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Abstract

One of the key differences between Bacteria and Archaea is their canonical membrane phospholipids, which are synthesized by

distinct biosynthetic pathways with nonhomologous enzymes. This “lipid divide” has important implications for the early evolution

ofcells and the typeofmembranephospholipidspresent in the lastuniversal commonancestor.Oneof themainchallenges in studies

of membrane evolution is that the key biosynthetic genes are ancient and their evolutionary histories are poorly resolved. This poses

major challenges for traditional rooting methods because the only available outgroups are distantly related. Here, we address this

issue by using the best available substitution models for single-gene trees, by expanding our analyses to the diversity of uncultivated

prokaryotes recently revealed by environmental genomics, and by using two complementary approaches to rooting that do not

depend on outgroups. Consistent with some previous analyses, our rooted gene trees support extensive interdomain horizontal

transfer of membrane phospholipid biosynthetic genes, primarily from Archaea to Bacteria. They also suggest that the capacity to

make archaeal-type membrane phospholipids was already present in last universal common ancestor.
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Introduction

Archaea and Bacteria form the two primary domains of life

(reviewed in Williams et al. 2013). Although similarities in their

fundamental genetics and biochemistry, and evidence of ho-

mology in a near-universally conserved core of genes (Weiss

et al. 2016) strongly suggest that Archaea and Bacteria de-

scend from a universal common ancestor (LUCA), they also

differ in ways that have important implications for the early

evolution of cellular life. These differences include DNA repli-

cation (Kelman and Kelman 2014), transcription (Bell and

Jackson 1998), DNA packaging (Reeve et al. 1997), and cell

wall compositions (Kandler 1995). One striking difference is in

the phospholipid composition of the cell membranes (fig. 1),

which is particularly important for understanding the origin of

cellular life. Canonically, Archaea have isoprenoid chains at-

tached to a glycerol-1-phosphate (G1P) backbone via ether

bonds and can have either membrane spanning or bilayer-

forming phospholipids (Lombard et al. 2012a). Most Bacteria,

as well as eukaryotes, classically have acyl (fatty-acid) chains

attached to a glycerol-3-phosphate (G3P) backbone via ester

bonds and form bilayers (Lombard et al. 2012a), although a

number of exceptions have been documented (Sinninghe

Damst�e et al. 2002, 2007; Weijers et al. 2006; Goldfine

2010). Archaeal and bacterial phospholipids are synthesized

by nonhomologous enzymes via different biosynthetic path-

ways (fig. 1). This so-called “lipid divide” (Koga 2011) raises

some important questions regarding the early evolution of

cellular life, including the nature of the membrane phospho-

lipids present in LUCA and the number of times cell mem-

branes have evolved.

The observation that phospholipid biosynthesis in Bacteria

and Archaea is nonhomologous has motivated various hy-

potheses on the nature of LUCA’s membrane. The likely pres-

ence of some genes for lipid biosynthesis (Lombard and

Moreira 2011; Lombard et al. 2012a; Koga 2014; Weiss

et al. 2016) and, in particular, a membrane-bound ATPase

(Sojo et al. 2014; Weiss 2016) in reconstructions of LUCA’s

genome implies that LUCA possessed a membrane, although

its properties may have been somewhat different to those of

modern, ion-tight prokaryote cell membranes (Lombard et al.

2012a; Koga 2014; Sojo et al. 2014). It has also been sug-

gested that LUCA may have had a heterochiral membrane

(W€achtersh€auser 2003), with later independent transitions to

homochirality in Bacteria and Archaea, driven by increased
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membrane stability. However, the available experimental ev-

idence—including the recent engineering of an Escherichia

coli cell with a heterochiral membrane (Caforio et al.

2018)—suggests that homochiral membranes are not neces-

sarily more stable than heterochiral ones (Fan et al. 1995;

Shimada and Yamagishi 2011; Caforio et al. 2018), requiring

some other explanation for the loss of ancestral heterochirality.

Despite the importance of the lipid divide for our under-

standing of early cellular evolution, membrane phospholipid

stereochemistry of the glycerol moiety has been directly de-

termined for a surprisingly limited range of Bacteria and

Archaea. Since the initial full structural characterization of

archaeol by Kates (1977), most subsequent studies of ether

membrane lipids have assumed their stereochemistry while

focusing on other aspects of their structure. Those studies

that have determined the glycerol stereochemistry of mem-

brane lipids (i.e., Sinninghe Damst�e et al. 2002; Weijers et al.

2006) are largely consistent with the idea that it is a conserved

difference between Bacteria and Archaea. Nonetheless, there

is evidence that some Bacteria can make G1P-linked ether

lipids. For example, the model bacterium Bacillus subtilis has

been shown to possess homologs of archaeal glycerol-1-phos-

phate dehydrogenase (G1PDH) and geranylgeranylglyceryl

phosphate synthase (GGGPS) (Guldan et al. 2008, 2011).

These enzymes allow B. subtilis to synthesize a typically ar-

chaeal ether link between G1P and HepPP, resulting in a lipid

with archaeal characteristics, although there is no evidence

that these archaeal-like lipids are used to make phospholipids

or are incorporated into the B. subtilis membrane.

Apart from stereochemistry, other characteristics of mem-

brane phospholipids appear to be more variable, showing a

mixture of archaeal and bacterial features. For example, the

plasmalogens of animals and anaerobic Bacteria include an

ether bond (Goldfine 2010). Branched glycerol dialkyl glycerol

tetra-ether lipids found in the environment have bacterial ste-

reochemistry and branched rather than isoprenoidal alkyl

chains, but they also contain ether bonds and span the mem-

brane, as observed for canonical archaeal lipids (Schouten

et al. 2000; Weijers et al. 2006). These branched glycerol

dialkyl glycerol tetra-ethers are particularly abundant in peat

bogs and were thought to be produced by Bacteria as adap-

tations to low pH environments (Weijers et al. 2006;

Sinninghe Damst�e et al. 2007), but are now known to occur

in a wide range of soils and aquatic settings (Schouten et al.

2013). The enzymes responsible for their synthesis are cur-

rently unknown. On the other side of the “lipid divide,” some

Archaea have been shown to produce membrane lipids with

fatty-acid chains and ester bonds (Gattinger et al. 2002). The

biosynthetic pathways for all of these mixed-type membrane

lipids remain unclear. However, given the frequency with

which prokaryotes undergo horizontal gene transfer

(Garcia-Vallv�e et al. 2000), one possibility is that these mixed

biochemical properties reflect biosynthetic pathways of mixed

bacterial and archaeal origin.

A number of previous studies have investigated the evolu-

tionary origins of phospholipid biosynthesis genes in Bacteria

and Archaea using phylogenetic approaches, in order to test

hypotheses about the nature of membranes in the earliest

FIG. 1.—(a) The canonical ether/ester biosynthetic pathways in Archaea and Bacteria and how they relate to glycerol metabolism. Based on figure 1 from

Villanueva et al. (2017). Archaeal pathways in blue and yellow (blue¼ heterotrophic Archaea and yellow¼ autotrophic Archaea), bacterial pathway in red.

Hypothetical biosynthetic pathway, as suggested by Villanueva et al. (2017), in dashed lines. (b) Composition of bacterial and archaeal phospholipids. In

Archaea, glycerol-1-phosphate (G1P) is synthesized from dihydroxyacetone phosphate (DHAP) using the enzyme glycerol-1-phosphate dehydrogenase

(G1PDH). The first and second isoprenoid chains (GGGPs) are added by geranylgeranylglyceryl phosphate synthase (GGGPS) and digeranylgeranylglyceryl

phosphate synthase (DGGGPS), respectively. In Bacteria, glycerol-3-phosphate (G3P) is synthesized by glycerol-3-phosphate dehydrogenase (G3PDH) from

DHAP. There are two forms of this enzyme, GpsA and GlpA/GlpD, encoded by the gps and glp genes, respectively. G3P may also be produced from glycerol

by glycerol kinase (GlpK). In certain Bacteria, such as Gammaproteobacteria, the first fatty-acid chain is added by a version of glycerol-3-phosphate

acyltransferase called PlsB. Other Bacteria, including most gram-positive bacteria, use a system which includes another glycerol-3-phosphate acyltransferase,

PlsY, in conjunction with the enzyme PlsX (Yao and Rock 2013; Parsons and Rock 2013). The second fatty-acid chain is attached by 1-acylglycerol-3-

phosphate O-acyltransferase (PlsC).
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cellular life-forms (Peret�o et al. 2004; Koga 2014; Yokobori

et al. 2016; Villanueva et al. 2017). In this study, we build

upon that work by performing comprehensive phylogenetic

analyses for the core phospholipid biosynthesis genes in

Bacteria and Archaea: the enzymes that establish membrane

lipid stereochemistry and attach the two carbon chains to the

glycerol phosphate backbone (fig. 1), as the histories of these

enzymes are key to understanding the evolution of mem-

brane biosynthesis and stereochemistry. Our analyses take

advantage of the wealth of new genome data from environ-

mental prokaryotes that has become available recently, and

we employ new approaches for rooting single-gene trees in

order to circumvent some of the difficulties inherent in tradi-

tional outgroup rooting for anciently diverged genes. Our

results agree with previous work in suggesting that LUCA

likely possessed a cell membrane. Our rooted gene trees in-

dicate that transfers of lipid biosynthetic genes from Archaea

to Bacteria have occurred more frequently in evolution, par-

ticularly during the early diversification of the two domains.

Materials and Methods

Sequence Selection

For Archaea, we selected 43 archaeal genomes, sampled

evenly across the archaeal tree. We took corresponding ar-

chaeal G1PDH, geranylgeranylglyceryl phosphate synthase

(GGGPS), and digeranylgeranylglyceryl phosphate synthase

(DGGGPS) amino acid sequences from the data set of

Villanueva et al. (2017) and performed BlastP searches to

find these sequences in genomes not included in that data

set. For Bacteria, we selected 64 bacterial genomes, sampled

so as to represent the known genomic diversity of bacterial

phyla (Hug et al. 2016). We used GpsA, GlpA/GlpD, and GlpK

sequences from Yokobori et al. (2016) and performed BlastP

searches to find those sequences in bacterial species not in

their data set. For PlsC and PlsY, we took the corresponding

sequences from Villanueva et al. (2017) and performed BlastP

searches to find these sequences in the remaining genomes.

For PlsB and PlsX, we searched for the respective terms in the

gene database on the NCBI website, and upon finding well-

verified occurrences, performed BlastP searches to find the

corresponding amino acid sequences in the remaining

genomes. We then used BlastP to look for bacterial orthologs

of the archaeal enzymes and vice versa. We selected sequen-

ces that had an E-value of less the 10e-7 and at least 50%

coverage. Accession numbers for sequences used are provided

in supplementary table 5, Supplementary Material online.

Phylogenetics

The sequences were aligned in mafft (Katoh et al. 2002) using

the –auto option and trimmed in BMGE (Criscuolo and

Gribaldo 2010) using the BLOSUM30 model, which is most

suitable for anciently diverged genes. To construct gene trees

from our amino acid sequences, we first selected the best-

fitting substitution model for each gene according to its

Bayesian Information Criterion score using the model selec-

tion tool in IQ-Tree (Nguyen et al. 2015). For all the genes we

analyzed, the best-fitting model was a mixture model com-

bining the Le and Gascuel (LG) exchangeability matrix (Le and

Gascuel 2008) with site-specific composition profiles (the

C40, C50, and C60 models [Lartillot and Philippe 2004; Le

et al. 2008]) to accommodate across-site variation in the sub-

stitution process. LG þ C60 was used for G1PDH, DGGGP,

GpsA, GlpA/GlpD, GlpK, and PlsC. LGþ 50 was used for PlsY.

LG þ C40 was used for GGGPS. A discretized Gamma distri-

bution (Yang 1994) with four rate categories was used to

model across-site rate variation. The trees were inferred

with their respective models in PhyloBayes (Lartillot and

Philippe 2004; Lartillot et al. 2007); convergence was assessed

using the bpcomp and tracecomp programs (maxdiff < 0.1;

effective sample sizes > 100), as recommended by the

authors. We additionally inferred maximum likelihood (ML)

trees in IQ-Tree using the LG þ C60 model for each enzyme

for comparison. We used heads-or-tails (Landan and Graur

2007) to assess the impact of alignment uncertainty: starting

with the reversed alignments, we used the same phylogenetics

pipeline as described above. Further testing was carried out by

removing the metagenomic data from G1PDH, GGGPS,

DGGGPS, GpsA, GlpA/GlpD, and GlpK, creating new align-

ments as described above, and inferring trees from these align-

ments in IQ-Tree using the LG þ C60 model. We did not

remove metagenomic data for PlsC or PlsY, as all of the archaeal

sequences for these trees are derived from metagenome bins.

In some cases, our trees included highly divergent sequences

(sometimes forming distinct clades); we checked the E-values

for these hits, and if they were close to or at the 10e-7 cut-off,

they were removed and the analyses were rerun.

The trees were rooted with an uncorrelated lognormal re-

laxed molecular clock (RMC), using the LG model with a

discretized Gamma distribution (Yang 1994) with four rate

categories, and a Yule tree prior (Stadler 2009; Hartmann

et al. 2010) in BEAST (Drummond and Rambaut 2007;

Drummond et al. 2012). We also rooted the trees using

minimal ancestor deviation (MAD) rooting (Tria et al 2017).

We used two complementary methods: root posterior prob-

abilities averaged over the trees sampled during the Bayesian

molecular clock analysis using RootAnnotator (Calvignac-

Spencer et al. 2014), and the ambiguity index (AI) imple-

mented in MAD. The AI is defined as the ratio of the MAD

value to the second smallest value. “Ties,” that is, where two

or more competing root positions with equal deviations,

would obtain a score of 1, with smaller values obtained in

proportion to the relative quality of the best root position. See

supplementary tables 3 and 4, Supplementary Material online,

for AI and MAD scores.

For G1PDH, GpsA, and GlpA/GlpD, we also rooted using a

subsample of the outgroup sequences used by Yokobori et al.
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(2016). The outgroups used were two sequences annotated as

3-dehydroquinate synthase, five as glycerol dehydrogenase,

and five as alcohol dehydrogenase for G1PDH; six sequences

annotated as hydroxyacyl-CoA dehydrogenase and six as uri-

dine diphosphoglucose 6-dehydrogenase sequences for GpsA;

and 12 sequences annotated as flavin adenine dinucleotide

dependen oxidoreductase for GlpA/GlpD. All three of these

trees were inferred under the LG þ C60 model to directly

compare to the unrooted trees. Trees were also inferred

from best-fit models selected in IQTree (LG þ C60 for

G1PDH and GlpA/GlpD and LG þ C50 for GpsA).

Eukaryotic orthologs of prokaryotic phospholipid biosyn-

thesis genes (GlpA/GlpD, GpsA, and PlsC) were identified by

performing BlastP searches on 35 eukaryotic genomes from

across eukaryotic diversity using Homo sapiens query as the

sequence in each case, selecting sequences with an E-value of

10e-7 or less, and at least 50% coverage. We then performed

model testing in IQTree and inferred trees in PhyloBayes using

the selected substitution model (LG þ C60 for PlsC and LGþ
C50 for GlpA/GlpD and GpsA).

All sequences, alignments and trees referred to in this study

can be obtained from 10.6084/m9.figshare.6210137.

Results and Discussion

Distribution of Core Phospholipid Biosynthesis Genes

We performed BlastP searches for the enzymes of the canon-

ical archaeal and bacterial lipid biosynthesis pathways (fig. 1)

against all archaeal and bacterial genomes in the NCBI nr

database. Our BLAST searches revealed homologs for all of

the core phospholipid biosynthesis genes of both pathways in

both prokaryotic domains, with the exception of bacterial

enzymes PlsB and PlsX, which we did not find in Archaea.

Orthologs of the canonical archaeal genes are particularly

widespread in many bacterial lineages (table 1). Of the 52

bacterial phyla surveyed, 8 had no orthologs of the archaeal

genes (table 1, indicated in red). Six phyla have orthologs of all

three archaeal genes distributed across various genomes (ta-

ble 1, indicated in yellow and green). Of these phyla,

Firmicutes (genera Bacillus and Halanaerobium),

Actinobacteria (genus Streptomyces), and Fibrobacteres (gen-

era Chitinispirillum and Chitinivibrio) contain species which

have all three genes in their genomes (table 1, indicated in

green). Based on the presence of all three core biosynthetic

genes, and given their recognized role in the synthesis of

archaeallike lipid components in B. subtilis (Guldan et al.

2008, 2011), members of Firmicutes, Actinobacteria, and

Fibrobacteres lineages of Bacteria may be capable of making

archaeallike lipids, although we cannot determine if these are

used in the production of membrane phospholipids. Of the 12

FCB group (Fibrobacteres, Chlorobi, Bacteroidetes and related

lineages) phyla we surveyed, all 12 have GGGPS and DGGGPS

orthologs, but only Fibrobacteres and Cloacimonetes have

G1PDH orthologs (see fig. 1 for overview of pathway). In

these species lacking G1PDH, it is unclear whether GGGPS

and DGGGPS are active and if so, what they are used for; one

possibility is that they catalyze the reverse reaction, catabo-

lizing archaeal lipids as an energy source. However, a very

recent report (Villanueva et al. 2018) has shown that the

GGGPS and DGGGPS genes from one FCB lineage,

Cloacimonetes, support the production of archaeal-type

membrane phospholipids and a mixed membrane when het-

erologously expressed in E. coli. This suggests that both E. coli

and perhaps Cloacimonetes have an alternative, as yet un-

known mechanism for making G1P, and that some FCB

members may have mixed archaeal and bacterial membranes.

Orthologs of the canonical bacterial genes are less wide-

spread in Archaea (table 1). Of all the genomes surveyed,

none contained all homologs. Of the 17 phyla shown in ta-

ble 1, 8 had no bacterial homologs in any of their genomes.

Orthologs of GpsA, GplA/GlpD, and Gpk are found

in at least one genome of each of the major

archaeal clades (Euryarchaeota, Thaumarchaeota,

Aigarchaeota, Crenarchaeota, and Korarchaeota [TACK],

Asgardarchaeota, and Diapherotrites, Parvarchaeota,

Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota,

as well as several other lineages [DPANN] [Williams et al.

2017]). However, they appear sporadically. Within

Euryarchaeota, of the seven classes surveyed, GpsA and

GlpK appear in the genomes of four and GlpA/GlpD in five.

Within the TACK superphylum, GlpA/GlpD and GlpK appear

in Crenarchaeota and Korarchaeota, whereas GpsA appears

only in a single crenarchaeote genome (Thermofilum). GpsA

and GlpK are also found in at least one genome in two of the

eight DPANN phyla surveyed (Woesearchaeota and GW2011,

and Woesearchaeota and Parvarchaeota, respectively),

whereas GlpA/GlpD is found in a single parvarchaeote ge-

nome (Candidatus Parvarchaeum acidiphilum ARMAN-4).

Within the Asgardarchaeota superphylum, no orthologs for

GpsA are found, and only one of the genomes (Lokiarchaeum

sp. GC14_75) has GlpA/GlpD or GlpK. PlsC and PlsY are more

restricted, being found mainly in environmental lineages

within Euryarchaeota (Marine Groups II/III, all in class

Thermoplasmatales), DPANN, and Asgardarchaeota (table 1).

Early Origins of Archaeal-Type Membrane Phospholipid
Biosynthesis Genes in Bacteria

To investigate the evolutionary histories of membrane phos-

pholipid biosynthesis, we inferred Bayesian single-gene phy-

logenies from the amino acid alignments using PhyloBayes

4.1 (Lartillot and Philippe 2004; Lartillot et al. 2007). We se-

lected the best-fitting substitution model for each gene

according to its Bayesian Information Criterion score using

the model selection tool in IQ-Tree (Nguyen et al. 2015).

We used two complementary approaches to root these
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Table 1

Distribution of Phospholipid Biosynthesis Genes in Bacterial and Archaeal Phyla

Domain Superphylum Phylum Class G1PDH GGGPS DGGGPS GpsA GlpA/GlpD GlpK PlsC PlsY

Archaea Euryarchaeota Archaeoglobi � � � � � �

Halobacteria � � � � �

Methanobacteria � � � �

Methanococci � � �

Methanomicrobia � � � � �

Thermococci � � � � �

Thermoplasmatales � � � � � � �

TACK Aigarchaeota � � �

Crenarchaeota � � � � � �

Korarchaeota � � � � �

Thaumarchaeta � � �

Asgard Heimdallarchaeota � � � � �

Lokiarchaeota � � � � � � �

Odinarchaeota � � �

Thorarchaeota � � � �

DPANN Aenigmarchaeota � � �

Diapherotrites (GW2011_

AR10/DUSEL3)

� � � �

Micrarchaeota (incl. Macid) � � �

Nanoarchaeota

Nanohaloarchaeota

Pacearchaeota �

Parvarchaeota � �

Woesearchaeota � � � �

Bacteria Acidobacteria � � � � �

Actinobacteria � � � � � � � �

Aminicenantes � � � � �

Aquificae � � � � �

Armatimonadetes � � � � � �

Candidate division KSB1 � � � � � � �

Candidate division NC10 � � � � �

Candidate division TA06 � � � � � �

Candidate division WOR-3 � � � � � �

Candidatus Edwardsbacteria � � � � �

Candidatus Handelsmanbacteria � � � � � �

Candidatus Kerfeldbacteria � � � � � �

Candidatus Magnetoovum � � � � �

Candidatus Raymondbacteria � � � � � � � �

Chloroflexi � � � � � � � �

Chrysiogenetes � � � � �

Cyanobacteria � � � � � � � �

Deferribacterales � � � � �

Deinococcus-Thermus � � � � � �

Dictyoglomi � � � � �

Elusimicrobia � � � � � � �

Firmicutes � � � � � � � �

Fusobacteria � � � � �

Melainabacteria � � � � � � �

Nitrospinae � � � �

Nitrospirae � � � � � �

Parcubacteria � � � � �

Proteobacteria � � � � � � � �

Rhodothermaeota � � � � � �

(continued)
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single-gene trees: a RMC in BEAST (Drummond and Rambaut

2007; Drummond et al. 2012), and the recently described

MAD rooting method of Tria et al. (2017). The MAD algo-

rithm finds the root position that minimizes pairwise evolu-

tionary rate variation, averaged over all pairs of taxa in the

tree. Many of our single-gene trees were poorly resolved, and

we wanted to account for topological uncertainty in our root

estimates. To do so, we used two complementary methods:

root posterior probabilities averaged over the trees sampled

during the Bayesian molecular clock analysis, and the AI

implemented in MAD, which is defined by Tria et al. (2017)

as the ratio of the MAD value to the second smallest value (for

AI scores, see supplementary table 3, Supplementary Material

online). For the genes for which an outgroup was available

(G1PDH, GpsA, and GlpA/GlpD, following Yokobori et al.

2016), we compared our results to traditional outgroup root-

ing. For more details, see Materials and Methods.

G1PDH is the enzyme that establishes phospholipid ste-

reochemistry in Archaea. Interestingly, the majority of the

bacterial G1PDH orthologs do not appear to be recent hor-

izontal acquisitions from Archaea, but instead form a deep-

branching clan (Wilkinson et al. 2007) (PP ¼ 1), resolved as

sister to an archaeal lineage clan (fig. 2a). The relationships

within the clans are poorly resolved. The root position that

receives the highest posterior support in the RMC analysis is

that between the archaeal and bacterial clans, with a mar-

ginal posterior probability of 0.68 (supplementary table 1,

Supplementary Material online). This is substantially higher

than the next most probable position, which places the root

within the Bacteria with a posterior probability of 0.1. When

rooted using MAD, the same root between the bacterial and

archaeal clans is recovered with a marginal posterior proba-

bility of 0.62, also substantially higher than the next most

probable root of 0.1. Rooting single-gene trees can prove

difficult, and this uncertainty is captured in the low root

probabilities inferred using both the RMC and MAD meth-

ods. However, these analyses can be used to exclude the

root from some regions of the trees with a degree of cer-

tainty. In the case of G1PDH, a post-LUCA origin of the gene

would predict a root on the archaeal stem or within the

Archaea. In our analyses, no such root position has a signif-

icant probability (i.e., PP> 0.05), and therefore the root is

highly unlikely to be within the Archaea. This is similar to

topologies recovered by Peret�o et al. (2004) and Carbone

et al. (2015). The bacterial clan mainly comprises sequences

from Firmicutes and Actinobacteria, with most of the other

Bacteria grouping together in a single, maximally supported

(PP ¼ 1) lineage suggestive of recent horizontal acquisition

from the Firmicutes/Actinobacteria clade, followed by further

HGT.

Table 1 Continued

Domain Superphylum Phylum Class G1PDH GGGPS DGGGPS GpsA GlpA/GlpD GlpK PlsC PlsY

Spirochaetes � � � � � � �

Synergistetes � � � � �

Tenericutes � � � � �

Thermobaculum � � � � �

Thermodesulfobacteria � � �

Thermotogae � � � � � � �

TMED � � �

FBC Bacteroidetes � � � � � �

Caldithrix � � � � � � �

Candidatus Marinimicrobia � � � � � � �

Candidatus Kryptonium � � � � �

Candidatus Kryptobacter � � � � �

Candidate division Zixibacteria � � � � �

Chlorobi � � � � � � �

Cloacimonetes � � � � � � � �

Fibrobacteres � � � � � �

Gemmatimonadetes � � � � � � �

Ignavibacteria � � � � �

Latescibacteria � � � � �

PVC Chlamydia � � � �

Lentisphaerae � � � � � � �

Planctomycetes � � � � � �

Verrumicrobia � � � �

NOTE.—Ticks represent phyla (class level for Euryarchaeota) with at least one genome which has a sequence for the corresponding gene. Bacterial phyla where all three
archaeal genes are found are indicated in yellow and green. Those bacterial phyla where all three archaeal genes are found within the same genome in at least one case are
indicted in green. Those bacterial phyla with no archaeal genes are found are indicated in red. It should be noted that in the case of environmental lineages, the lack of a tick may
not represent absence of genes, given that these represent metagenomics bins, and the lack of said genes may be due to missing data. FCB are Fibrobacteres, Chlorobi, and
Bacteroidetes and related lineages. PVC are Planctomycetes, Verrucomicrobia, and Chlamydiae and related lineages. TACK are Thaumarchaeota, Aigarchaeota, Crenarchaeota,
and Korarchaeota. DPANN include Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota, as well as several other lineages.
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(a) (b)

(c)

FIG. 2.—Bayesian consensus trees of archaeal enzymes. Support values are Bayesian posterior probabilities. The black arrow and the white arrow

indicate the modal root positions obtained using the RMC and MAD approaches, respectively. The dashed arrow indicates the RMC and MAD roots for the

larger GGGPS subclade. Archaea in blue-tones and Bacteria in red/pink-tones. (a) G1PDH tree (111 sequences and 190 positions) inferred under the best-

fitting LGþ C60 model. (b) GGGPS tree (133 sequences and 129 positions) inferred under the best-fitting LGþ C40 model. (c) DGGGPS tree (97 sequences

and 119 positions) inferred under the best-fitting LG þ C60 model. Terrabacteria are Firmicutes, Actinobacteria, Cyanobacteria, Chloroflexi, and related

lineages. FCB are Fibrobacteres, Chlorobi, and Bacteroidetes and related lineages. PVC are Planctomycetes, Verrucomicrobia, and Chlamydiae and related

lineages. TACK are Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota. DPANN include Diapherotrites, Parvarchaeota, Aenigmarchaeota,

Nanoarchaeota, and Nanohaloarchaeota, as well as several other lineages. For full trees, see supplementary figures 1–4, Supplementary Material online. For

full unrooted trees, see supplementary figures 16–18, Supplementary Material online.
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This root position is consistent with two scenarios that we

cannot distinguish based on the available data. One possibility

is an early transfer of G1PDH from stem Archaea into

Bacteria, either into the bacterial stem lineage with subse-

quent loss in later lineages, or into the ancestor of

Actinobacteria and Firmicutes, with subsequent transfers to

other Bacteria. Alternatively, G1PDH could have already been

present in LUCA, and was subsequently inherited vertically in

both Archaea and Bacteria, followed by loss in later bacterial

lineages. The Firmicute sequences within the archaeal clade

appear to be a later transfer into those Firmicutes, apparently

from Thorarchaeota.

GGGPS attaches the first isoprenoid chain to G1P.

Phylogenetic analysis of GGGPS (fig. 2b) evidenced two

deeply divergent paralogs, with the tree confidently rooted

between them using both the RMC (PP ¼ 0.99) and MAD

methods (PP ¼ 1) (supplementary table 1, Supplementary

Material online); resolution within each of the paralogs was

poor. The recovery of two distinct paralogs has been noted in

several previous studies (Nemoto et al. 2003; Boucher et al.

2004; Lombard et al. 2012b; Peterhoff et al. 2014). One of

these paralogs comprises sequences from some

Euryarchaeota (including members of the Haloarchaea,

Methanomicrobia, and Archaeoglobi), along with Firmicutes

and Actinobacteria. The other paralog comprises sequences

from the rest of the Archaea—including other

Euryarchaeota—and a monophyletic bacterial clade largely

consisting of members of the FCB lineage. Taken with the

root position between the two paralogs, the tree topology

implies an ancestral duplication followed by sorting out of the

paralogs and multiple transfers into Bacteria. Because genes

from both GGGPS paralogous clades have been experimen-

tally characterized as geranylgeranylglyceryl phosphate syn-

thases (Nemoto et al. 2003; Boucher et al 2004), it appears

that this activity was already present in LUCA before the ra-

diation of the bacterial and archaeal domains. Payandeh et al.

(2006) has suggested, however, that the firmicute sequences

(which comprise the majority of the sequences in the smaller

paralog) are used in teichoic acid synthesis. In this case, two

apparently diverging paralogs may be an artifact due to

changes in the sequences during neofunctionalization.

Lombard et al. (2012b), who also find two divergent homo-

logs, and homologs in a large diversity of FCB bacteria (mostly

Bacteroidetes), suggest that one of these homologs was likely

present in the last archaeal common ancestor, whereas the

bacterial sequences were likely horizontal transfers. To im-

prove resolution among the deeper branches of the tree,

we inferred an additional phylogeny focusing just on the

larger of the two clades (supplementary fig. 3,

Supplementary Material online). The root of this subtree fell

between a clade of monophyletic Bacteria and a clade of

Archaea in which six bacterial sequences were interleaved,

perhaps as the result of later gene transfer (PP ¼ 0.8 for the

root split, much higher than the next most likely root, within

the Bacteria, with PP ¼ 0.07). This tree might be interpreted

as gene presence in LUCA, followed by some more recent

transfers from Archaea to Bacteria. Given that this gene is a

hallmark of archaeal membrane phospholipid biosynthesis,

our data do not exclude the possibility of a very early gene

transfer from the archaeal stem to Bacteria, prior to the radi-

ation of the archaeal domain.

DGGGPS attaches the second isoprenoid chain to G1P.

DGGGPS is present in all sampled Archaea, with the exception

of three of the DPANN metagenome bins. Although the

DGGGPS tree is poorly resolved (fig. 2c), both the RMC

and MAD root the tree between the same two clades (PP

¼ 0.43 and 0.79, respectively) (supplementary table 1,

Supplementary Material online). The smaller clade comprises

mostly bacterial sequences from the Actinobacteria and FCB

lineages, as well as two archaeal sequences (from the TACK

and Euryarchaeota lineages). The larger clade contains

sequences from a diversity of Bacteria, particularly FCB (also

reported by Villanueva et al. 2018), as well as Archaea.

DGGGPS is part of the UbiA protein superfamily, which are

involved in a number of different biosynthetic pathways, in-

cluding the production of photosynthetic pigments, and are

therefore widely distributed in Bacteria, and are known to

have undergone extensive HGT (Hemmi et al. 2004).

Indeed, several of the sequences used in our analyses (and

those in previous studies, such as Villanueva et al. 2017) are

annotated on NCBI as other proteins within this superfamily

(see supplementary table 5, Supplementary Material online).

To distinguish orthologs of DGGGPS from other, distantly re-

lated members of the UbiA superfamily that might have dif-

ferent functions, we inferred an expanded phylogeny

including our initial sequence set and sequences sampled

from the other known UbiA subfamilies (supplementary fig.

25, Supplementary Material online). Surprisingly, this analysis

indicated that the Thaumarchaeota lack an ortholog of the

DGGGPS gene that other Archaea use to attach the second

isoprenoid chain; the most closely related Thaumarchaeota

sequences branch within another UbiA subfamily with high

posterior support (PP¼ 0.99). Thaumarchaeota may be using

this paralog to perform the same function, or may use an-

other unrelated enzyme to catalyze this reaction. The wide

distribution of this enzyme across both Archaea and Bacteria,

and the occurrence of both domains on either side of the

root, for both rooting methods, suggest either multiple trans-

fers into Bacteria from Archaea, or that DGGGPS was present

in LUCA and inherited in various archaeal and bacterial line-

ages, followed by many later losses in and transfers between

various lineages.

In sum, our results of archaeal phospholipid biosynthesis

genes suggest that there have been repeated, independent

inter domain transfers of these genes from Archaea to

Bacteria throughout the evolutionary history of life.

Furthermore, our phylogenetic analyses do not exclude the

possibility that the genes of the archaeal pathway were present
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in LUCA. If correct, this would imply that LUCA had the capa-

bility to make archaeal-type membrane phospholipids.

Transfers of Bacterial Membrane Phospholipid Genes into
Archaea

In contrast to our analyses of proteins of the classical

archaeal pathway, phylogenies of proteins of bacterial-

type membrane phospholipid biosynthesis pathways are

more ambiguous and the root positions are not confi-

dently resolved. Homologs of both forms of glycerol-3-

phosphate dehydrogenase (G3PDH) and GlpK are

broadly distributed in Archaea, however, these three

enzymes are not exclusive to phospholipid synthesis

and have been shown to be used in glycerol metabolism

in some autotrophic Archaea (Nishihara et al. 1999). Of

the enzymes thought to function exclusively in bacterial

membrane phospholipid biosynthesis, we did not find

any archaeal homologs for PlsB or PlsX, and archaeal

PlsC and PlsY homologs are patchily distributed and are

found only in metagenomic bins. It therefore seems un-

likely that any of these genes function in membrane

phospholipid synthesis in Archaea.

The root positions for each of the trees using both RMC

and MAD have low posterior probabilities (supplementary ta-

ble 1, Supplementary Material online), so that the exact root

positions are unclear. Gps and glp are two genes that code for

two forms of glycerol-3-phosphate (G3PDH), GpsA, and

GlpA/GlpD, respectively, which establishes phospholipid ste-

reochemistry in Bacteria. The deep relationships between the

archaeal and bacterial sequences in the GpsA tree are poorly

resolved (fig. 3a), while being better resolved for GlpA/GlpD

(fig. 3b). The root position in both trees is poorly

resolved for both rooting methods (supplementary table 1,

Supplementary Material online). The highest marginal poste-

rior probability for the root positions recovered in the GpsA

tree are 0.31 and 0.59 and for the RMC and MAD, respec-

tively, and 0.5 and 0.44, respectively, for GlpA/GlpD. The tree

inferred for GlpK (glycerol synthase, which can synthesize

G3P from glycerol [fig. 4a]), shows a similar pattern to the

phylogenies of GpsA and GlpA/GlpD. Again, the root posi-

tions have low posterior support (0.47 and 0.34 for the RMC

and MAD, respectively). However, in each case, there is evi-

dence of recent transfers from Bacteria to Archaea, as we

recover several distinct bacterial and archaeal clades with

moderate to high support (0.8–1), as also reported by

Villanueva et al. (2017). For all three of these enzymes, the

differing root positions are resolved either within the Bacteria,

or with bacterial and archaeal sequences on both sides of the

root. This suggests that these enzymes may have been pre-

sent in LUCA, or that the archaeal sequences are later trans-

fers from Bacteria. Due to incongruence between the rooting

methods and the low supports, our analyses do not robustly

reject either of these scenarios.

PlsC and PlsY (which attach fatty acids to G3P) both have

many fewer orthologs among archaeal genomes, all of which

are derived from environmental samples (Embley and Martin

2006; Martin et al. 2015; Eme et al. 2017). Both trees are

poorly resolved (fig. 4). Both are rooted within the Bacteria,

with PlsC (fig. 4b) having the low posterior of 0.28 (with the

next most likely, also within the Bacteria, being 0.1). The PlsY

(fig. 4c) has a more certain root position, with a posterior of

0.57, and the next most probable being 0.1. For PlsY, MAD

recovers the same root as the molecular clock, with a high

posterior probability (0.85). When the PlsC tree is rooted using

MAD, the root is resolved between two clades, which are not

recovered in the inferred tree topology (see supplementary

fig. 8, Supplementary Material online) and has a low posterior

probability of 0.03. All of the archaeal homologs seem to be

horizontal acquisitions from Bacteria.

Sensitivity to Model Fitting Approach, Alignment
Uncertainty, and the Inclusion of Metagenomic Sequences

The deep branches of our trees are in general poorly resolved,

a problem that is sometimes encountered when inferring phy-

logenies for ancient single genes (Williams et al. 2011). We

therefore performed sensitivity analyses to evaluate the ro-

bustness of our biological conclusions to some of the key

decision points in our phylogenetic approach. Our focal anal-

yses are Bayesian, so we also inferred trees using the same

models in the maximum likelihood framework using IQ-Tree

(see supplementary figs. 30–37, Supplementary Material on-

line, for ML topologies, and supplementary table 3,

Supplementary Material online, for MAD AI scores). The to-

pologies were closely similar to the Bayesian trees, with the

exception of some poorly support clades that are resolved in

the ML tree but are not present in the Bayesian majority rule

consensus tree. The root positions on the G1PDH, GGGPS,

DGGGPS, GpsA, GlpA/GlpD, and PlsC ML trees were identical

to the those on the Bayesian trees. The MAD root positions for

GlpK and PlsY ML trees differ from the Bayesian trees, but in

both cases the root positions are on adjacent branches and

the changes do not substantially alter our interpretations (sup-

plementary figs. 35–37, Supplementary Material online).

We evaluated the impact of alignment uncertainty on our

results using heads-or-tails (Landan and Graur 2007). The re-

verse alignments were used to infer ML trees in IQ-Tree using

the LGþ C60 model. These were broadly congruent with the

ML and Bayesian trees on the original alignments, with only

minor topological differences in poorly resolved areas of the

trees (supplementary figs. 38–45, Supplementary Material on-

line). The root positions on the G1PDH, GGGPS, DGGGPS,

GlpA/GlpD, GpsA, and PlsC ML trees were identical to the

those on the Bayesian trees (supplementary figs. 38–40, 42,

44, Supplementary Material online). The MAD root positions

for GlpK (supplementary fig. 43, Supplementary Material on-

line) and PlsY (supplementary fig. 45, Supplementary Material
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(a)

(b)

FIG. 3.—Bayesian consensus trees of both G3PDH enzymes. Support values are Bayesian posterior probabilities. The black arrow and the white arrow

indicate the modal root positions obtained using the RMC and MAD approaches, respectively. Archaea in blue-tones and Bacteria in red/pink-tones. (a) GpsA

tree (84 sequences and 169 positions) inferred under the best-fitting LGþ C60 model. (b) GlpA/GlpD tree (51 sequences and 199 positions) inferred under

the best-fitting LG þ C60 model. Terrabacteria are Firmicutes, Actinobacteria, Cyanobacteria, Chloroflexi, and related lineages. FCB are Fibrobacteres,

Chlorobi, and Bacteroidetes and related lineages. PVC are Planctomycetes, Verrucomicrobia, and Chlamydiae and related lineages. TACK are

Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota. DPANN include Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota,

and Nanohaloarchaeota, as well as several other lineages. For full trees, see supplementary figures 5 and 6, Supplementary Material online. For full unrooted

trees, see supplementary figures 19 and 20, Supplementary Material online.
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(a)

(b)

(c)

FIG. 4.—Bayesian consensus trees of GlpK, PlsC, and PlsY enzymes. Support values are Bayesian posterior probabilities. The black arrow and the white

arrow indicate the modal root positions obtained using the RMC and MAD approaches, respectively. Archaea in blue-tones and Bacteria in red/pink-tones. (a)

GlpK tree (77 sequences and 363 positions) inferred under the best-fitting LGþ C60 model. (b) PlsC tree (74 sequences and 57 positions) inferred under the

best-fitting LG þ C60 model. (c) PlsY tree (60 sequences and 104 positions) inferred under the best-fitting LG þ C50 model. Terrabacteria are Firmicutes,

Actinobacteria, Cyanobacteria, Chloroflexi, and related lineages. FCB are Fibrobacteres, Chlorobi, and Bacteroidetes and related lineages. PVC are

Planctomycetes, Verrucomicrobia, and Chlamydiae and related lineages. TACK are Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota.

DPANN include Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota, as well as several other lineages. For full trees,

see supplementary figures 7–9, Supplementary Material online. For full unrooted trees, see supplementary figures 20–23, Supplementary Material online.
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online) ML trees differ for the Bayesian trees, but in the case of

PlsY, the root positions is on an adjacent branch. The MAD

root position for GlpK falls between a Korarchaeum sequence

and the rest of the tree.

Due to errors in assembly, metagenome bins sometimes

incorporate sequences from more than one underlying organ-

ismal genome (Parks et al. 2015). To evaluate whether some

apparent gene transfers might be artifacts of metagenome

assembly, we repeated our analyses without the inclusion of

metagenome-derived sequences, where possible. We per-

formed these analyses for G1PDH, GGGPS, DGGGPS,

GpsA, GlpA/GlpD, and GlpK, but not for PlsC or PlsY, because

all of the archaeal sequences for these trees are derived from

metagenome bins (see supplementary table 5, Supplementary

Material online). In the six cases where a reasonable compar-

ison can be made, the topologies and roots of the trees were

closely similar to those in the full analysis (supplementary figs.

46–52, Supplementary Material online).

These results suggest that, although our analyses do in-

clude substantial topological uncertainty, our overall conclu-

sions are not driven by issues with alignment, metagenome-

derived sequences, or the choice of model fitting approach

(maximum likelihood or Bayesian).

Comparing Outgroup and Outgroup-Free Rooting for
Single-Gene Trees

Evolutionary interpretations typically depend on rooted trees,

but rooting single-gene trees can prove difficult. The most

widely used approach is to place the root on the branch lead-

ing to a predefined outgroup (Penny 1976). However, this can

be challenging for ancient genes when closely related out-

groups are lacking; either the outgroup method cannot be

used at all, or else the long branch leading to the outgroup

can induce errors in the ingroup topology (a phenomenon

known as long branch attraction [LBA]; see Gouy et al. 2015).

In the case of phospholipid biosynthesis, some of the key

genes belong to larger protein families whose other members,

although distantly related, have conserved structures and re-

lated functions (Peret�o et al. 2004). Several previous studies

looking at the history of phospholipid biosynthetic genes have

used these outgroups for rooting. Due in part to the difficul-

ties of outgroup rooting for ancient genes, these studies have

disagreed on the roots for some of these gene trees, leading

to very different evolutionary conclusions. Our outgroup-free

results are consistent with those of Peret�o et al. (2004) and

Carbone et al. (2015), but not with those of the recent study

of Yokobori et al. (2016). Yokobori et al. used outgroups to

root trees for G1PDH, G3PDH (both GpsA and GlpA/GlpD)

and GlpK. Their root inferences differed from ours in that they

found that bacterial G1PDH sequences formed a monophy-

letic group that branched from within Archaea, suggesting

more recent horizontal transfer from Archaea to Bacteria, as

opposed to transfer from stem Archaea or vertical inheritance

from LUCA (fig. 2a). On the other hand, their analysis of GlpA/

GlpD recovered Bacteria on one side of the root, and a clade

of Bacteria and Archaea on the other. They interpreted this as

evidence for the presence of GlpA/GlpD in LUCA, and there-

fore that LUCA would have had bacterial-type G3P mem-

brane phospholipids.

Single-matrix models, such as those used by Yokobori et al.

(2016), have been shown to be more susceptible to phyloge-

netic artifacts such as LBA than the profile mixture models

used here (Lartillot et al. 2007). To investigate whether the

differences in root inference between our analyses and those

of Yokobori et al. (2016) might be the result of LBA, we

performed outgroup rooting analysis on G1PDH, GpsA, and

GlpA/GlpD, augmenting our data sets with a subsample of

the outgroups used by Yokobori et al. and using the same

models used to infer the unrooted trees (LG þ C60 in each

case). The resulting trees (supplementary figs. 10–12,

Supplementary Material online) show different topologies

when compared with the unrooted trees (supplementary

figs. 16, 19, and 20, Supplementary Material online). This

suggests that the long branch outgroup may be distorting

the ingroup topology.

We also performed model testing in IQ-Tree and compared

the fit of the chosen models to the models used by Yokobori

et al. (see Material and Methods below). LG þ C60 was se-

lected for both G1PDH and GlpA/GlpD, whereas LG þ C50

was selected for GpsA (supplementary fig. 24, Supplementary

Material online). The results of these analyses indicate that the

empirical profile mixture models which we have used here fit

each of these alignments significantly better than the single-

matrix models of Yokobori et al. (supplementary table 2,

Supplementary Material online). However, even analyses un-

der the best-fitting available models show distortion of the

ingroup topology upon addition of the outgroup (supplemen-

tary figs. 10–12 and 24, Supplementary Material online),

when compared with the unrooted topologies (supplemen-

tary figs. 16, 19, and 20, Supplementary Material online). In

each case, we found the root in a different place to those

recovered by Yokobori et al. In the G1PDH tree, we find

Bacteria (Firmicutes) to be most basal, rather the

Crenarchaeota found by Yokobori. In the case of GpsA,

Yokobori et al. did not find compelling support for an origin

in LUCA, but they did recover one archaeal lineage (the

Euryarchaeota) at the base of the ingroup tree with low (boot-

strap 48) support. Although our GpsA tree is also poorly re-

solved, we do not find evidence to support the basal position

of the archaeal lineages, and therefore for the presence of

GpsA in LUCA. For GlpA/GlpD, which Yokobori et al. trace

back to LUCA due to the basal position of the archaeal

sequences, the outgroup sequences did not form a monophy-

letic group, and were instead distributed throughout the tree

(supplementary fig. 11, Supplementary Material online). Thus,

analyses under the best-fitting available models did not sup-

port the presence of bacterial lipid biosynthesis genes in

Coleman et al. GBE

894 Genome Biol. Evol. 11(3):883–898 doi:10.1093/gbe/evz034 Advance Access publication February 8, 2019

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
Deleted Text: while 
Deleted Text: o
Deleted Text: o
Deleted Text: r
Deleted Text: s
Deleted Text:  g
Deleted Text: t
Deleted Text:  
Deleted Text: -
Deleted Text: the 
Deleted Text: -
Deleted Text: -
Deleted Text: (
Deleted Text: )
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
Deleted Text: to 
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
Deleted Text: while 
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
Deleted Text: to
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
Deleted Text: -
Deleted Text: While
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz034#supplementary-data


LUCA. Further, the distortion of the ingroup topologies sug-

gests that these outgroups may not be suitable for root infer-

ence, at least given current data and methods. The RMC and

the MAD methods have their own assumptions and limita-

tions, but these results suggest that they may be useful for

rooting trees in other contexts, either as part of a sensitivity

test or when suitable outgroups are not available.

Origin of Eukaryotic Membrane Phospholipid Biosynthesis
Genes

Phylogenetics and comparative genomics suggest that eukar-

yotes arose from a symbiosis between an archaeal host cell

and a bacterial endosymbiont that evolved into the mitochon-

drion (reviewed, from a variety of perspectives, in Embley and

Martin 2006; Martin et al. 2015; Eme et al. 2017; Roger et al.

2017). Genomic and phylogenetic evidence indicates that the

host lineage belonged to the Asgardarchaeota superphylum

(Spang et al. 2015; Zaremba-Niedzwiedzka et al. 2017). The

origin of bacterial-type membrane phospholipids in eukar-

yotes is therefore an important evolutionary question that

has received considerable attention (Woese et al. 1990;

Kandler 1995; L�opez-Garc�ıa and Moreira 2006; Baum and

Baum 2014; Gould et al. 2016). Given the evidence for trans-

fer of bacterial-type phospholipid biosynthesis genes into

Archaea, one possibility—also raised by the results of

Villanueva et al. (2017)—is that eukaryotes may have inher-

ited their bacterial lipids vertically from the archaeal host cell.

Both our study and that of Villanueva et al. (2017) point to the

presence of orthologs for bacterial lipid genes in

Asgardarchaeota. These include GlpA/GlpD, PlsC, and PlsY

orthologs in Lokiarchaeum sp. GC14_75, PlsC, and PlsY in

Heimdallarchaeota archaeon LC_2, and PlsY in

Thorarchaeota archaeon SMTZ1-83 (table 1). However, phy-

logenies of these genes (supplementary figs. 13–15,

Supplementary Material online) do not support a specific re-

lationship between eukaryotes and any of the archaeal

sequences, and so do not provide any compelling support

for an origin of eukaryotic lipids via the archaeal host cell.

Conclusions

Our phylogenetic analyses of lipid biosynthesis genes support

two main conclusions about prokaryotic cell physiology and

early cell evolution. First, our results corroborate previous ev-

idence for extensive horizontal transfer of lipid genes, partic-

ularly from Archaea to Bacteria, from potentially very early to

more recent evolutionary times. The functions of these genes

remain unclear, but in B. subtilis (Guldan et al. 2008, 2011)

they are involved in making archaeal-type G1P ether-linked

lipids, whereas in the FCB lineage Cloacimonetes (Villanueva

et al. 2018) they may be involved in synthesizing archaeal-

type phospholipids that are incorporated into the bacterial cell

membrane. Evidence that these genes have undergone

horizontal transfer, both early in evolution and more recently,

provides a potential mechanism for the remarkable diversity

of membrane lipids, and especially ether lipids, in environmen-

tal settings (Schouten et al. 2001). We also note that it is

intriguing that bacterial lipids with archaeal features are par-

ticularly abundant in settings characterized by high archaeal

abundances, including cold seeps, wetlands and geothermal

settings (Schouten et al. 2013), potentially providing ecolog-

ical opportunity for gene transfer. Experimental work to char-

acterize the enzymes that make these environmental lipids

will be needed to test this prediction.

A second, and more tentative, result of our study relates to

the antiquity of the canonical archaeal and bacterial path-

ways. Our analyses suggest that the enzymes for making

G1P lipids may have been present in the common ancestor

of Archaea and Bacteria. Under the consensus view that the

root of the tree of life lies between Bacteria and Archaea, this

would imply that LUCA could have made archaeal-type mem-

branes. This finding is intriguing in light of previous work

suggesting the presence of isoprenoids produced by the

mevalonate pathway in LUCA (Lombard and Moreira 2011;

Castelle and Banfield 2018). By contrast, we found no positive

evidence to suggest that the bacterial pathway was present in

LUCA, although our gene trees are poorly resolved and so we

cannot exclude this possibility. The consensus universal root

between Bacteria and Archaea is supported by analyses of

ancient gene duplications (Gogarten et al. 1989; Iwabe

et al. 1989; Zhaxybayeva et al. 2005) and genome networks

(Dagan et al. 2010), but some analyses have supported an

alternative placement of the root within Bacteria (Cavalier-

Smith 2006; Lake et al. 2009; Williams et al. 2015). Our trees

do not exclude a within-Bacteria root, in which case LUCA

would have possessed the bacterial pathway, and the ar-

chaeal pathway would have evolved along the archaeal

stem, or in a common ancestor of Archaea and Firmicutes

(Cavalier-Smith 2006; Lake et al. 2009).

If one membrane lipid pathway evolved before the other,

this would imply that one of the two prokaryotic lineages

changed its membrane lipid composition during early evolu-

tion. The evolutionary processes that drive such changes re-

main unclear, in part because we still do not fully understand

the functional differences between modern archaeal and

bacterial membranes. Compared with bacterial-type mem-

branes, archaeal-type membranes maintain their physio-

chemical properties over a broader range of temperatures

and may be more robust to other environmental extremes

(van de Vossenberg et al. 1998; Koga 2012). If the archaeal

pathway is older than the bacterial pathway, then that could

reflect a LUCA adapted to such extreme settings. It is then

intriguing to speculate on the evolutionary drivers for sub-

sequent adoption of bacterial-type membranes, especially

because the Bacteria appear to be more successful than

the Archaea in terms of abundance and genetic diversity

(Danovaro et al. 2016; Hug et al. 2016; Castelle and
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Banfield 2018). Moreover, an analogous change has hap-

pened at least once in evolutionary history, during the origin

of eukaryotic cells (Martin et al. 2015). Chemical consider-

ations suggest such bonds ought to be energetically cheaper

to make and break, although we know of no published ex-

perimental data on these relative biosynthetic costs.

Alternatively, bacterial-type membrane lipids comprise a va-

riety of fatty acyl moieties, varying in chain length, unsatu-

ration, degree of branching and cyclisation, and these could

impart a degree of flexibility and adaptability that provides a

marginal benefit in dynamic mesophilic environments. If so,

that advantage could translate to bacterial ether lipids that

are also widespread in nonextreme settings and also

characterized by a variety of alkyl forms (Pancost et al.

2001). Conversely, if bacterial-type membranes were ances-

tral, the transition to archaeal-type membranes could have

been driven by adaptation to high environmental temper-

atures: ether bonds are more thermostable than esters (van

de Vossenberg et al. 1998; Koga 2012) and are also found in

the membranes of thermophilic Bacteria (Kaur et al. 2015).

In any case, the widespread occurrence of bacterial-type,

archaeal-type, and mixed-type membrane lipids in a range

of environments, as well as the widespread occurrence of

the associated biosynthetic genes across both domains, sug-

gests that except for high temperature and low pH settings,

the advantages of either membrane type is marginal.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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