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Abstract Neurodevelopmental biology, coupled with the ap-
plication of advanced histological, imaging, molecular, cellu-
lar, biochemical, and genetic approaches, has provided new
insights into these intricate genetic, cellular, and molecular
events. During telencephalic development, specific neural
progenitor cells (NPCs) proliferate, differentiate into numer-
ous cell types, migrate to their apposite positions, and form an
integrated circuitry. Critical disturbance to this dynamic pro-
cess via genetic and environmental risk can cause neurological
disorders and disability. The phosphatidylinositol-3-OH ki-
nase (PI3K)-Akt-mammalian target of rapamycin (mTOR)
signaling cascade contributes to mediate various cellular pro-
cesses, including cell proliferation and growth, and nutrient
uptake. In light of its critical function, dysregulation of this
node has been regarded as a root cause of several
neurodevelopmental diseases, such as megalencephaly (“big
brain”), microcephaly (“small brain”), autism spectrum disor-
ders, intellectual disability, schizophrenia, and epilepsy. In this
review, particular emphasis will be given to the PI3K-Akt-
mTOR signaling pathway and their paramount importance
in neurodevelopment of the cerebral neocortex, because of
its critical roles in complex cognition, emotional regulation,
language, and behaviors.
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Introduction

The mammalian neocortex is a complicated, tightly orches-
trated, and six-layered construction that contains various neu-
ronal subtypes and glias. The diverse neurons and glias of the
central nervous system (CNS) are produced by a small, het-
erogeneous population of neural progenitor cells (NPCs) that
undergo transcriptional changes to sequentially specific dis-
tinct cell fates, guided by temporal cell extrinsic and intrinsic
cues. Astrocytes and oligodendrocytes (OLs), the major glial
sub-lineages in the CNS, play key roles in telencephalic de-
velopment and homeostatic maintenance with increasing
brain complexity, controlling various aspects of
neurodevelopment and diseases (Gallo & Dencen 2014;
Zuchero & Barres 2015).

PI3K-Akt-mTOR cues regulate various cellular functions,
including nutrient uptake, cell proliferation, growth, autopha-
gy, apoptosis, and migration (Hennessy et al. 2005; Yu & Cui
2016). In the absence of extracellular stimulators, Akt is cy-
toplasmic and inactive (Alessi et al. 1996). Upon phosphor-
activated by PI3K, Akt is recruited to the plasma membrane
through binding of its pleckstrin homology (PH) domain to
phosphatidylinositol-1,4,5-trisphosphate (PIP3), which is pro-
duced by PI3K (Alessi et al. 1997). Translocation of Akt en-
ables phosphorylation of Thr308 on its activation loop by
membrane-localized phosphoinositide dependent kinase 1
(Pdk1) (Alessi et al. 1997; Stokoe et al. 1997). Full activation
of Akt requires phosphorylation of Ser473, which lies in a C-
terminal hydrophobic motif (HM) of Akt, by the rapamycin-
insensitive mTORC2 (Sarbassov et al. 2005). Akt further
stimulates mTORCI1 through directly or indirectly suppres-
sion of TSC1/2 to abolish its inhibition of Rhebl, thereby
stimulating mTORC1 (Laplante & Sabatini 2012). Another
important negative regulator of the PI3K-Akt-mTOR signal-
ing pathway is Pten (phosphatase and tensin homolog).
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Through its lipid phosphatase activity, Pten dephosphorylates
PIP3 to PIP2 and precisely counteracts the kinase function of
PI3K and subsequent activation of downstream Akt-
mTORCI signaling (Song et al. 2012). The best-defined
downstream targets of Akt-mTORCI are the p70 ribosomal
S6 protein kinases 1 and 2 (S6K1/2) (Fenton & Gout 2011)
and the eukaryotic initiation factor 4E-binding proteins (4E-
BPs), which are in direct response to mTORC1 activation to
initiate translation (Ma & Blenis 2009).

Dysfunction of PI3K-Akt-mTOR cascade has been recog-
nized as the root cause of both neurodevelopmental and neu-
ropsychiatric diseases with distinct clinical phenotypes, such
as autism spectrum disorder, epilepsy, brain injury, and a spec-
trum of developing brain malformations (Crino 2016; Wang
et al. 2015; Yang & Mo 2016; Yu et al. 2015). In this review,
we discuss the functions of this pathway during embryonic
forebrain development, with a particular focus on the putative
molecular mechanisms underlying these functions (Fig. 1).

Dysregulation of Akt3 Is Associated
with Neurodevelopmental Disorders

Akt (also called protein kinase B or Pkb) is a member of the
serine/threonine protein kinase AGC family and has three iso-
forms Aktl/Pkbe, Akt2/Pkbf3, and Akt3/Pkby. Akt, as a cen-
tral node, is a positive regulator of several signaling pathways
including cell proliferation, growth, survival, and metabolism
across many species (Engelman et al. 2006; Hennessy et al.
2005; Hou & Klann 2004; Manning & Cantley 2007).
Although the three Akt isoforms show high homology and
share similar structures, mouse genetics have demonstrated
that they play not only over-lapping but also specialized roles

Fig. 1 Molecular mechanisms of
PI3K-AKT-mTOR signaling cas-
cade related neurodevelopmental
diseases
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in development and physiology (Bae et al. 2003; Chen et al.
2010; Cho, Mu et al. 2001a; Cho, Thorvaldsen et al. 2001b;
Yun et al. 2008).

Akt3 expression in the human fetal and mouse adult brain
is higher than its expression in any other tissue sampled,
whereas Aktl and Akt2 show comparable to or lower levels
of fetal brain expression than those seen in other tissues
(Easton et al. 2005; Wu et al. 2009). Moreover, Akt3 is
expressed at higher levels than Aktl and Akt2 in the human
fetal and mouse adult brain (Easton et al. 2005; Wu et al.
2009). Therefore, Akt3 was the predominant isoform and
present in all areas of the adult mouse brain, representing
about one half of the total Akt protein in adult brains
(Easton et al. 2005; Wu et al. 2009).

Although specialized substrate and function of protein ki-
nases might be attributed to their tissue-specific expression,
the virtually ubiquitous localization of many critical kinases,
including Akt, makes this an unlikely general mechanism. An
appealing area of Akt studies is also to define their isoform-
specific roles. Immunostaining using an antiserum that recog-
nizes all three phospho-activated forms of Akt (p-Akt) ex-
hibits widespread p-Akt localization in the developing cortex,
with remarkable enrichment in neural progenitor cells in the
ventricular zone, suggesting Akt’s primary role in brain devel-
opment (Poduri et al. 2012). Further support for the distinct
role of Akt3 in controlling brain size firstly comes from ani-
mal studies. Two independent mouse Akt3 knockout models
show selective reduction in brain size (Easton et al. 2005;
Tschopp et al. 2005), whereas mice with an activating muta-
tion of Akt3 show enlarged brain size and increased corpus
callosum thickness (Tokuda et al. 2011). Unlike the Akt3 iso-
form, mice lacking single Aktl and Akt2 show smaller size of
multiple organs and a diabetes-like syndrome, respectively
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(Cho et al. 2001a; Cho et al. 2001b). Deletions of chromo-
some 1q42-q44 (encompassing the AKT3 gene) in human
genome have been reported in a variety of developmental
aberrations of the brain, including agenesis of the corpus
callosum (ACC) and microcephaly. Several clinical stud-
ies demonstrate that haploinsufficiency of AKT3 in this
region causes microcephaly and ACC (Boland et al. 2007;
Wang et al. 2013). However, the cellular and molecular
mechanisms of the disease and the strategy for therapies
remain poorly defined.

Disturbances of cortical development at various criti-
cal stages—such as neural proliferation, migration, and
orchestration—Ilead to representative malformations of
cortical development (MCD) (D’Gama et al. 2015;
Jansen et al. 2015; Lee et al. 2012; Riviere et al. 2012;
Striano & Zara 2012). MCD are progressively recognized
as a critical cause of neurodevelopmental delay, intellec-
tual disability, ASD, and especially clinically intractable
“catastrophic” epilepsy (Striano & Zara 2012). The most
severe type of the spectrum is hemi-megalencephaly
(HME), characterized by enlargement of most or all of
one entire cerebral hemisphere, typically causing a med-
ically severe pediatric epilepsy that requires surgical re-
section (Flores-Sarnat et al. 2003). Post-zygotic somatic
activation of AKT3 is found in a wide range of brain
diseases, including megalencephaly (“big brains”) and
HME. De novo germline 1q43q44 (encompassing the
AKT3 gene) trisomy has been reported in
megalencephaly (Jansen et al. 2015). Somatic chromo-
some 1g43q44 (encompassing the AKT3 gene) tetrasomy
and a gain of function mutation in AKT3 (c.49G/ A,
creating p.E17K), have been reported in HME (Poduri
et al. 2012; Wang et al. 2013). In contrast, most strik-
ingly though, the somatic AK7T3 mutation identified is
highly paralogous to the common E17K mutations in
AKTI and AKT2, associated with Proteus syndrome, an-
other multisystem overgrowth disorder, and hypoglyce-
mia and left-sided overgrowth, respectively (Hussain
et al. 2011; Lindhurst et al. 2011). Introducing the focal
MCD-causing AKT3"'"® mutation into the mouse brain
causes impaired hemispheric architecture and
electrographic seizures (Back et al. 2015). Mutant
AKT3®'7%_expressing NPCs showed dysregulation of
Reelin, which leads to a non-cell autonomous migration
defect in neighboring cells, due at least in part to tran-
scriptional de-repression of Reelin (Baek et al. 2015).
The forkhead box (FOX) transcription factors has been
established to function as transcriptional repressors, but
after phosphorylation by AKT, FOXGI1 translocates to
the cytoplasm, thereby attenuating its transcriptional re-
pression of Reelin (Brunet et al. 1999; Manning &
Cantley 2007). Therapies aimed at either suppressing
downstream AKT pathway by rapamycin or Reelin

inactivation restored disrupted neuronal migration (Back
et al. 2015). These findings demonstrate a central AKT3-
FOXG1-Reelin pathway in focal MCD, which also ben-
efit to define how a mutation in just a few fraction of
cells could perturb the gross organization of the entire
hemisphere and elicit such devastating defects in brain
development (Baek et al. 2015).

PI3K-AKT-mTOR Signaling in Neurodevelopment

A growing number of developmental brain malformations,
characterized by altered cerebral architecture, abnormal neu-
ronal morphology, and, often, intractable epilepsy, has recent-
ly been associated with novel mutations in genes encoding
components of the Akt node (Striano & Zara 2012).
Megalencephaly syndromes are probably genetically mosaic
diseases caused by gain of function mutations in the PI3K—
Akt3-mTOR pathway (D’Gama et al. 2015; Flores-Sarnat
et al. 2003; Jansen et al. 2015; Lee et al. 2012; Riviere et al.
2012; Striano & Zara 2012). Recently, germline and somatic
point mutations in AKT3, PIK3R2, and PIK3CA have been
detected in the megalencephaly-related syndrome, and somat-
ic gain of function point mutations in AKT3, PIK3CA, and
MTOR has also been detected in HME, the most severe type
of megalencephaly (Baek et al. 2015; Jansen et al. 2015; Lee
et al. 2012; Nakamura et al. 2014; Poduri et al. 2012; Riviere
et al. 2012). Sequencing at the single cell level identified a
mutation burden in both neuronal and non-neuronal cells,
denoting that mutations occur mainly in NPCs (Evrony et al.
2012; Poduri et al. 2013).

Conventional and conditional ablation of key components
of the PI3K-Akt-mTOR pathway in mouse, such as Pten,
Pdkl, Tscl/2, mTOR, and Raptor (Costa-Mattioli &
Monteggia 2013; Huber et al. 2015; Lipton & Sahin 2014;
Zhou & Parada 2012), contributes to mechanistic researches
and development of therapies for these devastating disorders.
The brains deficient for Pdkl, Akt, mTOR, and Raptor all
exhibit microcephaly (Costa-Mattioli & Monteggia 2013;
Huber et al. 2015; Lipton & Sahin 2014; Zhou & Parada
2012). The disruption of mTOR resulted in aberrant cell cycle
progression of NPCs in the developing forebrain and thereby
disruption of progenitor self-renewal (Ka et al. 2014).
Accordingly, genesis of intermediate progenitors and post-
mitotic neurons were markedly prohibited (Ka et al. 2014).
The brains deficient for raptor, essential for mTORCI activity,
exhibit a small brain starting at E17.5, which is the outcome of
a decline in cell number and size (Cloetta et al. 2013).

Loss of Pten, leading to amplification of the AKT-mTOR
signaling pathway, is a risk factor for macrocephaly, ASD, and
glioma (Fraser et al. 2004; Li et al. 2002). Conditional elimi-
nation of Pfen, causing hyperactivation of downstream Akt-
mTOR pathway in the mouse CNS, has elucidated multiple
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roles in brain development and maintenance (Fraser et al.
2004; Groszer et al. 2001; Li et al. 2002; Marino et al. 2002;
Yue et al. 2005). Pten deletion in NPCs resulted in its elevated
proliferation and self-renewal in vitro and in vivo (Groszer
et al. 2001), whereas Pten disruption in premature neurons
caused hypertrophy without alteration on NPC proliferation
(Fraser et al. 2004). Pten haploinsufficiency (Pten*"") leads to
a dynamic trajectory of brain overgrowth and altered scaling
of neural cells, with an elevation of beta-catenin signaling
(Chen et al. 2015). A heterozygous mutation in beta-catenin,
itself a risk gene for microcephaly and ASD, inhibits cerebral
overgrowth in Pten*’” mice, which provide a new perspective
that Pten and beta-catenin signaling act in conjunction to con-
trol neural cell number and normal brain growth trajectory
(Chen et al. 2015).

Together, the emerging consensus is that elevation of the
PI3K-AKT-mTOR signaling pathway leads to enhanced pro-
liferation of progenitors, neuronal hypertrophy, and excessive
dendritic branching, whereas suppression exhibits the oppo-
site consequences (Costa-Mattioli & Monteggia 2013; Huber
et al. 2015; Lipton & Sahin 2014; Zhou & Parada 2012).

Conclusions

Germline or widespread somatic mutations of PI3K-AKT-
mTOR signaling networks may elicit overt brain architecture
defects, whereas subtle, somatic, or cell type-specific muta-
tions may lead to localized and restricted abnormalities. The
severity and medical characteristics of neurodevelopmental
diseases may be determined partially by the stage at which
the mosaicism occurs relative to the distinct period of
neurogenesis and gliogenesis, and which types of neural cells
are affected. Therefore, more detailed researches are needed to
decipher the cell type-specific effects of mosaic mutation and
to determine which type of pathologies is attributed to special-
ized neural malfunction (Cai et al. 2014; Evrony et al. 2012;
Poduri et al. 2013). Mouse models that manipulate the indi-
vidual component of the PI3K-AKT-mTOR pathway by ge-
netic deletion in distinct neural cell types recapitulate the char-
acteristic pathogenesis of neurodevelopmental diseases and
contribute to define the underlying mechanisms and develop
therapies for these catastrophic disorders.
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