemed these variables unreliable and
excluded them as potential risk factors in our analysis. It
is important to note that although we did not include these
variables in our models, our goal was to assess the effective-
ness of dynamic updating, not to develop a new model for
clinical practice. The variables we were able to incorporate
in our models have documented prognostic importance in
other models.E2,E3

Finally, these 4 diagnosis codes have had limited and var-
ied importance in other models for aortic valve postopera-
tive mortality developed by the Pennsylvania Health Care
Cost Containment Council (PHC4). To our knowledge
based on the public technical reports, hypertension is only
included in one PHC4 model (2005-2006) but not others.
The codes for depression, hypercholesterolemia, and dia-
betes have not been incorporated into prior PHC4 models
as of prognostic importance. Although a separate variable
for “current insulin use” has been used in some models
(2005-2006,2006-2007, and 2007-2008), it has not been
included since (we do not have access to this code in the
PHC4 data available to us).E4-E6

Model Development
We fit logistic regression models for predicting 30-day

postoperative mortality using LASSO regression for vari-
able selection in the development cohort. The tuning param-
eter was selected based on minimizing model deviance.
Two lambda values corresponding to the minimum and 1
SE above the minimum were considered, where the latter
provides a more parsimonious model. We compared the
performance of the 2 logistic regression models. The final
model from the development phase was selected based on
balancing model parsimony and prediction performance
measured by the area under the receiver operating-
characteristic curve (ie, C-statistic). The C-statistics were
similar for the two models (0.74 for the minimum value
of lambda and 0.72 for 1 SE above), so the more parsimo-
nious LASSO model was chosen to test the updating strate-
gies in the validation cohort (Table 2).

Methodological Overview of Calibration Regression
In calibration regression, a new model is fit with the

linear predictor (lp) from the original model and the inter-
cept as the only 2 covariates. The linear predictor is the
model intercept plus the coefficients from the original
model multiplied by the values in the new setting. This
serves as the adjustment factor that rescales the slope.
The updated intercept (a) for the new model is obtained
by adding the intercept of the original model to the intercept
of the new model: lp ¼ anewþ aoriginalþ ðboriginal � xi.newÞ.
The updated slope (b) is the result of multiplying the slope
from the new model by the slope of the original model
(b_new ¼ b_original *b_new_model). Subsequent updates
follow the same procedure, using the linear predictor from
the most recently updated model.

Overview of the Dynamic-logistic State Space Model
In contrast to calibration regression, the dynamic-logistic

state space model (DLSSM) can provide more timely and
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accurate predictions by incorporating new data and infor-
mation as they become available, allowing for more flexi-
bility in responding to advances in the field. The primary
advantage of the DLSSMmethod over any of the calibration
measures, like the approach used in the Society of Thoracic
Surgeons database, is that DLSSM may improve both
discrimination and calibration, whereas other methods
only improve calibration. DLSSM was updated yearly in
our study (based on the primary outcome event rate), but
it can also be updated as frequently as statistically possible,
which is another advantage over other methods. In addition,
DLSSM updates the coefficients through smoothing
splines, providing a more stable and detailed modeling pro-
cess, and providing valuable insights into the factors that in-
fluence outcomes so that large sudden shifts in a patient’s
predicted probability may be avoided.
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FIGUREE1. Overview of model updating strategies. This figure is a visual representation ofmodel updating compared to not updating a clinical prediction

model. Panel A (top) depicts the static approach while panel B (bottom) reflects dynamic updating. The initial model is either the least absolute shrinkage

and selection operator (LASSO) or the dynamic logistic state space model (DLSSM) model. In the nonupdating scenario (A), the coefficients from the

LASSO model are applied to each subsequent year in the validation set starting in 2007. With dynamic updating (B), the initial model is applied to the

2007 cohort (1a) and then updated using the 2007 data. That updated model (2a) is then tested on the 2008 cohort (3a). The model is then updated a second

time (4a) based on the 2008 population and is then tested in the 2009 population (5a). The process of testing followed by updating continues yearly in the

validation set.
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Predicted Probability of SAVR 30-Day
Postoperative Mortality by Strategy Over Time*
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Patient Profile: 64-year-old patient admitted as an emergency procedure
with diagnoses of aortic aneurysm/dissection and heart failure

*SAVR-Surgical aortic valve replacement;
 DLSSM-Dynamic logistic state space model

Strategy Calibration Regression DLSSM Static

FIGURE E5. Predicted probability of surgical aortic valve replacement (SAVR) 30-day postoperative mortality by strategy over time. The plot shows a

comparison of the predicted risk (%) of 30-day postoperative SAVR mortality (y-axis) through the validation years of 2007 to 2018 (x-axis) by the 3 up-

dating strategies. The green line is the static, nonupdating approach. The blue line represents the calibration regression strategy, and the red line is the

dynamic logistic state space model (DLSSM) method. The figure is significant because it demonstrates the temporal trends of predicted risk from

each updating strategy. The static approach maintains a fixed risk estimate throughout the study period. In contrast, the calibration regression and DLSSM

methods incorporate updated information to adapt their risk predictions over time. SAVR, Surgical aortic valve replacement; DLSSM, dynamic logistic

state space model.

TABLE E1. Subset of univariable analysis: Variables with a protective association with 30-day postoperative mortality

Predictor (n within the

14,070 training sample)

Cross tabulation of mortality

with variable (%) c2 value* (P value) Odds ratio (95% CI)

Diabetes (2,327) 62 (2.7) 11.88 (<.001) 0.62 (0.46-0.81)

Depression (452) 6 (1.3) 7.80 (.005) 0.32 (0.12-0.70)

Hypercholesterolemia (3,578) 64 (1.8) 58.67 (<.001) 0.37 (0.28-0.48)

Hypertension (7,308) 198 (2.7) 61.75 (<.001) 0.50 (0.41-0.59)

*With Yates’ continuity correction.

JTCVS Open c Volume 15, Number C 111

Pollack et al Adult: Aortic Valve



TABLE E2. Comparison of model performance across all years in the validation set

Update year

Model comparisons Metric 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2007-2018

Calibration

Nonupdating (static) H-L 11.827 15.687 18.282 13.086 19.117 23.049 26.748 26.473 18.864 26.557 22.425 31.320 156.490

Calibration regression H-L 11.827 10.342 16.665 13.875 10.799 17.771 12.443 2.257 12.864 13.132 8.250 25.628 4.491

DLSSM H-L 9.960 11.638 12.224 18.296 7.734 4.292 8.689 3.630 6.832 16.475 5.059 17.099 7.999

Nonupdating (static) Intercept* �0.839 �0.648 �0.641 �0.371 �0.612 0.251 �1.004 �0.852 �0.579 �2.058 �1.074 �0.777 �0.737

Calibration regression Intercept* �0.839 0.306 �0.006 0.306 �0.245 1.062 �1.178 0.246 0.291 �1.750 2.422 0.385 �0.273

DLSSM Intercept* �0.698 �0.415 �0.189 �0.013 �0.110 0.911 �0.447 �0.257 0.297 �1.425 �0.203 0.215 �0.202

Non-updating (static) Slopey 0.796 0.906 0.886 0.936 0.927 1.228 0.852 0.932 0.951 0.505 0.858 0.929 0.897

Calibration regression Slopey 0.796 1.137 0.979 1.056 0.990 1.324 0.694 1.094 1.021 0.531 1.699 1.082 0.933

DLSSM Slopey 0.796 0.909 0.932 0.937 0.973 1.277 0.901 0.962 1.035 0.589 0.943 1.022 0.935

Discrimination

Nonupdating (static) C-Statistic 0.657 0.680 0.705 0.694 0.687 0.738 0.679 0.677 0.703 0.606 0.689 0.673 0.685

Calibration regression C-Statistic 0.657 0.680 0.705 0.694 0.687 0.738 0.679 0.677 0.703 0.606 0.689 0.673 0.687

DLSSM C-Statistic 0.656 0.679 0.710 0.698 0.685 0.741 0.685 0.681 0.720 0.617 0.700 0.683 0.696

Accuracy

Nonupdating (static) BS 0.0305 0.0268 0.0290 0.0319 0.0280 0.0259 0.0228 0.0213 0.0254 0.0233 0.0208 0.0226 0.0256

Calibration regression BS 0.0305 0.0265 0.0286 0.0318 0.0277 0.0258 0.0225 0.0207 0.0253 0.0226 0.0201 0.0222 0.0253

DLSSM BS 0.0303 0.0266 0.0286 0.0319 0.0276 0.0257 0.0222 0.0206 0.0249 0.0225 0.0200 0.0221 0.0252

Nonupdating (static) MAE 0.067 0.063 0.066 0.069 0.067 0.063 0.059 0.059 0.062 0.059 0.057 0.060 0.063

Calibration regression MAE 0.067 0.057 0.056 0.060 0.061 0.052 0.048 0.043 0.045 0.047 0.042 0.043 0.052

DLSSM MAE 0.062 0.056 0.056 0.058 0.056 0.052 0.047 0.044 0.046 0.043 0.040 0.042 0.050

H-L, Hosmer-Lemeshow statistic; DLSSM, dynamic-logistic state space model; BS, Brier score; MAE, mean absolute error. *The intercept measures calibration-in-the-large and refers to the difference between mean expected and

mean observed mortality. Values closer to 0 are better with 0 indicating a perfectly calibrated model. yA slope of 1 is a perfectly calibrated model.
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