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Abstract

Background: In the graph theoretical analysis of anatomical brain connectivity, the white matter connections between
regions of the brain are identified and serve as basis for the assessment of regional connectivity profiles, for example, to
locate the hubs of the brain. But regions of the brain can be characterised further with respect to their gray matter volume
or resting state perfusion. Local anatomical connectivity, gray matter volume and perfusion are traits of each brain region
that are likely to be interdependent, however, particular patterns of systematic covariation have not yet been identified.

Methodology/Principal Findings: We quantified the covariation of these traits by conducting an integrative MRI study on
23 subjects, utilising a combination of Diffusion Tensor Imaging, Arterial Spin Labeling and anatomical imaging. Based on
our hypothesis that local connectivity, gray matter volume and perfusion are linked, we correlated these measures and
particularly isolated the covariation of connectivity and perfusion by statistically controlling for gray matter volume. We
found significant levels of covariation on the group- and regionwise level, particularly in regions of the Default Brain Mode
Network.

Conclusions/Significance: Connectivity and perfusion are systematically linked throughout a number of brain regions, thus
we discuss these results as a starting point for further research on the role of homology in the formation of functional
connectivity networks and on how structure/function relationships can manifest in the form of such trait interdependency.
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Introduction

Recent findings are beginning to shed light on the organisa-

tional principles behind the structure of the brain [1]. Instead of

studying the brain merely as an agglomeration of individual

regions with their very specific functions and structural idiosyn-

crasies, this research, with its new and more systemic perspective,

is trying to understand the fundamental lines along which

structure/function relationships form [2–5].

Such principles are identified by studying the parts (e.g. brain

regions) and analysing the global properties of the entire system

that emerge from links between the parts (e.g. white matter

connections). The network of white matter connections in the

brain seems to adhere to a small-world organisation principle,

defined by short path lengths for reaching any part from any other

part, while providing high clustering and highly efficient wiring.

Once such a property is established, relations to properties of

other systems can be analysed.

The shared small-world properties of interregional gray matter

structural similarity [6–7] and white matter connectivity, and the

small-world properties of functional brain networks as assessed

with electroencephalography [8], are recent examples that certain

common principles of organisation can be found in a multitude of

brain systems and on a number of scales [9].

As some of these traits, such as number of synapses, cell body

population, perfusion and type and quantity of neural fiber

bundles have proven to be examinable using advanced imaging

methods of spectroscopy, perfusion, structural or diffusion MRI,

brain regions can now be characterised regarding multiple traits at

once. In certain cases the relationship between different structural

properties is formed in a systematic way, e.g. larger brain regions

tend to have more connections than smaller brain regions. In other
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cases, structural and functional traits are also systematically

coupled, e.g. the neural computations that take place in a

particular brain region are partially shaped by the quantity,

quality and usage of the in- and outgoing connections of that

region. In turn the principle of functional (computational)

segregation - as reflected in the typology of unimodal motor and

sensory or heteromodal association areas of the cortex - is known

to be mirrored both in the macroscopic white matter network

topology [10] and in functional connectivity networks [11]. The

afferent and efferent white matter connections of the motor

system, the ascending pathways of the primary sensory cortices

and the rich interconnectivity of the association areas are not

uncoupled from the function of these areas, but rather allow us to

formulate hypotheses on their functional roles.

Mounting evidence suggests [12–15] that certain functional

traits - such as the activity profile of a brain region arising from its

function and its metabolic demand as reflected e.g. by local

capillary density - are closely coupled [16,17]. Local metabolic

demand and perfusion are directly linked in the healthy brain, thus

allowing the indirect assessment of metabolism through means of

perfusion weighted imaging.

If local white matter connectivity shapes neurocomputational

processes, and these processes influence local function and therefore

metabolic demand, one could hypothesise that local white matter

connectivity and local perfusion might be coupled throughout the

brain as well. If this were the case, such coupling would constitute

the manifestation of a supply-and-demand-principle - the metabolic

demand being shaped by connectivity - in the formation of a

previously undocumented structure/function relationship.

In order to quantify the outlined traits of perfusion and white

matter connectivity we conducted an integrative MRI study on 23

healthy subjects (divided into two groups of 11 and 12

participants), utilising a combination of Diffusion Tensor Imaging

(DTI), Arterial Spin Labeling (ASL) and anatomical imaging.

DTI and ASL are methods to non-invasively characterise white

matter structure and gray matter function of the brain, respectively

[18–19]. While DTI allows for the estimation of anatomical

connectivity between regions of the brain, ASL represents a MRI

method for the quantification of global and regional Cerebral

Blood Flow (rCBF).

DTI based tractography can be used to characterise the amount

and integrity of white matter tracks between two regions and

allows for an estimation of connection probability. For this

purpose, probability density maps can be formed from the

repeated propagation of curves through the DTI-based tensor

field, which is representing local white matter orientation.

Currently, DTI data are integrated into graph representations

[20,21] of the white matter network in order to analyse the

relation of network topology to function [22] and its impairment

[23]. This type of network modelling has originated from the

broader discipline of graph theory [24], which is dedicated to the

understanding of the emergence of certain global and local

properties of a given system from the distribution of pairwise

relations of parts of that system (e.g. if many nodes have one

connection to another single node, the sum of these connections or

edges make that node the hub of the system).

This approach allows for the quantification of node specific

traits (e.g. the number of edges connecting one node to others

nodes, termed degree), edge specific traits (e.g. how severely a

network is affected by the removal of an edge) and general graph

properties (e.g. how efficient is the information transfer from any

point A to any point B in general).

ASL [25,26] on the other hand has proven to be a sensitive and

reliable method for the quantification of gray matter perfusion,

defined as the volume of arterial blood delivered to the capillary

bed per unit volume of brain tissue per unit time. It has been

utilised to study brain function following neuronal activation, as

well as for the detection of changes of perfusion occurring during

brain pathology, maturation and aging [27,28]. This is done by

assessing the inflow of magnetically labelled arterial water spins

into an imaging slice. For quantitative measurement of rCBF, ASL

constructs images following a tagging of inflowing arterial blood by

a 180u radiofrequency inversion pulse and, in an interleaved

fashion, acquiring control images without prior tagging, so that the

subtraction of these two images (control-tag) only leaves

magnetisation proportional to the blood flow.

So far, only limited attention has been paid to possible synergies

from the combined use of these two imaging modalities. As a

result, the link between white matter network connectivity and

rCBF has not yet been systematically addressed. Currently, there

are a few studies focusing on rCBF alterations and changes in

white matter integrity (e.g. level of myelinisation, orientation of

fibers) as markers of Alzheimer’s disease (AD) and mild cognitive

impairment [29], but the number of systematic studies using state

of the art imaging of both modalities in the same sample is low.

White matter lesions in the frontal lobe were found [30] to be

correlated with a lower CBF in the elderly. [31] reported that

rCBF reductions in the parietal cortex are correlated with white

matter integrity reductions in the Posterior Cingulum in a healthy

sample. However, evidence for a systematic relationship between

white matter network topology and rCBF has yet to be established.

Following our hypothesis that local metabolic demands are

largely determined by the connectivity profile of a brain region, we

assumed that local perfusion and local connectivity measures of

gray matter regions are to be correlated. In order to take into

account the properties of the gray matter regions themselves (e.g. a

region with larger volume might show higher perfusion and higher

degree), we integrated a Voxel-based Morphometry (VBM)

analysis into our design. VBM is an established method [32,33]

for the quantification of volumetric differences for the entire brain

and its subparts based on anatomical MRI images.

Our approach allows for the analysis of the entire trait triplet of

gray matter volume (GMV), white matter connectivity and

perfusion at once.

Using this multi-facetted data we analysed the connectivity/

perfusion-covariation profiles for regions of the Automated Anatom-

ical Labeling (AAL) atlas, while controlling for GMV (see Figure 1).

For the further analysis we divided the regions into the region

classes cortical, subcortical and regions of the Default Brain Mode

Network (DMN). The rationale for this division are manifold, on

the one hand the graph theoretical and perfusion specific

characterisation of subcortical regions is a novelty of this study,

on the other hand it stands to reason that vasculature and

connectivity systematically differ between cortical and subcortical

regions and thus should be considered separately. Because we were

particularly interested in the covariation profiles of regions with

documented high resting state activity, we subdivided the class of

cortical regions further into a DMN regions class. These region

classes were comprehensively analysed on the individual-, group-

and regionwise levels while controlling for local GMV. Further-

more we report on the correlation between perfusion with GMV,

as well as GMV and perfusion with graph theoretical properties of

white matter connectivity, respectively.

We employed a probabilistic tractography approach for the

estimation of our white matter connectivity graphs and provide

results from not one, but many plausible white matter networks

(connectomes). Whereas the state of the art does currently not

serve with unambiguous properties of a commonly accepted
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connectome standard, we provide results from a sweep over

plausible edge probability thresholds and resulting cortico-cortical

sparsity values in Figure 2.

Results

2.1 White matter network topology
Adjacency graphs such as connectomes can be described

regarding their small-world properties using path length, clustering

and the ratio of both. Relative path length is calculated as the

current path length in a given adjacency graph relative to the path

length in an equal random graph and expressed in the coefficient

Lambda. The coefficient Gamma is calculated analogously for

clustering and the coefficient Sigma is defined as Gamma/

Lambda ratio, respectively.

The estimated connectomes of all subjects showed small-world

characteristics (Group 1, Lambda M = 1.3413 SD = 0.0121;

Gamma M = 5.1155 SD = 0.5179; Sigma M = 3.6525

SD = 0.3181; Group 2, Lambda M = 1.3283 SD = 0.0218; Gam-

ma M = 4.6459 SD = 0.54341; Sigma M = 4.2216 SD = 0.3260) as

described by [10] for the plausible cortico-cortical sparsity sweep

range of 11–17%.

The different DTI scanning parameters (higher number of

diffusion directions and better spatial resolution for Group 2) for

both groups resulted in Group 2 showing higher Sigma values for

the sweep range than Group 1 for comparable sparsity values.

Further it is to note that thresholding with equal edge probability

values in both groups consistently lead to a higher number of

accepted edges for the connectomes of Group 2.

Small-world property analyses for interregional GMV and

perfusion correlations are provided in Text S1.

2.2 General sample characteristics
To address relation between the total rCBF in non-cerebellar

regions of the brain and whole-brain graph theoretical metrics, we

tested for such correlations in each group. For this analysis, whole-

brain connection density, Lambda, Gamma, average degree,

clustering coefficient and global efficiency values for the brain of

each subject were paired with the same individual’s average rCBF

values (ASL measured in resting state), derived from of all non-

cerebellar brain regions. These variables were tested for potential

correlations (Spearman’s rho) with graph metrics resulting from

each step of the sweep over plausible edge probability thresholds.

For each group p-values for all thresholding steps were False

Discovery Rate (FDR, p,0.05) corrected. No significant results

were obtained.

With respect to regional properties, as expected relative

perfusion (after within-subject normalisation) was found to be

higher in DMN regions than in other regions of the cortex (two-

Figure 1. General principle. Graph theoretical properties of the nodes (in this example Posterior Cingulate) are correlated with their relative
perfusion (multi-slice example in low row) while controlling for GMV (multi-slice example in upper row) - left-upper 2D graph in background formed
by using the Spring Embedder Algorithm on a group averaged connectome for cortico-cortical sparsity 11%. In our PC approach we partial out the
statistical influence of GMV in order to assess the covariation of perfusion and connectivity directly.
doi:10.1371/journal.pone.0014801.g001
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sample t-test, p = 0.0019), in accordance with our hypothesis. The

difference between total perfusion (unnormalised rCBF) in regions

of the DMN and the rest of the cortex showed a tendency towards

significance (two-sample t-test, p = 0.0723). Regions of the DMN

had significantly higher relative GMV than other regions of the

cortex (two-sample t-test, p = 7.6283*1028).

2.3 Correlation between perfusion, connectivity and GMV
The correlation between perfusion and graph metrics for

cortical, subcortical and DMN regions for connectomes from the

plausible cortico-cortical sparsity range of 11–17% [20] with their

respective minima and maxima magnitudes (Spearman’s rho

correlation, all FDR, p,0.05 corrected) are reported for both

groups in Figures 3, 4, 5 and Table 1.

The correlation between GMV and graph metrics for cortical,

subcortical and DMN regions for connectomes from the plausible

cortico-cortical sparsity range of 11–17% [20] with their respective

minima and maxima magnitudes (Spearman’s rho correlation, all

FDR, p,0.05 corrected) are reported for both groups in Figures 6,

7, 8 and Table 2.

The correlation between GMV and perfusion for cortical,

subcortical, all non-cerebellar and DMN regions (Pearson’s

correlation, all FDR, p,0.05 corrected) are reported for a whole-

sample analysis (perfusion and anatomical image acquisition were

similar in both groups, therefore a whole-sample analysis can be

conducted exclusively for this trait pair) in Figure 9 and Table 3.

Both GMV and perfusion are systematically correlated with

graph metrics, hence we repeated our analysis using GMV as a

control variable.

2.4 Partial correlation between perfusion and
connectivity controlling for GMV

2.4.1 Group Level - Cortical Nodes. For the 78 cortical

nodes the partial correlations (PCs) of perfusion and the graph

theoretical metrics local clustering coefficient, local efficiency, local

vulnerability, degree and betweenness (control variable: local

GMV) fail to reach significance (FDR correction applied for each

metric and group separately, p,0.05) in both groups for all

connectome estimations from the cortico-cortical sparsity range

11–17%. Significant PCs are found for Group 1 in the form of a

negative covariation of the clustering coefficient (in range 13–16%,

rho between -0.095 and 20.077) and a positive covariation of

vulnerability (in range 10–16%, rho between 0.144 and 0.23),

degree (in range 13.5–16%, rho between 0.093 and 0.148) and

betweenness (in range 11.5–16%, rho between 0.074 and 0.11)

with perfusion, but are minor in magnitude. Group 2 only shows a

minor covariation of perfusion and degree (in range 11.5–13.5%,

rho between 20.129 and 20.09).

2.4.2 Group Level - Subcortical Nodes. For the 10

subcortical nodes the PCs of perfusion and the graph theoretical

metrics namely local clustering coefficient and betweenness

(control variable: local GMV) fail to reach significance (FDR

correction applied for each metric and group separately, p,0.05)

in both groups for all connectome estimations from the cortico-

cortical sparsity range 11–17%.

Significant PCs are found for both groups in the sparsity range

of 13–16% in the form of a negative covariation of local efficiency

with perfusion (Group 1, rho between 20.351 and 20.249, Group

2 rho between 20.3940 and 20.2979), and a positive covariation

Figure 2. Changes in white matter topology for the whole-connectome values of Gamma, Lambda and Sigma (y-axis) and cortico-
cortical sparsity (x-axis, 1 = 100%) for Group 1 and Group 2.
doi:10.1371/journal.pone.0014801.g002
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of vulnerability and perfusion (in range 12–13%, Group 1 rho

between 0.2276 and 0.257, Group 2 rho between 0.1858 and

0.3012).

When groups are analysed separately, significant PCs are found

for Group 2 in the form of a negative covariation of degree (in

range 11.8–17%, rho between 20.2523 and 20.1932) with

perfusion, but are not supported by results from Group 1.

2.4.3 Group Level - DMN Nodes. In order to specifically

characterise regions (such as Medial Prefrontal Gyrus, Medial

Temporal Lobe and Pole, Posterior Cingulate Cortex, Precuneus,

Inferior Parietal Lobe) which are associated with the Default Brain

Mode [34] we singled these cortical nodes out and repeated the

groupwise analysis.

For these 12 cortical nodes the PCs of perfusion and the

graph theoretical metrics local clustering coefficient, local

efficiency, vulnerability, degree and betweenness (control

variable: local GMV) reached significance (FDR correction

applied for each metric and group separately, p,0.05) in both

groups for all connectome estimations from the cortico-cortical

sparsity range 11–17%. The results are summarised in Figure 10

and Table 4.

2.4.4 Individual Level. For each group, double FDR

correction (p,0.05) was applied separately for the PC analyses

carried out for each single subject and each single edge threshold

(for the plausible sparsity range). On the individual level only five

subjects showed any significant covariation (four from Group 1).

The significant correlations on the individual level were all

positive and minor to medium in magnitude, found only for the

graph metrics degree, betweenness and vulnerability and only for

nodes from the DMN and cortical regions.

2.4.5 Regionwise Level. The perfusion, GMV and five

graph theoretical metric trait measures of each non-cerebellar

brain region of the AAL atlas were collected from each subject into

two groupwise tables, one seven-value vector per person for each

edge probability threshold. As a result each region can be

characterised with respect to the covariation profile of perfusion

and graph theoretical anatomical connectivity metrics while

controlling for local GMV. For each group, double FDR

correction (p,0.05) was applied separately for the PC analyses

carried out for each single region and each single edge threshold.

Only covariation profiles of regions are reported that passed the

double FDR correction in both groups for more than half of the

edge thresholds in the plausible cortico-cortical sparsity range. The

statistically significant regional covariation profiles of the five

graph theoretical metrics with local perfusion are provided in the

supporting information files (Table S1) with a visualisation in

Figure 11.

Figure 4. Correlation between graph theoretical metrics and
perfusion for Group 1 (in blue) and Group 2 (in red), for the
cortical region class. The minima and maxima of correlation
magnitudes are provided for FDR (p,0.05) corrected significant
correlations (Spearman’s rho), calculated with graph metrics from
connectomes resulting from the sweep over plausible cortico-cortical
sparsity levels (11–17% range).
doi:10.1371/journal.pone.0014801.g004

Figure 5. Correlation between graph theoretical metrics and
perfusion for Group 1 (in blue) and Group 2 (in red), for the
DMN region class. The minima and maxima of correlation
magnitudes are provided for FDR (p,0.05) corrected significant
correlations (Spearman’s rho), calculated with graph metrics from
connectomes resulting from the sweep over plausible cortico-cortical
sparsity levels (11–17% range).
doi:10.1371/journal.pone.0014801.g005

Figure 3. Correlation between graph theoretical metrics and
perfusion for Group 1 (in blue) and Group 2 (in red), for the
subcortical region class. The minima and maxima of correlation
magnitudes are provided for FDR (p,0.05) corrected significant
correlations (Spearman’s rho), calculated with graph metrics from
connectomes resulting from the sweep over plausible cortico-cortical
sparsity levels (11–17% range).
doi:10.1371/journal.pone.0014801.g003
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Discussion

To the best of our knowledge, this study represents the first

attempt to quantify the relation of local perfusion and local

anatomical connectivity, using the described MR sequences in

combination with a probabilistic estimation of the connectivity

graph. Our results on the robust small-world properties of the white

matter connectomes are in accordance with previous findings.

3.1 Connectome topology
When conducting a sweep over the range of plausible edge

probability thresholds, the properties of the white matter networks

from both groups of participants show marked differences. For

identical edge probability thresholds the sparsity of the resulting

connectomes from Group 2 (DTI measured with a higher number

of diffusion directions and a higher spatial resolution) is higher

than the sparsity of connectomes in Group 1. On the other hand

small-world property (Sigma) values are numerically higher for the

same sparsity levels in Group 2.

It can be assumed that more edges of the white matter network

are reliably identified with the superior DTI measurement

parameters used in Group 2, and that the entirety of these

reliably identifiable edges tend to display small-world properties.

The numerically higher path length ratio values (Lambda) in

Group 1 might indicate that long-distance white matter connec-

tions are measured more reliably with the superior DTI

Table 1. Correlation between graph theoretical metrics and perfusion for Group 1 and Group 2, for the region classes subcortical,
cortical and DMN.

Correlation of graph theoretical
metrics and perfusion Group

Clustering
Coefficient Efficiency Vulnerability Degree Betweenness

Subcortical Regions 1 min Value n.s. -0,42 0,23 n.s. 0,21

Subcortical Regions 1 max Value n.s. -0,20 0,34 n.s. 0,31

Subcortical Regions 2 min Value -0,44 -0,53 0,40 n.s. 0,31

Subcortical Regions 2 max Value -0,36 -0,46 0,49 n.s. 0,39

Cortical Regions 1 min Value -0,22 -0,19 0,20 0,12 0,14

Cortical Regions 1 max Value -0,16 -0,12 0,28 0,26 0,19

Cortical Regions 2 min Value -0,10 -0,11 0,07 n.s. 0,07

Cortical Regions 2 max Value -0,07 -0,08 0,10 n.s. 0,09

DMN Regions 1 min Value -0,48 -0,48 0,48 0,40 0,48

DMN Regions 1 max Value -0,35 -0,35 0,56 0,44 0,53

DMN Regions 2 min Value -0,43 -0,44 0,34 0,33 0,35

DMN Regions 2 max Value -0,37 -0,33 0,42 0,40 0,40

The minima and maxima of correlation magnitudes are provided for FDR (p,0.05) corrected significant correlations (Spearman’s rho), calculated with graph metrics
from connectomes resulting from the sweep over plausible cortico-cortical sparsity levels (11–17% range).
doi:10.1371/journal.pone.0014801.t001

Figure 6. Correlation between graph theoretical metrics and
GMV for Group 1 (in blue) and Group 2 (in red), for the
subcortical region class. The minima and maxima of correlation
magnitudes are provided for FDR (p,0.05) corrected significant
correlations (Spearman’s rho), calculated with graph metrics from
connectomes resulting from the sweep over plausible cortico-cortical
sparsity levels (11–17% range).
doi:10.1371/journal.pone.0014801.g006

Figure 7. Correlation between graph theoretical metrics and
GMV for Group 1 (in blue) and Group 2 (in red), for the cortical
region class. The minima and maxima of correlation magnitudes are
provided for FDR (p,0.05) corrected significant correlations (Spear-
man’s rho), calculated with graph metrics from connectomes resulting
from the sweep over plausible cortico-cortical sparsity levels (11–17%
range).
doi:10.1371/journal.pone.0014801.g007
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measurement parameters, thus facilitating their probabilistic

tracking and acceptance as edge in the subsequent edge

probability thresholding process. The acceptance of only a few

more long-distance edges can decrease path length drastically,

while influencing the sparsity value only minimally.

The deviating Sigma values for equal cortico-cortical sparsity in

the two groups might indicate that two qualitatively different white

matter networks are compared with one another. But as we

presently provide whole-connectome Sigma over cortico-cortical

sparsity the deviation in small-world properties may as well be

attributable to superior reliability in measuring non-cortico-

cortical edges for the DTI sequences applied to Group 2.

As can be seen in Figure 2 a sudden rise in path length Lambda

can be observed in Group 1 between 13.3 and 13.6% cortico-

cortical sparsity. A rise in path length occurring when more edges

are added is unusual and indicates that a new cluster of nodes was

connected to the rest of the connectome with the additional edges

passing a decreasing threshold (leading to higher sparsity level). As

clusters unconnected to the rest of the connectome are unlikely,

this might be an indication that the true level of cortico-cortical

sparsity might be in a range above 13.6%.

3.2 General sample characteristics
The lack of any significant relation of whole-brain graph metrics

and average perfusion values indicates that there is no relation of

overall absolute perfusion and overall connectivity in our healthy

sample.

3.3 Correlation between perfusion, connectivity and GMV
Both local GMV and local perfusion show a pattern of

significant covariation with local graph theoretical metrics in both

groups and for all three described region classes. This pattern of

covariation indicates that higher perfusion and higher GMV are

more likely to be found in hub-like regions of the brain, with high

degree, betweenness and vulnerability, thus with low clustering

coefficient and local efficiency.

GMV and perfusion show a marked covariation profile on the

whole-sample level, with the strongest correlation for subcortical

regions, followed by regions of the DMN and finally non-cerebellar

regions in general and cortical regions. The marked correlations of

perfusion and GMV could theoretically be a confound due the fact

that relatively larger regions contain more large vessels and have a

superior ASL Signal-to-Noise ratio (SNR) when compared with

smaller regions. Alternatively the correlations could indicate a

genuine association of average perfusion and relative GMV.

3.4 Covariation of perfusion and connectivity
Cortical and subcortical nodes were characterised with respect

to their graph theoretical properties, which were further correlated

with measures of perfusion, while controlling for local GMV.

Figure 8. Correlation between graph theoretical metrics and
GMV for Group 1 (in blue) and Group 2 (in red), for the DMN
region class. The minima and maxima of correlation magnitudes are
provided for FDR (p,0.05) corrected significant correlations (Spear-
man’s rho), calculated with graph metrics from connectomes resulting
from the sweep over plausible cortico-cortical sparsity levels (11–17%
range).
doi:10.1371/journal.pone.0014801.g008

Table 2. Correlation between graph theoretical metrics and GMV for Group 1 and Group 2, for the region classes subcortical,
cortical and DMN.

Correlation of graph
theoretical metrics
and GMV Group

Clustering
Coefficient Efficiency Vulnerability Degree Betweenness

Subcortical Regions 1 min Value -0,64 -0,58 0,50 0,60 0,56

Subcortical Regions 1 max Value -0,57 -0,45 0,59 0,64 0,64

Subcortical Regions 2 min Value -0,70 -0,62 0,61 0,72 0,68

Subcortical Regions 2 max Value -0,52 -0,44 0,67 0,74 0,72

Cortical Regions 1 min Value -0,49 -0,45 0,20 0,35 0,29

Cortical Regions 1 max Value -0,43 -0,41 0,22 0,44 0,30

Cortical Regions 2 min Value -0,46 -0,43 0,12 0,27 0,23

Cortical Regions 2 max Value -0,43 -0,40 0,21 0,41 0,30

DMN Regions 1 min Value -0,63 -0,61 0,19 0,37 0,26

DMN Regions 1 max Value -0,51 -0,50 0,22 0,46 0,30

DMN Regions 2 min Value -0,65 -0,59 0,22 0,54 0,35

DMN Regions 2 max Value -0,50 -0,48 0,27 0,59 0,40

The minima and maxima of correlation magnitudes are provided for FDR (p,0.05) corrected significant correlations (Spearman’s rho), calculated with graph metrics
from connectomes resulting from the sweep over plausible cortico-cortical sparsity levels (11–17% range).
doi:10.1371/journal.pone.0014801.t002
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3.4.1 Group Level. The covariations found on a group level,

analysing the trait correlations of all cortical nodes, were only

minor (,0.25) in magnitude and inconclusive in terms of cross-

group stability. The covariation profile of traits from subcortical

nodes on the other hand shows a negative covariation of local

efficiency and a positive covariation of vulnerability with perfusion

in a minor to medium (,0.6) range of magnitude.

For regions associated with the DMN we observe similar patterns

of covariation, but complemented by a positive covariation of degree

and betweenness and a negative covariation of the clustering

coefficient with perfusion, in a range of minor to medium magnitude.

For all three classes of nodes, the magnitude of covariation

observed in Group 1 exceeds the magnitude of covariations in

Group 2.

3.4.2 Individual Level. On the individual level correlations

for all cortical, subcortical and DMN regions largely fail to reach

significance in a stable pattern.

3.4.3 Regionwise Level. On a regionwise level, frontal,

cingular and hippocampal regions show a negative covariation of

perfusion with the clustering coefficient and local efficiency, while

mainly posterior portions of the brain show a positive covariation

particularly with vulnerability. All covariations remain minor to

medium in magnitude and have the same sign in both groups,

except for the Frontal Inferior Cortex (pars triangularis and

orbitalis), the Frontal Superior Medial Gyrus, the Supplementary

Motor Area, the Olfactory Cortex and the Rolandic Operculum,

where the signs of covariation are contradictory.

3.5 General covariation pattern
The present results do not allow for a clear and global

falsification of a perfusion/connectivity-covariation in the brain.

Rather the results on group- and regionwise levels point towards a

positive covariation of rCBF with degree, betweenness and

vulnerability and a negative covariation of rCBF with the

clustering coefficient and efficiency for some particular regions

of the brain.

The correlation results for the covariation of GMV, perfusion

and connectivity (no statistical control of GMV) point into the

same direction, thus could be influenced by the issues indicated in

the methods section.

This might indicate that for some areas of the brain an increased

rCBF is more likely to be found in regions, which have a central

position in the white matter network and possess hub-like

properties, but have poor local clustering and number of parallel

pathways to any other node (local efficiency). This might be the

manifestation of a structural organisation principle, which strives to

minimise the potential of metabolic deficiencies in central nodes,

which are part of a rather sequential connection architecture.

The failure of the correlations to reach significance on the

individual level could be attributed to the low statistical power,

since for the DMN twelve and for the subcortical regions merely

ten pairs of values are correlated for each participant, further

decreasing the degrees of freedom by using PC and using

conservative multiple comparison correction. The same holds for

results on the regionwise level (the number of value pairs

correlated for each region is equal to the number of subjects in

that group, which are eleven and twelve, respectively), which

might offer one explanation for the contradictory findings in some

regions.

The most stable results are obtained for regions of the DMN on

a group- and regionwise level. Regions of the DMN are known to

Table 3. Correlation between GMV and perfusion for the
whole-sample level are provided for the region classes
cortical, subcortical, all non-cerebellar and DMN, all results
FDR (p,0.05) corrected.

Correlations of CBF and Gray Matter
Volume (whole sample) for p-value r

Subcortical 1E-12 0,45

DBM 0,00042 0,21

non-cerebellar 5E-15 0,17

Cortical 2E-07 0,12

doi:10.1371/journal.pone.0014801.t003

Figure 9. Correlation between GMV and perfusion for the
whole-sample level are provided for the region classes cortical,
subcortical, all non-cerebellar and DMN, all results FDR
(p,0.05) corrected.
doi:10.1371/journal.pone.0014801.g009

Figure 10. PC of graph theoretical metrics and perfusion for
Group 1 (in blue) and Group 2 (in red) for the region class DMN
are provided with the minima and maxima of correlation
magnitudes for FDR (p,0.05) corrected significant correlations
(Spearman’s rho), calculated with graph metrics from con-
nectomes resulting from the sweep over plausible cortico-
cortical sparsity levels (11–17% range).
doi:10.1371/journal.pone.0014801.g010
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possess hub-like properties in terms of both anatomical and

functional connectivity [4]. Possibly the present results point

towards an exclusive realisation of an observable linear supply-

and-demand-principle of perfusion and connectivity in these

regions, although it can not be excluded that regions show

possibly non-linear relations, which we did not test for in this

present study.

3.6 Implications
These results might have implications on our understanding of

resting state networks in general, not only those exclusively

involving nodes of the DMN network [34–39].

The finding that DMN regions (e.g. Posterior Cingulate) might

play a role as bottlenecks in a potentially task-negative default

mode of macroscopic neural traffic might be underlined by past

[34] [40] and present results on the coincidence of heightened

resting state perfusion and hub characteristics (marked by high

degree and vulnerability) in DMN regions. Just like the hubs of any

traffic network can form bottlenecks where traffic might dam up,

some nodes with a central position within the white matter

network might show heightened activity during distinct global

states, such as rest. But whether the apparent functional

connectivity of these hubs can be attributed to genuine joint

information processing in a functionally relevant network or

merely to similar activity arising from e.g. coincidentally relaying

traversing neural signals, or parts of both, can currently not be

conclusively answered.

It is possible that the common traits (high perfusion, hub-like

connectivity, large relative GMV) and the strong covariation of

these traits contribute either causally to the formation, or

confoundingly to our awareness of resting state networks. Similar

Blood Oxygen Level Dependent (BOLD) activity profiles might in

principle be caused by node interactivity in a functionally relevant

information processing network or alternatively by mere similarity

of isolated neural processes in individual nodes [3]. It is unclear, to

what extent the coincidence of high resting state perfusion and

hub-like connectivity can distort estimations of functional

connectivity between such nodes, by influencing the BOLD signal

Table 4. PC of graph theoretical metrics and perfusion for Group 1 and Group 2 for the region class DMN are provided with the
minima and maxima of correlation magnitudes for FDR (p,0.05) corrected significant correlations (Spearman’s rho), calculated
with graph metrics from connectomes resulting from the sweep over plausible cortico-cortical sparsity levels (11–17% range).

Partial Correlation
(Spearman’s Rho) with
Perfusion in

Clustering
Coefficient Efficiency Vulnerability Degree Betweenness

Group 1 min Value -0,51 -0,52 0,47 0,39 0,47

Group 1 max Value -0,36 -0,35 0,55 0,44 0,53

Group 2 min Value -0,30 -0,31 0,28 0,18 0,25

Group 2 max Value -0,18 -0,17 0,37 0,24 0,30

doi:10.1371/journal.pone.0014801.t004

Figure 11. PC of graph theoretical metrics and perfusion for Group 1 and Group 2 for regionwise FDR (p,0.05). Corrected significant
non-contradictory correlations (Spearman’s rho) are visualised with colour intensity based on the absolute maxima of correlation magnitudes; PCs
calculated with graph metrics from connectomes resulting from the sweep over plausible cortico-cortical sparsity levels (11–17% range). PC of local
clustering coefficient and perfusion is negative (red, upper left), PC of local efficiency and perfusion is negative (green, upper middle), PC of local
betweenness and perfusion is positive (blue, lower left), PC of local vulnerability and perfusion is positive (yellow, lower right).
doi:10.1371/journal.pone.0014801.g011
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from these nodes generally with their mutually high perfusion and

the underlying activity in these nodes with their common hub-like

connectivity.

Understanding the link between local function and local

connectivity better, might help understand the apparent link

between functional and anatomical connectivity networks [4–5]

and resolve the role of mere homology in our perception of resting

state networks.

It is a further open question of interest, whether there is any

causal neurobiological link between a regional perfusion profile

and the emergence of hub characteristics or vice versa.

3.7 Conclusion
The method described might hold potential for the diagnosis of

various diseases, as the identified dependency of perfusion and

connectivity might reflect the balance resulting from organisa-

tional principles inherent to the structural architecture of the

healthy brain. Although the identified coefficients from the present

healthy sample are only minor to medium in magnitude, it is to

note that two traits might be only rudimentarily related in the

healthy brain, but might show stronger links in the pathologically

altered brain (e.g. hypoperfusion preceding gray matter atrophy).

However, to better understand the relevance of the identified

relationships and to explore changes of the derived coefficients due

to ageing or disease future studies have to be performed on the

respective populations.

3.8 Potential confounds
It can be assumed that during our resting state ASL

measurement, the regions of the DMN showed their - by

definition - heightened resting state activity and metabolic demand

and it is possible that our measurements were therefore

systematically biased. If the metabolic profile of a region is best

assessed when this region shows a stable amount of activity over

time, the metabolic demand of the resting state active brain

regions (the DMN) was eventually captured more clearly by our

resting state experiment, than the metabolic demand profile of a

less resting state involved region such as e.g. the Fusiform Gyrus.

This issue touches on the general question whether stimulus-free

measurements constitute a reliable baseline measurement for the

whole brain, or only for regions active under stimulus-free

conditions.

Thus it can not be excluded that covariations of the present

form could be identified more conclusively for others regions of the

brain as well. For such experiments, these regions would need to

be consistently activated for a prolonged amount of time (e.g. by

presentation of a series of faces for characterisation of the Fusiform

Gyrus), what might allow us to assess their metabolic demand

during activity better.

It might be argued that the prospect of such studies might be

limited, as brain regions do not merely show a straightforward type

of homogeneous functional specialisation, but are rather able to

perform heterogenous functions that depend on the task-specific

network(s) they are integrated in at a point of time. Nevertheless it

should be possible to capture the range of metabolic demand

spanned by the conditions of activity and rest for each region of

the brain, as any computational process is likely to influence

metabolic demand in a specific way.

Studies on the relation of functional and anatomical connec-

tivity networks in general might be influenced by a similar aspect.

The definition of functional connectivity is always limited to the

state of the brain the connectivity is observed in, therefore the

definition of network nodes is not state-independent (the stable

association of the nodes with a network is one but not the only

defining trait of the nodes) and thus probably not one-by-one

mappable onto other data, e.g. to adequately assess the underlying

anatomical connectivity network.

It stands to reason that both the range of metabolic demand

states, local connectivity and GMV, and the probability ranking of

affiliations to functional connectivity networks of a brain region

might be related in some manner to the shape of the

Hemodynamic Response Function in that region.

Alternatively to a direct causal interpretation, the co-variation of

perfusion and connectivity could as well be caused by a

confounding third, presently unregarded variable other than

GMV. Our initial hypothesis on the link between local

connectivity and local neural computations, neural computations

and neural activity, and neural activity and metabolic demand

involves a series of dependencies, making the influence of

intermediary variables highly likely.

A more comprehensive model, including more potentially

intermediate variables beyond merely GMV, could be used in

future studies to investigate the relations of local computational

processes (e.g. using electroencephalographic methods), neural

circuitry (e.g. by utilising information on local cell body types),

neurotransmitter concentrations (e.g. by using Magnetic Reso-

nance Spectroscopy), metabolism and connectivity at once. With

such a larger and more comprehensive dataset it is likely that the

particular perfusion/connectivity balance profile of each region

could be resolved further.

3.9 Methodological issues
Several methodological issues need to be addressed. Although

we employed a probabilistic tracking approach with a high

number of random walks and conservative thresholding, presently

it is not possible to ensure the validity of one singular estimated

connectome with complete certainty due to the methodological

difficulty of proper edge falsification and the strong dependency of

the results upon the chosen brain parcellation scheme (the AAL

atlas in this case). For a more precise estimation, the methodology

has to be refined by extending it to more sophisticated graph

estimation methods e.g. based on Q-ball imaging data [41] or

diffusion tensor studies utilising multi b-value imaging - and by

combining these advanced measurements with advanced brain

function atlases, derived from large databases of functional

connectivity data, since the optimal anatomical connectivity

network nodes stem from the parcellation of the brain into those

regions, which eventually form a multitude of functional

cooperations with others but always do this as a whole [4].

The combination of multiple methods (DTI based connectivity

estimation, VBM, ASL) allows for quantifying and describing

brain regions with a high number of measures, both on a global as

well as on a regional scale. The proper interpretation of this

multifaceted data, with respect to the multiple comparisons

problem and open questions on the combination of non-gaussian

measures with classical statistical approaches, needs to be

advanced in an integrative manner.

Further as the present findings are based on cross-sectional data

from small samples, the results could be influenced by potential

cohort or small sample size effects. A longitudinal study design

with a higher number of subjects is necessary to broaden our

understanding of the link of these structural and functional brain

properties.

It is to note that many different methods with their individual

assumptions and errors are combined in an integrative study, and

that any of the modules (probabilistic tractography, graph

theoretical analysis, anatomical image segmentation, perfusion

measurement, artefact control, normalisation etc.) could clearly be
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improved on their own. Our approach is merely intended as a

starting point for the combination of the provided measures.

Therefore the present findings are of a preliminary nature, as

for the integration of information about local perfusion, connec-

tivity and gray matter properties, the issues of natural variability

versus the distribution of measurement error have to be further

resolved. Other quantification approaches for measuring integrity

or impairment of gray matter such as spectroscopy of synaptic

density or recently introduced Positron Emission Tomography

methods [42] focussing on the quantification of plaques and

tangles in AD might complement the present approach in the

future [4].

Methods

4.1 Subjects and data acquisition
Eleven participants (5 females) were recruited for Group 1 from

a student sample (average age = 25.4 years, SD = 3.4 years, Range:

21–32). After an update of scanner software twelve further

participants (7 females) were recruited, referred to as Group 2

(average age = 36.7 years, SD = 10.7 years, Range: 23–57).

Participants of both groups gave written informed consent. All

participants were right handed (as confirmed by the Edinburgh

Handedness Questionnaire) and both physically (confirmed by

extensive health questionnaire) and mentally healthy (confirmed

by the german ICD-10-Symptomrating questionnaire). The

experiments were approved by the local ethics committee. All

MR data were acquired on a 3T Siemens MAGNETOM Trio

TIM (Erlangen, Germany) scanner using a 12-channel head coil.

The head of each subject was bedded in a deflatable pillow so as to

minimise head motion artefacts.

4.2 Anatomical data acquisition and processing
Anatomical images were acquired using a T1 weighted

sequence using a 3D MP-RAGE (magnetisation prepared - rapid

acquisition gradient echo) sequence (16161 mm voxels,

TR = 7.92, TE = 2.48, Flip Angle = 16u, FoV = 256*256, 192

transversal slices, Group 1 - 16161.1 mm voxels, TR = 2.3,

TE = 2.98, Flip Angle = 9u, FoV = 230*256, 160 sagittal slices,

Group 2). The brain was extracted from the raw image using the

robust iterative estimation function (Fractional intensity thresh-

old = 0.5) of the Brain Extraction Tool and subsequently

segmented into gray and white matter ([43], distributed within

the FMRIB’s Software Toolbox - FSL 4.0; http://www.fmrib.ox.

ac.uk/fsl).

4.3 DTI data acquisition
Each subject in Group 1 participated in a DTI measurement

(1.362.462.4 mm voxels, no gap, TR = 8.83 sec, TE = 98 ms,

FoV = 1360*1360, Flip Angle = 90u, 50 transversal slices, 12

diffusion directions, two averages, b-value = 1000 s/mm2) with

the field of view (FoV) comprising the full cerebrum and parts of

the rostral cerebellum like the Uvula and Tuber of Vermis,

Flocculus and Crus Cerebelli (dependent on individual overall

brain size).

Each subject in Group 2 participated in a DTI measurement

(1.861.862.2 mm voxels, no gap, TR = 6.8 sec, TE = 93 ms,

FoV = 1782*1840, Flip Angle = 90u, 50 transversal slices, 64

diffusion directions, two averages, b-value = 1000 s/mm2) with

the FoV comprising the full cerebrum and parts of the rostral

cerebellum. The DTI data were processed using the DTI and

Fibertools Software Package [44] as described in the section

Network Edge Definition.

4.4 Connectome construction and edge calculation
For an overview on data flow for each participant and employed

analysis schemes please see Figure S1 and Figure S2.

4.4.1 Network node definition. In order to define the

network nodes, gray matter areas were labelled for each subject

individually based on the AAL atlas [45], resulting in 116 nodes

(80 cortical, 10 subcortical, 26 cerebellar) by using the procedure

of normalisation and parameter inversion analogous to the method

described in [20].

In order to transfer the images into DTI native space, T1

weighted structural images were coregistered with the B0 (non-

diffusion) image and then normalised to the Montreal Neurolog-

ical Institute (MNI) space. The resulting transformation was

inverted to warp the AAL template from MNI space to the DTI

space. The discrete labeling values were preserved by using a

nearest neighbour interpolation method. Normalisation and

inverse transformation were implemented using the SPM8

package.

All available subcortical (Caudate, Putamen, Pallidum, Hippo-

campus and Thalamus) and cerebellar areas, which were within

the individual DTI FoV were included as nodes in order to round

out the validity of the individual connectivity graph estimation.

4.4.2 Network edge tracking. Using in-house code, the

white matter voxels, which were neighbouring the gray matter of

each network node, were defined as seed voxels of that area.

Only voxels with a Fractional Anisotropy (FA) value above 0.3

(gray matter FA can reach values up to ,0.2, [46]) were admitted

to this procedure. In addition, these voxels also had to be labelled

as white matter by the segmentation step and reside within the

brain outline mask resulting from the iterative Brain Extraction

Step.

Probabilistic tracking from the seed points was realised by using

the PiCo [47] approach. The number of random walks was

adjusted to the number of voxels within the white matter tracking

area for each single seed point.

The algorithms implemented in the DTI and Fibertools

Software Package [44] allow for creating extended visitation maps

for the tracking from each seed set (all seed voxels of an AAL area)

separately, based on the curves originating from the seed points

and being propagated through the tensor field (number of curves

equalling the number of random walks) and combine this

information with statistical estimates on the plausibility of

confluence of two white matter tracts anywhere in the brain.

Please see [44] for more precise information, as our definition of

edge probability is based on the Probability Index of forming a

part of the Bundle of Interest (PIBI) value concept developed by

[44].

Although theoretically one single edge probability value can be

chosen for edge-thresholding based on estimates of the cortico-

cortical white matter network sparsity (the percentage of accepted

edges, relative to the amount of possible edges) derived from the

literature, we provide our results in the form of a sweep over a

range of plausible thresholds - in order to avoid false conclusions

originating in the limitations of only one threshold-specific white

matter network (see [48]).

In order to substantiate this sweep, to ensure the validity of the

present findings and to avoid false conclusions due to erroneous

selection of the edge probability threshold, we performed a

number of connectome estimations based on a large range of

thresholds (step width 2.5*1029). The applied thresholds ranged

from implausibly low thresholds (average edge probability in non-

zero voxels min. 10210) allowing for a very high number of

accepted edges to overly conservative high thresholds (average

non-zero edge probability min. 8*1027) making the adjacency
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matrix very sparse respectively. The selection of the threshold for

calculation of the graph metrics employed in the present work was

based on both empirical and theoretical considerations and

reproduces values for cortico-cortical sparsity, clustering, average

path length and resulting small-world coefficients, which are

comparable with the results described by [20]. For better

comparison the figures are provided with our measure of sparsity

of cortico-cortical edges only, resulting from the applied

thresholds. Changes of overall graph metrics over various

thresholds (decreasing small-world coefficient Sigma with decreas-

ing threshold, resulting from higher Gamma values and constant

Lambda) are as well in concordance with the literature.

It is to be noted that a less conservative threshold, allowing for a

higher number of edges within each individuals’ connectome

seems to result in increasing PCs of vulnerability (and other

metrics) with perfusion for both cortical and subcortical network

nodes. This might indicate that the real relation is even stronger

than depicted in this context, since there is no other overt reason

why the consideration of implausible edges with lower connection

probability (which appear only when the threshold is decreased)

should systematically increase the PCs. Instead the presented

results of our sweep over possible thresholds show that reforming

the white matter network topology by adding more edges

systematically strengthens statistical relations of perfusion and

connectivity.

Further, as for the same threshold more edges are identified for

the superior DTI measurement scheme (please see Figure S3), this

could mean that equal sparsity for both groups can only be

attained by using a more conservative threshold for Group 2. The

deviating Sigma for identical cortico-cortical sparsity in Group 2

indicates that either other cortico-cortical or additional non-

cortico-cortical edges can be found with higher statistical

plausibility, when data from advanced DTI measurements is

utilised. The fact that with a higher statistical plausibility higher

Sigma can be observed for identical sparsity further validates the

small-world property as an inherently stable feature of the white

matter connectome.

Particularly interesting is the fact that edge probability shows a

power-law style distribution (as well for far lower thresholds, data

not shown), indicating that for a low number of edges probability

values are very high, while for a very large number of possible

edges probability values are very low. How this is related to the

observed power-law distribution of hubs for certain edge

probability thresholds could be subject of further numerical

simulations.

4.4.3 Definition of Graph metrics. For each node, edge

and resulting overall graph the available metrics were calculated

using the scripts provided within the Brain Connectivity Toolbox

[49]. The vulnerability metric was calculated as described by [20].

Please see Figure 12 for illustration of the different graph metrics.

It is to be noted, that graph analysis of white matter connectivity

has the advantage that connectivity is not restricted to concepts of

direct links only, which is often the case in classical Region-of-

Interest to Region-of-Interest deterministic tractography, but

incorporates notions of indirect (path length .1) connectivity in

all utilised graph metrics but degree.

Degree is the number of edges connecting one node by a path

length of one with other nodes (e.g. a hub has a high degree vs. an

isolated node with only one connection to the rest of the network

has a low degree). In order to normalise local degree values to

make them comparable across graphs, the values are divided by

the sum of all node degree values.

A node with high betweenness is at a central position of the

network, meaning that many of the paths connecting any node A

and any node B traverse that node (e.g. while a central hub has

high betweenness, a node forming a cul-de-sac has the lowest

betweenness). Betweenness is calculated as the fraction of all

shortest paths in the network, which traverse a given edge/node.

In order to normalise local betweenness values to make them

comparable across graphs, the values are divided by the sum of all

node betweenness values within the graph.

If the nearest neighbours (path length = 1) of a node are also

directly connected to each other they form a cluster (e.g. when an

individual’s friends are also friends with one another). The

clustering coefficient quantifies the number of connections

that exist between the nearest neighbours of a node as a

proportion of the maximum number of possible connections

amongst them. This normalisation allows comparing the clustering

coefficient of two nodes directly, irrespective of their individual

degree.

Efficiency is inversely related to minimum path length

(shortest) and quantifies how easily one node can be reached

from any other node. Nodes with a high efficiency have many

interconnected neighbours and are thus more easily reachable via

a number of (parallel) direct paths from any other node. Local

efficiency of a node is therefore calculated as the harmonic mean

for neighbour-neighbour distances.

The vulnerability metric describes how strongly the average

shortest path lengths (the mean distance to get from any node A to

any node B) in a network grow if a node is removed. If a node with

high betweenness, high degree, low efficiency and low clustering

coefficient is removed, a central hub is eliminated leading to

insufficient cost-effective (short) detours for reconnecting severed

nodes and high node vulnerability. If a network is fully connected

(all nodes are connected to all other nodes) degree, efficiency and

clustering coefficient might be high for all nodes, but vulnerability

Figure 12. Illustration of utilised node-level graph metrics.
doi:10.1371/journal.pone.0014801.g012
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might be low, as the removal of one node would not affect the

average distance of any pair of nodes significantly, due to the high

number of parallel connecting paths/cost-effective detours.

4.5 ASL data acquisition
ASL data were acquired with a FAIR-QUIPSSII PASL

encoding scheme with echo-planar imaging (EPI) readout. A total

of 201 alternating tag and control images were obtained in each

run (total scan time 10 min, TI1 = 700 ms, TI2 = 1100 ms,

TE = 20 ms, TR = 3000 ms, voxel size = 3.563.5610 mm). For

ASL measurements of Group 2 the number of slices was increased

from ten to eleven (TI2 was changed to 1400 respectively). In

order to determine the equilibrium magnetisation for absolute

CBF quantification, the same parameters as above were used

except that the TR and TI2 were 10000 ms and 4000 ms,

respectively [50]. For analysing the ASL data, FSL software

(http://www.fmrib.ox.ac.uk/fsl), self-written MATLAB (The

Mathworks, Natick, MA, USA) and Linux shell script routines

were used. Time courses of all voxels were motion-corrected

utilising the MCFLIRT module of FSL using the mean volume of

the corresponding run as reference. CBF time series were created

by calculating control-tag difference images using surround

subtraction (i.e., computing the difference between each image

and the average of its two nearest neighbors), thereby reducing

BOLD signal contamination of the CBF time course [50].

For the ASL resting state data acquisition subjects were

instructed to relax with closed eyes while staying awake. The

ASL values for the nodes were extracted by averaging the absolute

CBF (in ml/100 g-min) from the voxels within each network node

Volume of interest (VOI) for each subject.

Regional absolute and within-subject normalised rCBF values

are provided for all non-cerebellar regions of the AAL atlas in the

Figure S4.

4.6 Gray matter characterisation through Voxel-Based
Morphometry

In order to address the relation between gray matter character-

istics, graph theoretical measures and resting state perfusion, we

performed a VBM Analysis of the T1 weighted anatomical scans so

as to derive descriptives regarding the relative volume of each AAL

region. As described in the section Network Node Definition, each

anatomical image was skull stripped and the Voxel-based

Morphometry Toolbox (VBM5.1, v.1.15, by Christian Gaser) was

used subsequently for estimation of the individual modulated and

unmodulated segmentation outputs. As the modulated outputs can

be corrected for non-linear warping only and therefore make any

further correction for different brain size redundant, these images

can be used directly for volume estimations.

For the unified segmentation approach (repeated segmentation,

bias correction and warping iterations as described in [51]) used in

this study the tissue probability maps provided within the SPM5

template set were used since the subjects were drawn from the

appropriate population. We applied the thorough clean-up option

of the VBM toolbox and made use of a medium Hidden Markov

Random Field model for an optimal denoising of the T1 image.

A check of sample homogeneity of the modulated images (using

the standard deviation approach within VBM5.1) revealed that the

VBM results of the images were all within a tolerable range.

So as to optimise the validity of our GMV estimation, we

performed a voxel-wise multiplication of each modulated gray

matter image with the coregistered corresponding perfusion image

(containing absolute CBF information). Although perfusion

imaging of white matter regions of the brain is possible in

principle [52], with many sequences estimation accuracy is limited

due to the longer transit delay time (the travelling time of blood

from labelling region to reach the tissue) of white matter. As

perfusion in gray matter is higher, such a multiplication

significantly sharpens the gray matter image histogram, thus

facilitating the valid estimation of GMV. In order to smooth the

image histogram we applied a three dimensional Gaussian

smoothing kernel (FWHM = 3 mm, being significantly below the

rounded down cubic root of the volume of the smallest AAL-

region in equal voxel-space). For each AAL region (network node)

the number of gray matter voxels within the atlas derived volumes

of interest was counted - equalling the regional volume as relative

to the entire individual brain. Naturally these volume values are

strongly correlated across our healthy sample as they all measure

brain part volumes for identical regions.

Regional GMV values are provided for all non-cerebellar

regions of the AAL atlas in Figure S5.

4.7 Employed data level and artefact control
As a univariate factor analysis revealed significant interindivid-

ual variability of rCBF values and an effect of gender, the analysis

was performed using within-subject z-scored rCBF values.

Following this approach, graph metrics and the GMV of nodes

were all normalised (z-scored) on a within-subject level. The

normalisation was performed separately for cortical and subcor-

tical nodes.

Cortical or subcortical regions for which no connections could

be found (due to a tracking failure) or for which no perfusion data

could be obtained (due to localisation outside of the ASL imaging

FoV) were excluded pairwise from the analysis (in Group 1 seven

missing values in different regions, in Group 2 four missing values

in two different regions). Cerebellar regions were not considered

for correlation analysis, as for 30.94% of cerebellar regions rCBF

could not be measured.

VOI specific artefacts in the estimation of rCBF can not be fully

eliminated, due to the generally increased SNR ratio of the ASL

signal and the higher chance of intravascular artefacts in larger

VOIs, which naturally contain more large arteries and veins that

distort rCBF estimations. Also imperfect slice profiles, remaining

magnetisation transfer effects and blood tissue water exchange

time are factors, which cause artefacts on rCBF estimation. In

order to decrease the impact of VOI size on the estimation of

relations, we included GMV estimations from VBM as a control

variable into our analysis and restricted the presented results to the

significant PCs calculated with Spearman’s rho.

The data derived from the entirety of these measures constitute

for each member of the sample a subjectwise region-by-trait table,

with the columns representing local perfusion, local GMV and five

graph theoretical metrics of local white matter connectivity, and

with 116 rows - one for each region of the AAL atlas.

In order to interpret such multifaceted data one can take various

perspectives. The data can be sorted and the trait measurements

can be correlated on an individual subjectwise level, to answer the

question, whether there is a significant PC - controlling for local

GMV - between local perfusion and local connectivity for all the

116 regions of the AAL atlas in the brain of a given subject.

Alternatively the data can be normalised on a within-subject level

and integrated with data from all other subjects into a group table,

to answer the question whether the previously outlined PC is

significant in an analysis of pooled data as well. As a second

alternative approach, the data can be sorted by region, so as to

answer the question whether in pooled group data local perfusion

and local connectivity of some regions shows stronger correlation

than others (e.g. the left Precentral Gyrus displays a stronger PC,

than the same two traits of the right Precentral Gyrus). Figures of
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dataflow and analaysis schemes are depicted in Figure S1 and

Figure S2.

Results are presented for white matter connectomes that show

plausible cortico-cortical sparsity (between 11 and 17%).

Supporting Information

Figure S1 Dataflow of each participant is illustrated; please see

Methods section for details. For each participant one table like in

the lower left corner of the image results from the combination of

all the measures, the node-specific graph metrics part of that table

changes for each edge probability thresholding step while the

rCBF and GMV parts stay constant.

Found at: doi:10.1371/journal.pone.0014801.s001 (10.24 MB

TIF)

Figure S2 Illustration for the group, individual and regionwise

analysis schemes. C indicates the control variable GMV in the PC

approach.

Found at: doi:10.1371/journal.pone.0014801.s002 (10.24 MB

TIF)

Figure S3 Upper: Distribution of cortico-cortical sparsity over

identical edge probability thresholds for both groups. Lower:

Distribution of whole-brain sparsity over identical edge probability

thresholds for both groups; edge probability thresholds (x-axis)

become more conservative towards the right end of the x-axis

(higher threshold) leading to lower resulting sparsity due to less

accepted edges.

Found at: doi:10.1371/journal.pone.0014801.s003 (1.82 MB TIF)

Figure S4 Upper: Regional total perfusion in all 23 subjects (y-

axis in ml/100g-min, x-axis AAL region code). Lower: Regional

within-subject normalised perfusion in all 23 subjects for cortical

regions (y-axis z-score, x-axis AAL region code).

Found at: doi:10.1371/journal.pone.0014801.s004 (12.04 MB

TIF)

Figure S5 Relative GMV of non-cerebellar Regions for all 23

subjects (y-axis number of voxels from non-linear warping only

corrected modulated output image-space, x-axis AAL region

code).

Found at: doi:10.1371/journal.pone.0014801.s005 (10.24 MB

TIF)

Table S1 Results of the regionwise PC analysis (graph

theoretical metrics with perfusion, controlling for local GMV),

presented for statistically significant (FDR corrected, p,0.05)

regions only provided with minima and maxima of correlation

magnitudes for Group 1 and Group 2.

Found at: doi:10.1371/journal.pone.0014801.s006 (0.04 MB

XLS)

Text S1 Notes on the small-world characteristics of binary

adjacency graphs defined by the significant correlations of cortical

perfusion and GMV values.

Found at: doi:10.1371/journal.pone.0014801.s007 (0.04 MB

PDF)
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