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Abstract
Purpose of the review The ongoing outbreak of novel coronavirus pneumonia (COVID-19) caused by the 2019 novel corona-
virus (SARS-CoV-2) in China is lifting widespread concerns. Thus, therapeutic options are urgently needed, and will be
discussed in this review.
Recent findings Iron-containing enzymes are required for viruses most likely including coronaviruses (CoVs) to complete their
replication process. Moreover, poor prognosis occurred in the conditions of iron overload for patients upon infections of viruses.
Thus, limiting iron represents a promising adjuvant strategy in treating viral infection through oral uptake or venous injection of
iron chelators, or through the manipulation of the key iron regulators. For example, treatment with iron chelator deferiprone has
been shown to prolong the survival of acquired immunodeficiency syndrome (AIDS) patients. Increasing intracellular iron efflux
via increasing iron exporter ferroportin expression also exhibits antiviral effect on human immunodeficiency virus (HIV). The
implications of other metals besides iron are also briefly discussed.
Summary For even though we know little about iron regulation in COVID-19 patients thus far, it could be deduced from other
viral infections that iron chelation might be an alternative beneficial adjuvant in treating COVID-19.

Keywords COVID-19 . SARS-CoV-2 . Ironmetabolism . Antiviral . Iron chelator

Introduction

The ongoing outbreak of pneumonia caused by SARS-CoV-2 in
China is eliciting widespread concerns, especially as the virus
was recently shown to spread from human to human [1]. This
epidemic is calling for national and international attention to
develop effective therapeutics including selective vaccines.
Nonetheless, no specific therapeutic is yet available, leaving
the patients to rely on general and supportive therapies, includ-
ing oxygen supply, broad-spectrum antiviral medicines (e.g.,
interferon-α), glucocorticoid, and human serum albumin
(HSA) [2]. Most recently, lopinavir/ritonavir, an approved anti-
HIV drug, has been recommended for treatment of SARS-CoV-
2 infection [3]. Remdesivir, a novel nucleotide analogue prodrug
in development for treating Ebola virus and Middle East
Respiratory Syndrome (MERS) diseases, has also been reported
to relieve the pneumonia symptoms for the first case of SARS-
CoV-2 infection, as reported in the USA [4]. Although the drugs
are showing a promising efficacy, additional therapeutic options
should be explored and considered when taking into account the
increasing number of SARS-CoV-2 cases.
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Since iron is involved in many fundamental biological pro-
cesses including DNA/RNA synthesis and ATP generation,
viruses essentially rely on iron to replicate in host cells [5].
Thereby, there is an active competition between the virus and
the host in fighting for iron. Clinical data have indicated that
poor prognosis is related to the condition of iron overload
observed in patients with infection of hepatitis B/C (HBV/
HCV) viruses [6–8]. For even though we know little about
iron regulations in SARS-CoV-2 patients, some clues could be
obtained from other viral infections (Fig. 1). For example, iron
supplementation was shown to increase the mortality in HIV-
infected patients, irrespective of the severity of anemia, sug-
gesting a detrimental role of excess iron in HIV infection [9].
HIV-1 replication is dependent on host cell enzymes, some of
which are involved in transcription, viral mRNA translation,
and viral assembly that require iron [5]. HIV-1 viral load
dropped dramatically in a hemochromatosis patient who
underwent venesection, suggesting an iron deprivation–
mediated control of HIV-1 replication [10].

To this end, iron depletion can have marked anti-HIV ef-
fect. HIV-1 transcription and replication were inhibited by
number of iron chelators including 2-hydroxy-1-
naphthylaldehyde benzoyl hydrazine (311) and ICL670 (also
known as deferasirox or exjade) [11], 2-benzoylpyridine 4-
allyl-3-thiosemicarbazone (Bp4aT) and 2-benzoylpyridine 4-
ethyl-3-thiosemicarbazone (Bp4eT) [12], and PPYeT and
PPYaT [13]. In a recent study, ex vivo inhibition of HIV-1 in
peripheral blood mononuclear cells (PBMCs) obtained from
patients with sickle cell disease (SCD) was linked to the

increased expression of ferroportin and reduced intracellular
iron levels [14]. Thus, we can consider the potential of iron
chelation as an alternative beneficial adjuvant in treating
SARS-CoV-2 infection that we discuss below.

Characteristics and Life Cycle of Coronaviruses

CoVs represent the largest group of Coronaviridae, belonging
to the Nidovirales order, whereby positive-sense and single-
stranded RNA is enveloped inside. Apart from CoVs,
Torovirinae is the other subfamily of Coronaviridae. CoVs
are further subdivided into 4 genera: α-CoV, β-CoV, γ-CoV,
and δ-CoVon the basis of their phylogenetic clustering. SARS-
CoV-2 that causes COVID-19 belongs to the β group [15, 16].
CoVs are named after their “crown-like” appearance observed
under electron microscopy with club-shaped peplomers
projecting from their surface. CoVs are non-segmented posi-
tive-sense RNA viruses containing approximately 30 kilobase
(kb) genomes, characterized by the organization of 5′-leader-
UTR-replicase-S (Spike)-E (Envelope)-M (Membrane)-N
(Nucleocapsid)-3′UTR-poly (A) tail with accessory genes inter-
spersed within the structural genes at the 3′ end of the genome
[17]. To penetrate host cells, CoVs can use various cell surface
molecules as their receptors, preferentially ectoenzymes, e.g.,
aminopeptidase N (APN), angiotensin-converting enzyme 2
(ACE2), and dipeptidyl peptidase 4 (DPP4) [18].

The SARS-CoV-2 is the newly discovered member of the
coronavirus family. Based on the most recent results of ge-
nome sequencing, most contigs of SARS-CoV-2 match to the

Fig. 1 Life cycle of coronaviruses under iron replete and deficiency
conditions. a Sufficient intracellular iron levels support coronavirus
replication, whereas b iron deficiency undermines its replication
process by interfering with viral transcription, translation, assembly, and
exocytosis. CoVs enter into host cells via binding to various receptors and
disassemble to release viral genome and nucleocapsid. Transcription and
translation of viral genes yield viral genomic RNA and structure proteins
(e.g., S, E, M, and N). After further processing and assembly in

endoplasmic reticulum (ER) and Golgi, new CoVs are constructed.
Finally, the new formed virions are exocytosed by fusing with virus-
containing vesicles. The whole process of viral replication requires
iron-containing enzymes and consumes abundant ATP. Iron is a critical
participant for mitochondria to produce ATP. In short, adequate iron
enables the virus to complete its replication process, and otherwise iron
deficiency impairs this process
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genome of the lineage B from β-CoV and show more than
85% identity with the genome of a bat Severe Acute
Respiratory Syndrome (SARS)–like CoV (bat-SL-
CoVZC45, MG772933.1) [19]. Furthermore, it was found
that SARS-CoV-2 share 96% identical at the whole-genome
level to a bat CoV [20]. Despite the sequence diversity with
SARS-CoV S-protein, SARS-CoV-2 S-protein shares the sim-
ilar receptor binding domain (RBD) domain as the
SARS/SARS-like CoV, in support of the strong interaction
of SARS-CoV-2 with human ACE2 molecules [21]. More
than 80% of ACE2 receptors are expressed in a small popula-
tion of type II alveolar cells (AT2) [22], suggesting that AT2
cells could be the target cells of SARS-CoV-2.

After binding and fusion with the host cells, CoVs disassem-
ble to liberate the inside contents of the virion into the cyto-
plasm, including the nucleocapsid and viral RNA. Components
of the replication-transcription complex are firstly translated
[23]. In addition, abundant sub-genomic negative-sense
RNAs are produced. Then, the viral structural proteins (S, E,
and M) are translated, inserted into the endoplasmic reticulum
(ER), and transported to the ER-Golgi intermediate compart-
ment. After accumulation of adequate viral genomic RNA and
structural proteins, the N protein and genomic RNA assemble
in cytoplasm to form the helical nucleocapsid. Subsequently,
the S, E, and M proteins delivered to the budding compartment
interact with nucleocapsid to constitute the assembled virus.
Finally, the virus is released from the Golgi and exocytosed to
the extracellular compartment from the host cells by fusing with
virion-containing vesicles [24] (Fig. 1).

Iron Dependence of Viral Replication

For the host, iron is an essential trace element necessary for
many fundamental enzymatic and non-enzymatic reactions
and diverse physiological processes, such as mitochondrial
function including ATP generation, DNA/RNA synthesis
and repair, and cell survival/ferroptosis [25]. Iron is also es-
sential for viral replication. In the context of HIV-1 infection,
iron is involved in several key steps of virus replication. In the
reverse transcription of viral RNA into DNA, the required
dNTPs are generated by RNRs which are an iron-dependent
proteins [26]. NF-κB can be activated by iron via generating
reactive oxygen species (ROS) [27]. IкB kinase activation
depends on iron efflux [28–30], which increases NF-кB levels
and contributes to the activation of HIV-1 promoter [31].
Nuclear export of new transcribed viral RNA is also iron-
dependent [32]. Finally, an iron-binding ATPase, ATP binding
cassette subfamily E member 1 (ABCE1), is involved in the
assembly of the Gag capsid proteins intomature HIV-1 virions
[33].

ATP hydrolysis is necessary for the unwinding activity of
helicases of SARS-CoVand MERS-CoV during the viral rep-
lication [34, 35]. Iron is an important component of the

complexes I, II, III, and IV as well as cytochromes, which
participate in the oxidative phosphorylation in mitochondria
to conduct electron transportation inmaintainingmitochondri-
al functions and ATP synthesis [36]. Treatment with
deferiprone (DFP) induces apoptosis in HIV-1-infected cells
through mitochondrial membrane depolarization, leading to
permanent elimination of infected cells in culture [37].

Interplay of Host Iron Metabolism and Viral Intrusion

Iron metabolism in host is fine-tuned through regulation of
iron absorption in the intestine, iron storage in the liver and
spleen, iron transport in blood, iron utilization (mainly in bone
marrow for erythropoiesis), and iron recycling by macro-
phages. Iron is absorbed by duodenal enterocytes and released
into plasma by an iron exporter protein, ferroportin, which is
expressed on the basolateral side of the duodenal enterocytes.
Ferroportin is also expressed in macrophages and essentially
governs iron release and recycling [38]. The systemic iron
homeostasis is fundamentally orchestrated by the hepcidin-
ferroportin axis. Hepcidin is mainly expressed and secreted
by hepatocytes, and can bind to its sole receptor, ferroportin.
After binding to hepcidin, ferroportin is internalized and de-
graded, leading to the inhibition of iron absorption from the
duodenum and reduction of iron release from macrophages
[39]. The cellular iron uptake is primarily mediated by the
interaction between iron-bound transferrin and transferrin re-
ceptor1 (TfR1) [40].

Hepcidin expression could be regulated by systemic iron
availability (iron deficiency and iron overload), inflammatory
cytokines (IL-6 and IL-1β), bone morphogenetic proteins
(BMP2 and BMP6), and erythropoietic signals (ERFE,
GDF15, and TWSG1) [40]. SARS patients exhibited in-
creased amounts of proinflammatory cytokines in serum in-
cluding IL-1β, IL-6, and IFN-γ coupled to the pulmonary
inflammation and extensive lung damage [41]. Infection with
SARS-CoV-2 also leads to the increased levels of IL1-β,
IFN-γ, IP10 (interferon-inducible protein 10), and MCP1
(monocyte chemotactic protein 1), likely inducing T-helper-1
cell response [3]. Thus, induction of these cytokines could
supposedly promote hepcidin production and lead to iron se-
questration in macrophages, which warrants future investiga-
tions. Of note, macrophages are presumed to be infected by
SARS-CoV-2 [42]. Thus, increased iron storage will most
likely favor viral replication inside macrophages.
Furthermore, viruses can manipulate other iron-related pro-
teins to facilitate their replication and propagation. In the con-
text of human cytomegalovirus (HCMV) infection, homeo-
static iron regulator protein (HFE), a competitor of TfR1 to
bind to transferrin, is degraded after binding by US2 protein,
leading to cellular iron overload [43]. In macrophages infected
by HIV-1, the interaction of Nef protein and HFE also induces
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cellular iron overload [44]. Plus, TfR1 is also used as the
receptor during the entry of several types of viruses [45, 46].

Antiviral Strategy of Iron Chelation

Iron dependence of viral replication and modulation of host
iron metabolism by viruses, as discussed above, signifies the
importance of cellular iron homeostasis in viral life cycle and
incites the development of iron chelation strategy in treating
viral infections. Currently, there are two promising strategies
to deplete iron. The first strategy is to deplete iron directly by
iron chelators which have strong and selective affinity with
iron ions [47, 48]. Some of these iron chelators have been
approved by U.S. Food and Drug Administration for clinical
use, such as deferoxamine (DFO, Desferal®), deferiprone
(DFP, Ferriprox®), and deferasirox (ICL670, Exjade®) [49].
Iron chelators can bind free iron or remove iron from iron-
containing proteins [48]. Treatment with higher doses of DFP
has been shown to prolong the survival of AIDS patients after
HIV-1 infection [50]. Increasing evidence suggests that iron
chelators can target HIV-1 replication. The enzymatic activity
of ribonucleotide reductase 2 involved in reverse transcrip-
tion, which contains non-heme iron, is inhibited by DFO
and 311 [51]. Bp4aT, Bp4eT, Phenyl-1-pyridin-2yl-ethanone
(PPY)-based iron chelators (PPYeTand PPYaT) inhibit HIV-1
transcription by decreasing CDK2 and CDK9 activities, and
by upregulating IκBα expression and downregulating nuclear
NF-κB [12, 13]. Topical fungicide ciclopirox and the iron
chelator DFP inhibit HIV-1 gene expression at the level of
transcription initiation by interfering with the hypusine mod-
ification of eIF5α [32]. Patients treated with DFP unveiled
strong HIV-1 RNA decline while on-drug and also for up to
8 weeks off-drug without viral rebound [52]. DFO and DFP
inhibited HIV-1 replication in human PBMCs and macro-
phages but the inhibition is attributed to a decrease in cell
proliferation [53]. Similar to DFO and DFP, oral uptake of
bidentate iron chelators, CP502 and CP511 inhibit HIV-1 rep-
lication by reducing cellular proliferation [54]. Host cell en-
largement induced by viruses, e.g., HCMV, could be inhibited
by iron chelators through inhibiting mitochondrial activity and
macromolecular synthesis [55]. Nonetheless, these iron chela-
tors may be scrutinized for their antiviral activity against
SARS-CoV-2.

The second strategy is to deplete cellular iron through reg-
ulating the gene expression involved in ironmetabolism. HIV-
1 reverse transcription and transcription was suppressed in
PBMCs obtained from SCD patients due to increased expres-
sion of ferroportin and therefore lowered intracellular iron
[14]. On the other hand, hepcidin agonists, such as mini-
hepcidin and thiazolidinone derivatives, can reduce systemic
iron levels by compromising the function of ferroportin [56].
Nonetheless, the possible applications of agonists to target the
hepcidin-ferroportin axis or other iron-related genes in order

to achieve antiviral effects still need further exploration, and
more efforts are thus urgently needed.

Other Metal-Oriented Therapeutics Against Viral
Infection

Apart from iron, cumulative evidence has manifested that oth-
er metals (e.g., calcium, zinc, and magnesium) are also in-
volved in the replication process of CoVs. The entry of
CoVs into host cells is mediated by the viral S protein.
Under this context, previous studies have demonstrated that
calcium is indispensable for SARS-CoV S-mediated fusion
[57]. The replication of SARS-CoV genome requires RNA-
dependent RNA polymerase (RdRp) to synthesize descendant
RNAs from a RNA template, which sternly relies on magne-
sium (Mn2+) for its activity [58]. In the meantime, SARS-CoV
RNA dimers, a prerequisite for ribosomal frameshifting, are
assembled through “kissing” loop-loop interactions.
Nonetheless, to reach more stable formation of loop-loop
kissing complex, the presence of Mn2+ appears to be neces-
sary [59]. Regarding zinc (Zn2+), the binding of Zn2+ ions to
the metal-binding domain (MBD) of SARS-CoV helicase is
essential for its enzymatic activity [60]. Additionally, the mat-
uration of CoVs requires papain-like protease (PLpro), which
could cleave the nonstructural polyproteins (pp1a and pp1ab).
However, devoid of Zn2+ ions, the stability of the tertiary
structure of SARS-CoV PLpro is compromised with dimin-
ished activity [61]. Moreover, MERS-CoV PLpro bears a
folded structure and potent proteolytic and deubiquitinating
activities upon binding with endogenous metal ions [62]. To
this end, the above findings collectively suggest that
disturbing the viral metal dependence would presumably ex-
hibit antiviral effects.

Literally, versatile metal-oriented therapeutics besides iron
chelators have been searched to target diseased conditions for
centuries. For instance, bismuth compounds have been used
clinically as medicines to treat various gastrointestinal dis-
eases. Bismuth (Bi3+) ions strikingly compete with Zn2+ ions
for the MBD of helicase, leading to compromised enzyme
activities and severe deficiencies in viral replication [63]. As
metal chelators, aryl diketoacids (ADK) have been verified to
inhibit enzymes, such as HIV-1 integrase and HCV RdRp, in
that ADKs function to repress the NTPase/helicase activities
of SARS-CoV by mimicking Bi3+ ions [64]. Mercury (Hg2+)
ions and Zn2+ ions act to inhibit viral proteases, such as 3C-
like protease (3CLpro) of norovirus, PLpro of SARS-CoV,
HCMV protease, and HCV NS3 protease [62]. Of note, the
3CLpro plays a vital role in viral protein maturation for SARS-
CoV. In fact, their metal-conjugated compounds, including
phenylmercuric acetate (PMA), toluene-3,4-dithiolato zinc
(TDT), and Nethyl-N-phenyldithiocarbamic acid zinc
(EPDTC), elicit great inhibition on SARS-CoV 3CLpro. As a
pharmaceutical excipient, PMA is widely used in parenteral
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and topical pharmaceutical formulations. Further, zinc acetate
is added as a supplement to the drug in treating Wilson’s
disease [65]. Zn2+ ions could directly impair viral RNA syn-
thesis, due to its strong suppression on both the replication and
transcription complexes [66]. As summarized above, an array
of other metals besides iron incredibly account for the func-
tions and activities of enzymes involved in CoVs’ replication,
which underpins rational metal-oriented therapeutic develop-
ment against CoVs.

Conclusion and Perspectives

Iron is crucial for both the host and the pathogen. Iron supply
is required for the replication of many viruses, most likely
including CoVs, and viruses rely on intracellular iron for their
propagation. Emerging studies indicate that iron manipula-
tion, such as iron chelation, is a promising adjuvant therapy
in treating viral infection. While the emerging viral infection
by SARS-CoV-2 is much less understood compared with
HIV-1 or SARS-CoVand MERS-CoV, based on the previous
studies, it is plausible that deprivation of iron supply to the
virus could serve as a beneficial adjuvant in treating the
SARS-CoV-2 infection, with the prerequisite of adequate un-
derstandings on one’s iron status, such as serum iron and fer-
ritin levels, and globin content. Meanwhile, other metal-
oriented therapeutics could also be reasonably conceived for
the antiviral purpose.
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