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Abstract: Membrane-based reverse electrodialysis (RED) can convert the salinity gradient energy
between two solutions into electric power without any environmental impact. Regarding the practical
application of the RED process using natural seawater and river water, the RED performance
depends on the climate (temperature). In this study, we have evaluated the effect of the feed
solution temperature on the resulting RED performance using two types of pilot-scale RED stacks
consisting of 200 cell pairs having a total effective membrane area of 40 m2 with different intermediate
distances (200 µm and 600 µm). The temperature dependence of the resistance of the solution
compartment and membrane, open circuit voltage (OCV), maximum gross power output, pumping
energy, and subsequent net power output of the system was individually evaluated. Increasing the
temperature shows a positive influence on all the factors studied, and interesting linear relationships
were obtained in all the cases, which allowed us to provide simple empirical equations to predict
the resulting performance. Furthermore, the temperature dependence was strongly affected by
the experimental conditions, such as the flow rate and type of stack, especially in the case of the
pilot-scale stack.

Keywords: reverse electrodialysis (RED); ion exchange membrane (IEM); salinity gradient energy
(SGE); pilot-scale

1. Introduction

The ever increasing energy demand worldwide and environmental issues such as CO2 emissions
have led to an increased focus on renewable energy sources such as wind, sun and hydro power [1,2]
Among all of the renewable sources used for energy production, salinity gradient energy (SGE) is known
to be one of the most readily available and appropriate. SGE is defined as the electrochemical potential
between two solutions with different concentrations, especially salt concentration. Theoretically, it has
been estimated using the Gibbs free energy that 1.7 MJ of power may be generated when mixing
1 m3 of river water and a large amount of seawater. Therefore, when considering the large amount
of river water discharged into seawater during the course of a year, a magnificent amount of power
(1.4–2.6 TW) can be theoretically generated [3–5]. Reverse electrodialysis is known as a promising
membrane-based process, which can directly convert SGE into an electrical current and energy [6–17].
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In RED, cation exchange membranes (CEMs) as well as anion exchange membranes (AEMs) are
alternatively stacked beside one another, while high and low concentration solutions flow between
them, as shown in Figure 1 [18–22]. Integrated porous spacers are located between the membranes
in order to maintain the distance between the membranes as well as playing an effective role in
the solution and ion distribution. Subsequently, cations and anions are transported from the high
concentration side into the low concentration side and are converted into electric current via a redox
reaction using an electrode and electrolyte at both ends of the RED stack.
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Figure 1. A simple schematic representation of a reverse electrodialysis (RED) stack including ion
exchange membranes, integrated spacers, and electrodes.

Reasonably, seawater and river water have been mainly considered as the feed solutions in the
RED process because they are readily available. In this case, RED power density has been varied
by modifying and optimizing different parameters in the RED stack such the membrane, spacer,
and operating conditions [23–26]. Among all of the operating conditions, temperature may be one
of the more effective factors, which has been given less attention and could have a significant effect
on RED performance [27]. Since the seaside is one of the most appropriate places for locating a RED
process, the climate (temperature) of the applied solution and area will be important. Among the
different areas in the world as well as the different seasons, the temperature of the feed solution may be
significantly different. Increasing the temperature will lead to an increase in the solution conductivity
and a decrease in the respective resistance [28]. Therefore, since the solution resistance is one of the key
parameters in the RED stack resistance, temperature may have a considerable effect on the RED process
performance. Although some studies have been performed to investigate the effect of temperature on
the RED process performance, there are no comprehensive studies on how a pilot-scale RED process
may be affected by changing the temperature. For instance, Benneker et al. showed an ~40% increase
in the RED power density can be achieved by increasing the feed temperature from 20 to 40 ◦C using a
4-cell pair RED stack [27]. In the case of a pilot-scale RED stack, the residence time of the feed solutions
in the flow channels will be higher due to the dimensions of the stack [29–31] and, therefore, the effect
of temperature may be different. In addition, the final purpose of RED is to commercialize the process,
so studying the RED process behavior on a pilot-scale will be more appropriate.

In this study, the effect of temperature on the individual feed solutions and membrane resistance
was considered in order to discover the most effective parameter in the RED stack. In addition, we have
investigated the effect of the temperature of the feed solutions on the power output of a pilot-scale
RED system equipped with 200 and 600 µm spacers using model seawater and river water as the
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feed solutions. The flow rate of the feed solutions was also changed as well as the temperature to
investigate their combined effects on the RED power output.

2. Experimental

2.1. Membrane and Solution Resistance

Neosepta® cation exchange membrane, CMX and anion exchange membrane, AMX (ASTOM
Co., Tokyo, Japan) and the solution resistance at different temperatures were investigated using a
handmade acrylic cell consisting of two parts separated by a membrane with an effective area of
1 cm2 according to our previous report [32]. The specific properties of CMX and AMX are shown in
Table 1 [33]. The sample solution was prepared using NaCl (model seawater) with a conductivity
of 49 mS/cm at 25 ◦C. Briefly, the sample solution was purged inside the cell and the cell was then
immersed in a water bath at temperatures ranging from 10 to 35 ◦C to measure the solution bulk
resistance without a membrane, Rbulk. In addition, the ion conductivity of the solution at different
temperatures was also measured using a conductivity meter (ES-51, HORIBA. Ltd. Tokyo, Japan).
Subsequently, the same procedure was performed in the presence of a sample membrane in order to
measure the resistance including both the solution and membrane resistance, Rbulk+mem, at a particular
temperature. An alternating current (AC) of 10 kHz frequency was applied to prevent an increase in
the membrane resistance via the concentration polarization effect. The membrane resistance, Rmem,
was then calculated from the difference between Rbulk and Rbulk+mem as follows

Rmem = Rbulk + mem −Rbulk (1)

Table 1. Physicochemical characterization of the CMX and AMX membranes.

Membrane Type Thickness
(mm)

Water
Content (%)

Area Resistance
(Ω·cm2)

Permselectivity *
(%)

CMX cation exchange membrane 0.14–0.20 25–30 1.8–3.8 97
AMX anion exchange membrane 0.12–0.18 25–30 2.0–3.5 95

* 0.1/0.001 M NaCl at 25 ◦C.

2.2. RED Stack

The RED experiment was performed using a pilot-scale RED stack to investigate the effect of the
feed solution temperature on the RED stack performance. A 200-cell pair commercial electrodialysis
stack (Acilyzer AC10-20, ASTOM Corp., Tokyo, Japan) containing commercially available ion exchange
membranes (IEMs) (Neosepta®AMX and CMX) with a total membrane effective area of 40 m2 (each
membrane area of 20 cm × 50 cm) was used. Spacers with thicknesses of 200 and 600 µm and porosity
of 84 and 85%, respectively, and integrated with a gasket to prevent leakage were used. In addition,
Pt-coated titanium was used as the electrode and a 5 wt.% aqueous solution of Na2SO4 was used as
the electrolyte to convert ion transportation into electric current.

2.3. RED Experiment

RED tests were performed using model seawater (SW) (53 ± 0.5 mS/cm NaCl aq.) and model
river water (RW)/wastewater (1.3 ± 0.5 mS/cm NaCl aq.) prepared using tap water and 99.5% NaCl
purchased from NACALAI TESQUE, Inc. Kyoto, Japan. The temperature of both feed solutions
(SW and RW) was increased from 10 to 35 ◦C. The temperature and conductivity of the feed solutions
were measured using a MC-31P conductive meter (DKK-TOA Corp., Tokyo, Japan). Both SW and
RW were fed into the RED stack using a magnet pump (MD-30RZ-N, IWAKI CO., Ltd. Tokyo, Japan)
at different flow rates (2–6 L/min). The flow rates of SW and RW were set at the same value in
each experiment and the flow rate of the electrode solution was adjusted in order to maintain a low
pressure difference between the feed solution compartments and the electrode solution. Therefore,
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the solution leakage from the feed solution compartments into the electrolyte and vice versa was
negligible. Electrical performance measurements were then carried out using a PLZ 164W instrument
(Kikusui electronics corp., Yokohama, Japan). Both the current (I) and voltage (V) were recorded in
all the experiments using a data logging system (midi LOGGER GL200, GRAPHTEC Co., Yokohama,
Japan) connected to a personal computer. I-V curve tests were performed from zero to a maximum
current (until the stack voltage became zero) at a current changing rate of 0.4 mA/s. The OCV and
maximum current were obtained considering the vertical and horizontal axis intercepts of the I-V
curve, respectively. The RED stack resistance was also obtained from the slope of the I-V curves using
Ohm’s law as follows [34]

Estack = OCV−RstackI (2)

where Estack and Rstack are the voltage and resistance of the RED stack, respectively. The RED power
output, Pgross, and power density, Pd, are then defined using the following equations [34].

Pgross = Estack · I (3)

Pd = Pgross/NA (4)

where N and A are the number of cell pairs and the effective membrane area of each cell, respectively.
The pumping energy, Ppump, was also calculated to consider the total net power output, Pnet, of the
RED system as follows:

Ppump =
(∆PseaQsea + ∆PriverQriver)

ηpump
(5)

Pnet = Pgross − Ppump (6)

where ∆P is pressure drop within the stack, Q is the flow rate of the solution, and ηpump is the pumping
efficiency which we assumed to be 0.85 in this study.

3. Results and Discussion

3.1. The Effect of Temperature on the Solution Resistance

The effect of temperature on the solution conductivity is shown in Figure 2. The original solution
was prepared at an initial conductivity of 49 mS/cm at 25 ◦C and the conductivity was then measured
at different temperatures ranging from 15 to 35 ◦C. The solution conductivity can be considered as
the parameter to show the effect of temperature on the solution resistance, since the conductivity
of a solution has an inverse relationship with the solution resistance (1/R). Increasing temperature
enhances the ionic diffusion according the Nernst–Haskell equation because the viscosity of the solution
decreases with increasing the temperature [35]. Therefore, ions can move easier upon increasing
the temperature, resulting in an increase in conductivity. Moreover, conductivity increases almost
linearly upon increasing temperature, and this linear relationship allows one to express the temperature
dependence of the solution conductivity using the conductivity at 25 ◦C as a standard value as follows

K (T) = K
(
25

◦

C
)
[1 + 0.022 (T− 25)],

(
R2 = 0.9998

)
(7)

where K(T) and K(25 ◦C) are the solution conductivity (mS/cm) at temperature T (◦C) and 25 ◦C,
respectively. When considering this equation, the solution conductivity linearly increases/decreases
upon increasing/decreasing the feed solution temperature with a temperature coefficient of ~2.2%/◦C
at 25 ◦C.
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3.2. The Effect of Temperature on the Membrane Resistance

Figure 3A,B shows the effect of the feed water temperature on the inverse of the membrane
resistance (1/Rm) of CMX and AMX, respectively, when changing the temperature from 10 to 35 ◦C.
The ion conductivity of the membrane depends on both the ion mobility in the membrane and
the ion concentration in the membrane. Donnan theory states when the ion concentration of the
external solution is lower than the concentration of the fixed charged group inside the membrane,
the concentration of the co-ion (ions with the same sign of charge to the fixed charged groups of
membrane) is negligibly low inside the membrane and that of the counter-ions (ions with the opposite
sign of charge to the fixed charged groups of membrane) is almost equal to the fixed charge groups
concentration, which will be independent of the concentration of the external solution, indicating
that the concentration of the counter-ions at the membrane/the external solution interface at the high
concentration side is almost equal to that at the low concentration side [36]. Therefore, we assumed
that the effect of feed solution concentration in the low concentration compartment on the membrane
resistance is negligible. In this case, the membrane conductivity (the inverse of the membrane resistance)
also increased with increasing temperature because it also leads to an increase in ion mobility in the
membrane as well as in the solution. Moreover, a clear linear relationship was obtained similar to
that observed with the solution conductivity. Consequently, this linear relationship provides a linear
empirical equation as follows

Km(T) = Km
(
25

◦

C
)
[1 + 0.027 (T− 25)],

(
R2 = 0.9800

)
(8)

where Km(T) and Km (25 ◦C) are the inverse resistance (1/Rm) of the CMX/AMX membrane at
temperature T and 25 ◦C, respectively. It is worth noting that almost the same temperature coefficient
(~2.7%/◦C) was obtained for both CMX and AMX. Therefore, this simple approximation may be used
as an empirical equation to predict the CMX/AMX resistance at different temperatures from 15 to 35 ◦C.
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and AMX (B).

3.3. The Effect of Temperature on the RED Performance

3.3.1. Open Circuit Voltage (OCV)

The OCV of the RED stack measured at feed flow rates (Q) of 1, 4, and 6 L/min, and at different
temperatures and spacer thickness is shown in Figure 4. The highest OCVs (31.33–33.87 V) were
obtained at a feed flow rate of 6 L/min in both stacks with 200 and 600 µm spacers.
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an intermediate distance in the stack of (A) 200 and (B) 600 µm, respectively.

The salinity ratio between the high and low concentration compartments of the RED stack will
decrease by osmotic water flow from the lower concentration side to the higher concentration side
as well as co- and counter-ion diffusion from the higher to lower concentration sides during the
OCV measurements, even at zero current [22]. Consequently, decreasing the salinity ratio on the
membrane surface will lead to a decrease in the OCV of the RED stack. By increasing the feed flow
rate, the residence time of the solution in the flow channels of the RED stack decreases, resulting in the
feed solution being refreshed faster. This suppression of the decrease in the OCV was caused by water
transport and ion diffusion, as mentioned above. Therefore, in our pilot-scale RED stack, the OCV
increased from 29.5 V to >33 V upon increasing the feed solution flow rate from 2 to 6 L/min using
both types of spacer studied. In addition, the effect of the feed solution flow rate on the OCV value in
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the RED stack with a 200 µm spacer was slightly higher than that using a 600 µm spacer. Actually,
even when using the same flow rate, the flow velocity between the membranes were different and
slightly influenced the resulting OCV value.

In addition to the feed solution flow rate, the OCV of the RED stack was also affected by
temperature. Theoretically, the RED stack OCV can be defined using Equation (9), which is related to
the temperature, ions valence, and concentration ratio as follows

OCV =
Nm·α·R·Tab

z·F
· ln(

CH·γH

CL·γL
) (9)

where R is the gas constant, Tab is absolute temperature [K], Nm is the number of cell pairs, α is the
average membrane permselectivity, z is the valence of the ions, F is the Faraday constant, and C and
γ are the concentration and activity coefficient of NaCl, respectively. Subscripts H and L represent
the high and low concentration sides, respectively. Therefore, upon increasing the temperature of
the feed solution, the OCV will theoretically increase with a temperature dependence of ~0.35%/◦C.
However, Figure 4 shows that when using a low feed solution flow rate (Q = 2 L/min), the effect of
temperature on the OCV of the RED stack disappeared (0.2 and 0.4%/◦C for the 200 and 600 µm cases,
respectively), meaning that the OCVs at 10 and 35 ◦C are almost identical, while the OCV increased
with a temperature dependence >2%/◦C at a flow rate of 6 L/min from 10 to 35 ◦C in both the 200
and 600 µm spacer cases. It seems that under low feed flow rate conditions, the dominant effect
on the OCV will be due to the osmotic water flow as well as co- and counter-ion transportation as
mentioned above. However, upon increasing the feed flow rate, the effect of temperature on the stack
OCV appears more clearly despite the presence of water and ion transportation. Empirical linear
relationships between the RED stack OCV and feed solution temperature at different feed solution
flow rates were also successfully obtained, as shown in Equations (10)–(12) and Equations (13)–(15)
for the RED stack equipped with 200 and 600 µm spacers, respectively, in order to predict the stack
OCV at different temperatures. At a flow rate of 6 L/min, 0.23%/◦C and 0.26%/◦C were obtained using
the RED stack with 200 and 600 µm spacers, respectively, and these values were slightly less than the
theoretical value (0.30%/◦C) estimated using Equation (9) because of the presence of water and ion
transportation, as mentioned above.

OCV (T) = OCV (25 ◦C)[1 + 0.0002 (T− 25)]
(
200 µm at 2 L/min, R2 = 0.0067

)
(10)

OCV (T) = OCV (25 ◦C)[1 + 0.0015 (T− 25)]
(
200 µm at 4 L/min, R2 = 0.9742

)
(11)

OCV (T) = OCV (25 ◦C)[1 + 0.0023 (T− 25)]
(
200 µm at 6L/min, R2 = 0.9807

)
(12)

OCV (T) = OCV (25 ◦C)[1 + 0.0004 (T− 25)]
(
600 µm at 2L/min, R2 = 0.6334

)
(13)

OCV (T) = OCV (25 ◦C)[1 + 0.0021 (T− 25)]
(
600 µm at 4L/min, R2 = 0.9129

)
(14)

OCV (T) = OCV (25 ◦C)[1 + 0.0026 (T− 25)]
(
600 µm at 6L/min, R2 = 0.9922

)
(15)

3.3.2. RED Stack Power Output

The maximum power output (gross power, Pmax) of the RED stack was measured during I–V
tests conducted at different flow rates and temperatures. Figure 5A,B shows the relationship between
Pmax with different feed solution flow rates and temperatures using the RED stack equipped with
200 and 600 µm spacers, respectively. All of the I-V and I-P curves are shown in the Supplementary
Information. Similar to the stack OCV, the highest Pmax (22.5–38.6 and 11.09–21.52 W using the RED
stack with 200 and 600 µm spacers, respectively) was obtained at the higher feed solution flow rate of
6 L/min, while the lower Pmax (15–20 and 10.47–17.28 W using the RED stack with 200 and 600 µm
spacers, respectively) was obtained at the lower feed solution flow rate of 2 L/min [23,37]. The higher
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RED stack power output observed in the 200 µm was mainly attributed to the lower resistance of
the solution compartment in the stack. Moreover, linear relationships were also obtained for all the
flow rates studied, although their temperature dependence was different. As a result, their linear
relationships provide empirical equations that can be used to predict the gross power of the stack at
different temperatures as well as different flow rates as follows.

Pmax (T) = Pmax (25 ◦C)[1 + 0.011 (T− 25)]
(
200 µm at 2L/min, R2 = 0.9739

)
(16)

Pmax (T) = Pmax (25 ◦C)[1 + 0.017 (T− 25)]
(
200 µm at 4L/min, R2 = 0.9962

)
(17)

Pmax (T) = Pmax (25 ◦C)[1 + 0.020 (T− 25)]
(
200 µm at 6L/min, R2 = 0.9988

)
(18)

Pmax (T) = Pmax (25 ◦C)[1 + 0.016 (T− 25)]
(
600 µm at 2L/min, R2 = 0.9883

)
(19)

Pmax (T) = Pmax (25 ◦C)[1 + 0.018 (T− 25)]
(
600 µm at 2L/min, R2 = 0.9970

)
(20)

Pmax (T) = Pmax (25 ◦C)[1 + 0.019 (T− 25)]
(
600 µm at 6L/min, R2 = 0.9973

)
(21)

where Pmax(T) is maximum power at temperature T and Pmax(25 ◦C) is the maximum power at 25 ◦C.
The effect of temperature on the power output was significantly higher when compared with those
observed for the OCV. In fact, maximum power output of RED stack is affected by both OCV and the
stack resistance (Rstack), as follows [32]

Pmax =
V2

OC

4Rstack
(22)

Actually, Rstack contains ohmic (membrane, solution, and electrode system resistances) and
non-ohmic (concentration polarization) regimes, which are affected by both the feed solution flow
rate and temperature. Increasing the feed solution flow rate is helpful to reduce the concentration
polarization layer on the membrane surface as well as increasing the ion distribution, which leads
to a reduction in the stack non-ohmic resistance [38,39]. On the other hand, the membrane and
solution resistance decrease upon increasing the temperature due to the increase in the ion mobility
and solution conductivity, as mentioned before. Therefore, upon increasing both the feed solution flow
rate and temperature, the power output increased due to the reduction in the stack resistance, as shown
in Figure 5. Moreover, when considering the effect of temperature on the solution and membrane
resistance (Equations (7) and (8)) and the stack OCV (Equations (10)–(15)), the dominant parameters
for the RED stack power output will be the solution and membrane resistance.

It is worth noting that increasing the feed solution flow rate (6 L/min) makes the power output of
the RED stack become more dependent on temperature when compared to using a low feed solution
flow rate (2 L/min). In fact, at a high feed solution flow rate, the stack resistance is mainly dependent
on the membrane and solution resistance, while the effect of concentration polarization becomes lower.
Therefore, the effect of temperature on the RED stack power output is almost in the same range as the
effect of temperature on the membrane and solution resistance (2–3%/◦C) when using the higher feed
solution flow rate. However, in the case of the lower feed solution flow rate, the dominant parameter in
the RED stack resistance is the concentration polarization, which is almost independent of temperature.
Hence, at a low feed solution flow rate, the dependence of the power output of the RED stack becomes
less upon changing the temperature. In addition, changing the feed solution flow rate from 2 into
6 L/min was more effective on the RED stack power output when using the 200 µm spacers. In fact,
increasing the feed solution flow rate on the RED stack with the 200 µm spacer has a significant effect
on the flow velocity of the feed solution between the membranes, which leads to a significant decrease
in the concentration polarization effect. However, when using the RED stack with the 600 µm spacers,
changing the flow rate had a lower effect on the feed velocity and subsequently, the concentration
polarization effect. Since the temperature dependence with different flow rates can only be obtained
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using the pilot-scale experiment, the obtained results are promising toward the design of a full-scale
RED system in the future.Membranes 2018, 8, x FOR PEER REVIEW  9 of 15 
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3.3.3. Pumping Energy and Net Power Output

Figure 6 shows the temperature dependence of the pumping energy at different feed solution flow
rates calculated from the pressure drops using Equation 5. Reasonably, the pumping energy using the
200 µm spacer was higher than that using the 600 µm spacer. This can be attributed to both the higher
feed solution flow velocity and smaller intermediate distance. In addition, changing the feed solution
flow rate has more of an effect on the feed velocity in the case of the RED stack with 200 µm spacers.
Therefore, the difference between the pumping energy at different flow rates using the RED stack with
200 µm spacers was more prominent.Membranes 2018, 8, x FOR PEER REVIEW  10 of 15 
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When increasing the water temperature from 10 to 35 ◦C, the pumping energy gradually decreased
because the viscosity of the feed solutions decreased. The viscosity of water decreases from 1.30
to 0.719 cP upon increasing the temperature from 10 to 35 ◦C. Furthermore, the pumping energy
significantly increases at high feed solution flow rates and the smaller intermediate distance, as shown
in Figure 6A. In this case, the effect of decreasing the solution viscosity became more prominent due to
the higher flow velocity. Whereas, the pumping energy did not change significantly using the 600 µm
spacers due to the lower feed flow velocity, as shown in Figure 6B.

The net power output of the RED stack was obtained by subtracting the pumping energy from
gross power output, as shown in in Figure 7. Interestingly, roughly linear relationships were still
obtained under all the conditions studied although their slopes (temperature dependence) were
different. The net power output of the RED stack equipped with 200 µm spacers showed steeper
slopes upon increasing the temperature and the slopes rapidly changed depending on the flow rate
used. On the other hand, the net power output of the RED stack with 600 µm spacers increased almost
linearly with increasing temperature at all the feed solution flow rates studied, and the temperature
dependence of the slopes was less steep than those observed when using 200 µm spacers. In addition,
when changing the flow rate, the change in the temperature dependence was less than that observed
using the 200 µm spacers. Therefore, during pilot-scale operation, conditions such as the flow rate and
stack conditions (intermediate distance between the membranes) strongly influence the temperature
dependence of the resulting net power output. At the highest temperature (35 ◦C), the RED stack with
200 µm spacers and a feed solution flow rate of 4 L/min showed the highest net power output (~22.7 W
(0.57 W/m2)) among the all experimental conditions used in this study.
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4. Conclusions

The effects of temperature on the solution and membrane resistance, and subsequent power
generation performance of two pilot-scale RED stacks (200 and 600 µm) have been presented in this
study. Both the solution and membrane resistance show linear temperature dependences of ~2.2 and
2.7%/◦C, respectively. On the other hand, the temperature dependence of the RED stack OCV was
~0.2%/◦C, which was independent of the intermediate distance. However, the subsequent power
output and its temperature dependence were influenced by experimental conditions such as the
flow rate and intermediate distance with a temperature coefficient of 1.1–2.0%/◦C, which approaches
its predicted value of ~3%. Furthermore, the net power output was dramatically influenced by
temperature, especially in the case of the higher performance RED stack (smaller intermediate distance
and high flow rate conditions). On the other hand, the temperature dependence of the resulting net
power became less when using the lower performance stack (larger intermediate distance and low
flow rate conditions). These results are promising for the future design of a full-scale RED system and
the selection of a suitable location considering water temperature.
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Appendix A

Figures A1 and A2 show the current-voltage (I-V) and current-power (I-P) relationships of the
RED stack having different intermediate distance (200 and 600 µm, respectively) at 10–35 ◦C with
changing the flow rate. The y-intercept of I-V curve indicates the open circuit voltage (OCV) of the
stack, and the maximum value of the power were subsequently used to evaluate the effect of water
temperature on the resulting RED power output as shown in Figure 5.
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