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Abstract

This paper reports the first implementation of a new type of mass spectral library for

the analysis of Chinese hamster ovary (CHO) cell metabolites that allows users to

quickly identify most compounds in any complex metabolite sample. We also de-

scribe an annotation methodology developed to filter out artifacts and low‐quality
spectra from recurrent unidentified spectra of metabolites. CHO cells are commonly

used to produce biological therapeutics. Metabolic profiles of CHO cells and media

can be used to monitor process variability and look for markers that discriminate

between batches of product. We have created a comprehensive library of both

identified and unidentified metabolites derived from CHO cells that can be used in

conjunction with tandem mass spectrometry to identify metabolites. In addition, we

present a workflow that can be used for assigning confidence to a NIST MS/MS

Library search match based on prior probability of general utility. The goal of our

work is to annotate and identify (when possible), all liquid chromatography‐mass

spectrometry generated metabolite ions as well as create automatable library

building and identification pipelines for use by others in the field.
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1 | INTRODUCTION

Chinese hamster ovary (CHO) cells are the predominant host cells for

monoclonal antibody (mAb) production (Kunert & Reinhart, 2016). Me-

tabolomics provides information on cellular phenotypes. Several meta-

bolites have been demonstrated to be biomarkers of CHO cell status

(Mohmad‐Saberi et al., 2013). Metabolomic analysis of CHO cells has

primarily been used in process or media/feed development and has

predominantly focused on targeted metabolite analysis of major meta-

bolites, although there are several studies that utilized global metabolite

analysis (Stolfa et al., 2018). A comprehensive assessment of CHO cell

metabolic profiles could lead to improvements in product yield and

quality by providing further understanding of the CHO cell metabolome

(Stolfa et al., 2018). Mass spectral libraries have been extremely popular
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for more than 40 years for identifying volatile chemical compounds using

gas chromatography‐mass spectrometry (GC‐MS). They are used to lo-

cate the most similar spectra in the reference library and present the

compounds that generated them in a “hit list” sorted by their similarity to

the acquired spectrum (S. Stein, 2012). Liquid chromatography‐mass

spectrometry (LC‐MS) is a widely practiced method for identifying the

chemical components in metabolomics (Gowda & Djukovic, 2014). For

confident metabolite identifications, liquid chromatography‐tandem mass

spectrometry (LC‐MS/MS) can be performed and the fragmentation

pattern can be compared to a MS/MS spectral library. Commercial

MS/MS libraries that contain curated spectra (the NIST Tandem [MS/MS]

Mass Spectral Library and the Wiley MSforID Library) as well as free

libraries that facilitate data sharing (MassBank, MassBank of North

America [MoNA], LipidBlast, METLIN, mzCloud, GNPS, etc.) are available

and have been reviewed recently (Kind et al., 2018). These libraries

contain experimental spectra of known compounds and spectra of

unidentified compounds are not documented there. Other libraries such

as LipidBlast, Greazy/LipidLama, CFM‐ID, and so forth are based on

in silico prediction of the spectra of known or predicted metabolites

(Kind et al., 2018).

A comprehensive library of both known and unidentified CHO cell

metabolites will be beneficial to the field of CHO cell metabolite analysis.

In addition to producing the NIST MS/MS Library, the NIST Mass Spec-

trometry Data Center (MSDC) has recently begun creating material‐
oriented libraries that are generated from the analysis of complex mix-

tures such as human plasma and urine (https://chemdata.nist.gov/

dokuwiki/doku.php?id = chemdata:arus) to address the issue of un-

known metabolites (metabolites not identified by library searching),

identify cross‐platform metabolite signatures, and catalogue all spectra

associated with a particular material of interest (Mallard et al., 2014;

Remoroza et al., 2018; Simon‐Manso et al., 2013; Simon‐Manso et al.,

2019; S. Stein, 2012; Telu et al., 2016). These material‐oriented libraries

contain recurrent spectra (spectra that occur repeatedly in the sample)

for all detectable metabolites, both known and unknown that are pro-

cessed to produce high‐quality consensus spectra for the library. The

MSDC has also created spectral libraries (Dong et al., 2018; Dong, Yan,

Liang, & Stein, 2016) of the NISTmAb, a humanized IgG1κ Monoclonal

Antibody Reference Material (RM 8671; https://www.nist.gov/programs-

projects/nist-monoclonal-antibody-reference-material-8671).

The use of tandem mass spectral libraries in biomedical and bio-

manufacturing applications has been very limited until recently with the

development of omics technologies. To date, there are no reports of

libraries being used for optimizing biomanufacturing processes and very

little for discovering new metabolic pathways. Here, we implemented

recurrent spectral libraries for use in CHO cell metabolite analysis that

allows users to quickly identify most compounds in any complex meta-

bolite sample. We also developed an annotation strategy for these

libraries to filter out artifacts and low‐quality spectra from recurrent

unidentified spectra of metabolites. These libraries are focused on

metabolite analysis, however, small peptides that extract along with the

metabolites are also present. Furthermore, the limited coverage of

tandem libraries is somewhat ameliorated by the use of the recently

developed hybrid search (Burke et al., 2017; Cooper et al., 2019;

Moorthy et al., 2017), which can identify compounds similar to, but not

present in the library. The recurrent spectral library is unique in that it

can be used to determine if an ion has been seen before in other analyses,

assign the class identification for compounds not found in a library or

commercially available, and enables library evolution based upon feed-

back from users. As more experiments are done, the library can continue

to grow in coverage. The library and the associated metabolite identifi-

cations are freely available for download for use in the analysis of CHO

cell metabolites by LC‐MS/MS. Although this study was demonstrated in

CHO cells, the developed methods for filtering spectra and assigning

match confidence can be applied to not only other cell types, but also

other metabolomics studies. In addition, work is currently underway at

NIST to create a metabolite identification pipeline and graphical user

interface (GUI) that those in the biomanufacturing community can use to

implement their own libraries.

2 | EXPERIMENTAL METHODS*

For the coverage of metabolites to be broad, CHO cells were extracted

by four different methods available in the literature: (1) 50% acetonitrile

in water (Dietmair et al., 2012), (2) Methanol (Dietmair, Timmins, Gray,

Nielsen, & Kromer, 2010; Sellick et al., 2011), (3) methanol/methyl tert‐
butyl ether(MTBE)/water, and (4) methanol/dichloromethane(DCM)/

water (Matyash et al., 2008). Metabolites were separated with three

different LC methods (reversed‐phase [C18], hydrophilic interaction liquid

chromatography [HILIC] and a reversed‐phase method optimized for

lipids [lipid C18]), and analyzed in positive and negative ionization mode

with both higher‐energy C‐trap dissociation (HCD**) over a range of

collision energies and ion trap (IT) collision‐induced dissociation. Media

samples (fresh and spent) were resuspended in two different solvents

(50% acetonitrile or pure methanol) after protein precipitation, separated

with two different LC methods (C18 and HILIC), and analyzed with the

same breadth of methods as the CHO cell metabolites.

2.1 | Sample preparation

CHO‐S cells (Thermo Fisher Scientific) were grown in ProCHO5

protein‐free medium (Lonza) supplemented with 4mmol/L L‐
glutamine (Thermo Fisher Scientific). CHO cells and spent media

were harvested and metabolite extractions were performed. Protein

precipitation was performed on the media with 80% (vol/vol) me-

thanol. After drying and before analysis, media samples were re-

suspended in either pure methanol or 50% acetonitrile (vol/vol).

Metabolites were extracted by four different methods: 50%

*Certain commercial instruments are identified in this document. Such identification does

not imply recommendation or endorsement by The National Institute of Standards and

Technology, nor does it imply that the products identified are necessarily the best available

for the purpose.

**HCD is a term specific to the orbitrap mass spectrometer (Thermo Fisher Scientific). HCD

and QTOF spectra are equivalent as they both result from beam‐type collision‐induced
dissociation (versus ion trap collision‐induced dissociation).
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acetonitrile in water, methanol, methanol/methyl tert‐butyl ether

(MTBE)/water, and methanol/dichloromethane (DCM)/water. Addi-

tional details regarding sample preparation can be found in the

supporting information.

2.2 | LC‐MS/MS analysis

The metabolites were separated by three different liquid chromato-

graphy methods. Extracts containing polar metabolites (50% acetoni-

trile, methanol, lower phase for the methanol/MTBE/water extraction,

and upper phase for the methanol/DCM/water extraction) were

separated by both C18 and HILIC. The organic phases of the two lipid

extractions were separated by a lipid C18 method. Fresh and spent

media samples were separated by C18 and HILIC. These separations

were coupled to either a Q Exactive or Orbitrap Fusion Lumos

(Thermo Fisher Scientific). The data were collected in positive and

negative ionization mode with data‐dependent MS/MS acquisition. To

provide as many spectra as possible for the library, HCD spectra were

collected over a range of normalized collision energies from 10 to 50

using nitrogen as the collision gas. In addition, low‐resolution IT and

high‐resolution IT spectra were acquired on the Lumos at a normalized

collision energy of 35% using helium as the collision gas. The collision

gases used were those recommended by the equipment manufacturer.

Additional details regarding analysis can be found in the

supporting information.

2.3 | Data analysis

Data were analyzed to produce recurrent spectral libraries as re-

ported previously (Telu et al., 2016). Briefly, all data were pro-

cessed with the NIST MSCQ pipeline (see below under

“Annotation of Spectra” for a description of the pipeline). Re-

current spectra were exported from the output of the pipeline

with a perfect score cutoff (1.0) to ensure all spectra (even iden-

tified ones) were included. Following this, consensus spectra were

created from the experimental data using in‐house developed

software after grouping the data by polarity, fragmentation type

(HCD or IT), and collision energy. The similarity of the spectra was

based on precursor and the dot‐product (Yang et al., 2014). Only

similar spectra (a cluster) were used to create the consensus

spectrum. Spectra dissimilar to the given cluster were placed in

another cluster or, if unique, were ignored. After the libraries were

created, the consensus spectra were searched against the NIST17

Library to obtain metabolite identifications. In addition, an anno-

tation strategy was developed following manual evaluation of a

representative data file. The data file analyzed was a 50% acet-

onitrile extraction that was separated on a C18 column and frag-

mented at HCD 20. The file was searched against the NIST17

Library with the NIST MSPepSearch software to provide tandem

mass spectral library identifications as discussed below.

3 | RESULTS AND DISCUSSION

3.1 | Identification of metabolites

The first goal of this study was to collect, organize, and to the degree

possible, identify all measurable tandem mass spectra in CHO cell

metabolite and growth media extracts acquired using electrospray

LC‐MS/MS methods. To do this, we developed an HCD and IT frag-

mentation spectral library containing consensus spectra in both po-

sitive and negative ionization mode using a spectral clustering

method developed in‐house. The libraries contain data from both

CHO cell metabolite analyses as well as media analyses and are an-

notated to show the origin of the spectra. In addition to metabolites,

peptides that are co‐extracted are also present in the libraries, al-

though these are not the focus of the work. The resulting HCD re-

current spectral libraries contain 109,601 and 61,677 spectra for the

positive and negative ionization mode libraries, respectively. The IT

libraries contain 15,703 and 12,499 spectra for the positive and

negative ionization mode libraries, respectively. IT spectra are similar

to low energy HCD spectra, except for their low mass cut‐off at

about one‐third of the precursor mass and their higher degree of

fragmentation at these low energies; IT fragment ions are therefore

more intense than low energy HCD spectra. Note that low energy

spectra are generally easier to interpret than higher energy spectra

due to their simpler mechanisms. Additional information about the

libraries, including collision energies, precursor ion types, and source

(CHO cell, media, or both) of the consensus spectra can be found in

the supporting information. The results of CHO cell metabolite and

media analyses are highly orthogonal as only 8%–13% of the con-

sensus spectra in the libraries originate from both samples. The

overlap would likely be higher if a chemically defined media

was used.

To identify spectra, we searched the consensus spectra gener-

ated for the recurrent spectral libraries against the NIST17 MS/MS

library (Yang et al., 2014; Yang et al., 2017). To compare our results

with those previously published in the literature, the CHO cell me-

tabolite identifications were summarized and compared to a litera-

ture review of CHO cell metabolite identifications. To summarize the

identifications, we sorted the library match identifications by name

and library match score. We kept only the top‐scoring hit of each

identification and then manually validated the library match result.

Any poor matches were removed. In addition, we curated the data to

remove identifications that are not previously observed as en-

dogenous metabolites by searching for the identification in the

Human Metabolome Database (HMDB) (Wishart et al., 2013, 2018),

PubChem (Kim et al., 2019), or the LIPID MAPS structure database

(Sud et al., 2007) as no comprehensive CHO cell metabolite library is

available. If there was no information on if an identification was a

metabolite, it was not removed. Spreadsheet 1 of supporting in-

formation contains all the library match identifications and can be

mined for new or unexpected metabolites by experts in CHO cell

metabolism. Our curated list resulted in 365 CHO cell metabolites
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(the majority identified by multiple ions or in multiple libraries) and

an additional 304 di‐ or tri‐peptides. We split out the peptides into a

separate list because they are likely less interesting than other me-

tabolites. Metabolites identified are reported in Table 1. A literature

search resulted in a list of 232 metabolites. Identifications made by

HPLC, GC‐MS, MALDI‐MS, and LC‐MS were included. Of these 232

reported metabolites, we identified 43% in our data. For ones that

were not identified, the majority (66%) were represented in the

NIST17 library, but not identified in our experiments, possibly be-

cause they were below the detection limit. The remaining literature

identifications not present in the NIST17 library that are compatible

with analysis by LC‐MS can be added to future versions of the NIST

MS/MS library. Lists of identified metabolites summarized from our

data as well as the literature review can be found in Spreadsheets 2

and 3 of the supporting information, respectively. These spread-

sheets also contain information demonstrating the percentages re-

ported herein.

3.2 | Improvement of accuracy of pipeline
identifications

We developed a procedure to improve the accuracy of identifications

obtained using the NIST MSQC pipeline by modifying the order of

identifications in a hit list. The NIST pipeline, by default, sorts hits

entirely by their score which reflects the quality of the spectral

match between the experimental and library spectra. We identified

four categories of errors in identification. For clarity, we labeled

these as category A–D errors. Additional information on the errors,

examples, and solutions for these errors can be found in the sup-

porting information.

3.3 | Hybrid search

To discover the identity of compounds not represented in the library,

a hybrid search was performed. The hybrid search match is a new

search strategy available in the 2017 release of NIST MS Search

software (version 2.3) (Burke et al., 2017; Cooper et al., 2019;

Moorthy et al., 2017). This search finds compounds that differ by an

inert chemical group, hence, can often match unidentified spectra

with members of the same chemical classes that are present in the

library. The term delta mass is used to represent the difference in

mass between the query spectrum and library entry. An example of a

hybrid match in the CHO cell metabolite data is for the match of a

spectrum (ion m/z = 472.0011) to a sodiated Adenosine 5'‐
diphosphate library spectrum with a delta mass of 21.9824 Da. This

delta mass corresponds to a sodium, so the correct annotation of this

ion is adenosine 5'‐diphosphate [M‐H+2Na]+. The hybrid search was

also utilized to assist in the identification of two groups of related

spectra. Information on these identifications can be found in the

supporting information.

3.4 | Utility of recurrent spectral libraries

There are multiple metabolomics analysis software tools available. A

recent review summarized those that are freely available (Spicer et al.,

2017). In addition, there are a variety of freely available packages for

processing MS/MS spectra (Kind et al., 2018). One such tool, RAM-

ClustR (Broeckling et al., 2014) can group features extracted via

XCMS (Smith et al., 2006) into spectra in an unsupervised manner and

therefore identify features that originate from the same compound in

an indiscriminant MS/MS (idMS/MS) data acquisition. Spectra can

then be searched against a reference library such as the NIST MS/MS

Library. The NIST MSQC pipeline (Rudnick et al., 2010; https://

chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:msqcpipeline), a

fully integrated software pipeline that was developed for the analysis

of a tryptic protein digest to assist in the identification of variability

caused by issues with analytical platforms, was used to process data

files in this study. We have extended the application of the pipeline to

identification of small molecule metabolites by modifying searching

and scoring. The pipeline begins by reading a data file from a com-

mercial instrument, extracting all spectral data, and searching the

spectra against the NIST library using the NIST MS Search software.

When multiple spectra are acquired for a single precursor ion, the

most intense one is selected and its maximum MS1 abundance is

recorded at its retention time. Figure 1 shows ion plots generated

from the pipeline output after searching against the NIST17 MS/MS

library or the Recurrent library and provides a visual representation

of the data. Each object represents a clustered mass spectrum. More

detailed plots of those shown in Figure 1 can be found in the sup-

porting information. For these ion plots, the pipeline has found 5335

ion clusters in this data file. When searched against the NIST17 MS/

MS library, 80% of these clusters have no identification. When sear-

ched against the positive ion HCD recurrent spectral library, the

number of clusters with no identification drops to 23%. Thirty‐eight
percent of the clusters have a recurrent label, which indicates they

have matched spectra in the recurrent spectral library by either direct

or hybrid MS/MS search. This increase in cluster identification de-

monstrates the utility of the recurrent spectral libraries. As we are

cataloguing every observed ion in the libraries instead of just pre-

viously identified metabolites, we can identify these ions in future

analyses of the same or similar materials.

3.5 | Annotation of spectra

The second goal of this study was to develop a comprehensive,

automatable approach to annotate the spectra in the libraries of

recurrent spectra for the purpose of filtering out artifacts and low‐
quality spectra from recurrent unidentified spectra of metabolites.

This type of filtering is important because unknowns can be re-

dundant signals, artifacts (man‐made signals), and contaminants (real

chemicals), instead of metabolites that are not present in the library

used for spectral matching (Sindelar & Patti, 2020). Credentialing
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TABLE 1 Compounds identified in the Recurrent Spectral Library created from CHO cell metabolite extracts

Metabolite Library PubChem ID

10Z‐Nonadecenoic acid HCD‐Pos 5312513

1‐Methylnicotinamide HCD‐Pos 457

1‐Methylxanthine HCD‐Pos 80220

2,3‐Dehydro‐2‐deoxy‐N‐acetylneuraminic acid HCD‐Pos, IT‐Pos 65309

2,3‐Diaminopropionic acid HCD‐Pos 364

2‐Arachidonyl glycerol ether HCD‐Pos 6483057

2'‐Deoxyguanosine 5'‐monophosphate HCD‐Neg, IT‐Neg 645

2‐hydroxy‐2‐(4‐hydroxy‐3‐methoxyphenyl)acetic acid HCD‐Pos 1245

2‐Hydroxyhexadecanoic acid HCD‐Neg 92836

2‐Hydroxyphenethylamine HCD‐Pos 1000

2‐Methylbutyrylcarnitine HCD‐Pos 6426901

2‐Methylhippuric acid HCD‐Pos 91637

2'‐O‐Methyladenosine HCD‐Neg, IT‐Neg 102213

2‐Phospho‐D‐glyceric acid HCD‐Neg, IT‐Neg 59

3,4‐Dihydroxymandelic acid HCD‐Pos 85782

3'‐AMP HCD‐Neg, HCD‐Pos 41211

3'‐CMP HCD‐Neg, HCD‐Pos, IT‐Pos 66535

3‐Deoxy‐D‐glycero‐D‐galacto‐2‐nonulosonic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 123691

3‐Hexenedioic acid HCD‐Pos 107550

3‐Oxoglutaric acid HCD‐Pos 68328

3‐Phosphoglycerate HCD‐Neg 724

3‐Sialyl‐N‐acetyllactosamine HCD‐Neg, HCD‐Pos, IT‐Neg 4150746

4‐Coumaryl alcohol HCD‐Pos 5280535

4‐Hydroxybutyric acid HCD‐Neg 10413

4‐Hydroxyglutamic acid HCD‐Neg 439902

5α‐cholest‐7‐en‐3β‐ol HCD‐Pos, IT‐Pos 420

5‐Aminovaleric acid HCD‐Pos 138

5‐Hydroxyindole HCD‐Pos 16054

5‐Hydroxylysine HCD‐Pos 439437

5'‐Methylthioadenosine HCD‐Pos, IT‐Pos 149

5‐Phosphonatoribosyl 1‐pyrophosphate HCD‐Neg 1041

5‐Thymidylic acid HCD‐Neg, IT‐Neg 1139

6‐Phosphogluconic acid HCD‐Pos 91493

7‐Ketocholesterol HCD‐Pos 91474

7‐Methylguanine HCD‐Pos 135398679

7‐Methylguanosine HCD‐Pos 135445750

9,10‐Epoxyoctadecenoic acid HCD‐Pos 5283018

Acetylcholine HCD‐Pos 187

Acetyl‐CoA HCD‐Neg, HCD‐Pos, IT‐Neg 6302

Adenine HCD‐Pos 190

(Continues)
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TABLE 1 (Continued)

Metabolite Library PubChem ID

Adenosine HCD‐Pos 60961

Adenosine 2',3'‐cyclic phosphate HCD‐Neg, HCD‐Pos, IT‐Pos 2024

Adenosine 2'‐phosphate HCD‐Neg, HCD‐Pos 94136

Adenosine diphosphate ribose HCD‐Neg, HCD‐Pos, IT‐Pos 30243

Adenosine monophosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6083

Adenosine phosphosulfate HCD‐Neg 10238

Adenosine triphosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 5957

Adenylsuccinic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 440122

ADP HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6022

Agmatine HCD‐Pos 199

α‐D‐Glucose 1,6‐bisphosphate HCD‐Neg 82400

α‐Ionone HCD‐Pos 24680

α‐Ketoisovaleric acid IT‐Neg 49

Aminoadipic acid HCD‐Pos 469

Arabinonic acid HCD‐Neg, IT‐Neg 122045

Aspartylglycosamine HCD‐Pos 123826

Asymmetric dimethylarginine HCD‐Pos, IT‐Pos 123831

β‐Carboline HCD‐Pos 64961

β‐Glycerophosphoric acid HCD‐Neg, IT‐Neg 2526

Betaine HCD‐Pos 247

Biopterin HCD‐Pos 135403659

But‐2‐enoic acid HCD‐Neg 637090

Carnosine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 439224

CDP HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6132

Cer(d18:1/24:1(15Z)) HCD‐Pos, IT‐Pos 5283568

Cholest‐5‐en‐3‐one HCD‐Pos 9908107

Cholesta‐4,6‐dien‐3‐one HCD‐Pos, IT‐Pos 3034666

Cholesterol HCD‐Pos 5997

Choline HCD‐Pos, IT‐Pos 305

cis‐Aconitic acid HCD‐Neg 309

cis‐Vaccenic acid HCD‐Pos 5282761

Citicoline HCD‐Neg, HCD‐Pos, IT‐Pos 13804

Citraconic acid HCD‐Neg 643798

Citric acid HCD‐Neg, IT‐Neg 311

Citrulline HCD‐Neg, HCD‐Pos 833

Coenzyme A HCD‐Neg 87642

Coenzyme Q9 HCD‐Pos, IT‐Pos 5280473

Cyclic ADP‐ribose HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 123847

Cyclic AMP HCD‐Neg 6076
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TABLE 1 (Continued)

Metabolite Library PubChem ID

Cytidine HCD‐Neg, HCD‐Pos 6175

Cytidine 5'‐diphosphate ethanolamine HCD‐Neg, HCD‐Pos, IT‐Neg 123727

Cytidine monophosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6131

Cytidine monophosphate N‐acetylneuraminic acid HCD‐Neg 448209

Cytidine triphosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6176

Cytosine HCD‐Pos 597

dCDP HCD‐Neg, IT‐Neg 150855

dCMP HCD‐Neg, HCD‐Pos, IT‐Neg 13945

Deoxyadenosine monophosphate HCD‐Neg 12599

Deoxycytidine HCD‐Pos 13711

Deoxyinosine HCD‐Pos, IT‐Pos 135398593

Dephospho‐CoA HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 444485

D‐Erythrose HCD‐Neg 94176

D‐Fructose HCD‐Neg 5984

DG(14:0/14:0/0:0) HCD‐Pos 10369168

DG(16:0/16:0/0:0) HCD‐Pos 644078

DG(16:0/18:1(9Z)/0:0) HCD‐Pos, IT‐Pos 5282283

DG(18:1(9Z)/18:1(9Z)/0:0) HCD‐Pos, IT‐Pos 9543716

D‐Galactose HCD‐Neg, IT‐Neg 6036

D‐Glucaro‐1,4‐lactone HCD‐Neg, IT‐Neg 122306

D‐Glucose HCD‐Neg 5793

D‐Glucuronic acid HCD‐Neg 94715

Diadenosine triphosphate HCD‐Neg 165381

Dihydrobiopterin HCD‐Pos 135402011

D‐Malic acid HCD‐Neg, IT‐Neg 525

D‐Maltose HCD‐Neg, IT‐Pos 294

D‐Mannose 1‐phosphate HCD‐Neg, IT‐Neg 644175

D‐Ornithine HCD‐Pos 71082

D‐Phenyllactic acid HCD‐Neg 643327

D‐Pipecolinic acid HCD‐Pos 736316

ε‐caprolactam HCD‐Pos, IT‐Pos 7768

Erucamide HCD‐Pos, IT‐Pos 5365371

Erucic acid HCD‐Pos, IT‐Pos 8216

FAPy‐adenine HCD‐Pos 114926

Flavin mononucleotide HCD‐Pos, IT‐Pos 710

Folic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 135398658

Fructose 1,6‐bisphosphate HCD‐Neg, IT‐Neg 10267

Fructose‐6‐phosphate HCD‐Neg 69507

Galactaric acid HCD‐Neg 3037582

(Continues)
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TABLE 1 (Continued)

Metabolite Library PubChem ID

Galactinol HCD‐Neg, IT‐Neg 11727586

Galactitol HCD‐Neg 11850

Galactonic acid HCD‐Neg 128869

Galactose 1‐phosphate HCD‐Neg, IT‐Neg 123912

Galactosylsphingosine HCD‐Pos 5280458

Galβ1,3GlcNAc HCD‐Pos 440994

ϒ‐Aminobutyric acid HCD‐Pos 119

ϒ‐Glutamylglutamic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 92865

GDP‐glucose HCD‐Pos 135398625

GDP‐L‐fucose HCD‐Neg 135398655

Glucaric acid HCD‐Neg, IT‐Neg 33037

Glucose 1‐phosphate HCD‐Neg 65533

Glucose 6‐phosphate HCD‐Neg, HCD‐Pos, IT‐Neg 5958

Glutathione HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 124886

Glyceraldehyde 3‐phosphate IT‐Neg 729

Glyceric acid HCD‐Neg 752

Glycerophosphocholine HCD‐Pos, IT‐Pos 71920

Glyceryl monooleate HCD‐Pos 33022

Guanidinosuccinic acid HCD‐Neg, HCD‐Pos 97856

Guanine HCD‐Neg, HCD‐Pos 135398634

Guanosine HCD‐Neg, HCD‐Pos, IT‐Neg 135398635

Guanosine diphosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 135398619

Guanosine diphosphate mannose HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 135398627

Guanosine monophosphate HCD‐Neg, HCD‐Pos, IT‐Pos 135398631

Guanosine triphosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 135398633

Helicin HCD‐Pos 101799

Hexadecanedioic acid HCD‐Pos 10459

Hydroxyphenyllactic acid HCD‐Neg, HCD‐Pos, IT‐Neg 9378

Hypoxanthine HCD‐Pos 135398638

Indole‐3‐carboxylic acid HCD‐Pos 69867

Indolelactic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 92904

Indolepyruvate HCD‐Pos 803

Inosine HCD‐Pos 135398641

Inosinic acid HCD‐Neg, HCD‐Pos, IT‐Neg 135398640

Inositol 1,3,4‐trisphosphate HCD‐Neg 123680

Inositol 1,3‐bisphosphate HCD‐Neg, IT‐Neg 128419

Inositol 1,4,5‐trisphosphate HCD‐Pos 55310

Inositol 1,4‐bisphosphate HCD‐Neg, HCD‐Pos 123903

Inositol 1‐phosphate IT‐Pos 107737
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TABLE 1 (Continued)

Metabolite Library PubChem ID

Inositol 3‐phosphate HCD‐Pos 440194

Inositol 4‐phosphate HCD‐Neg 440043

Isobutyryl‐L‐carnitine HCD‐Pos 168379

Isocitric acid HCD‐Neg 1198

Isomaltose HCD‐Neg 872

Isovaleryl coenzyme A HCD‐Neg 165435

Isovaleryl‐L‐carnitine HCD‐Pos 169235

Ketoleucine HCD‐Neg 70

L2‐Hydroxyglutaric acid HCD‐Neg 43

Lacto‐N‐triaose HCD‐Pos 53477860

Lactose HCD‐Neg 6134

L‐Arginine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6322

L‐Asparagine HCD‐Neg, HCD‐Pos 6267

L‐Aspartic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 424

L‐Carnitine HCD‐Pos, IT‐Pos 10917

L‐Cystathionine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 834

L‐Cystine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 67678

L‐Erythrulose HCD‐Neg 162406

Lewis A trisaccharide HCD‐Pos 4139998

Lewis X trisaccharide HCD‐Pos, IT‐Pos 4571095

L‐Glutamic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 33032

L‐Glutamine HCD‐Neg, HCD‐Pos 5961

L‐Gulonolactone HCD‐Neg, IT‐Neg 439373

L‐Histidine HCD‐Neg, HCD‐Pos 6274

L‐Homoserine HCD‐Pos, IT‐Pos 12647

L‐Iditol HCD‐Pos 5460044

L‐Isoleucine HCD‐Pos 6306

L‐Kynurenine HCD‐Pos 161166

L‐Leucine HCD‐Neg, HCD‐Pos, IT‐Neg 6106

L‐Lysine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 5962

L‐Methionine HCD‐Pos, IT‐Pos 6137

L‐Phenylalanine HCD‐Neg, HCD‐Pos, IT‐Pos 6140

L‐Proline HCD‐Neg, HCD‐Pos 145742

L‐Serine HCD‐Neg, HCD‐Pos, IT‐Pos 5951

L‐Threonine HCD‐Neg, HCD‐Pos, IT‐Pos 6288

L‐Tryptophan HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6305

L‐Tyrosine HCD‐Neg, HCD‐Pos, IT‐Pos 6057

L‐Valine HCD‐Pos 6287

Maltotetraose HCD‐Neg, HCD‐Pos, IT‐Pos 870

(Continues)
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TABLE 1 (Continued)

Metabolite Library PubChem ID

Maltotriose HCD‐Neg, IT‐Neg 92146

Mannose 6‐phosphate HCD‐Neg, HCD‐Pos, IT‐Neg 65127

Melibiose HCD‐Neg 219994

Methionine sulfoxide HCD‐Neg, HCD‐Pos, IT‐Pos 158980

MG(0:0/16:0/0:0) HCD‐Pos, IT‐Pos 123409

myo‐Inositol HCD‐Neg 892

N8‐Acetylspermidine HCD‐Pos, IT‐Pos 123689

N‐Acetyl‐D‐galactosamine HCD‐Pos 35717

N‐Acetyl‐D‐glucosamine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 439174

N‐Acetyl‐D‐glucosamine 6‐phosphate HCD‐Neg 439219

N‐Acetyl‐D‐lactosamine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 9800166

N‐Acetyl‐L‐aspartic acid HCD‐Pos 65065

N‐Acetyl‐L‐carnosine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 9903482

N‐Acetyl‐L‐glutamic acid HCD‐Neg 70914

N‐Acetyl‐L‐glutamine HCD‐Pos, IT‐Pos 182230

N‐Acetyl‐L‐methionine HCD‐Neg, IT‐Neg 448580

N‐Acetyl‐L‐phenylalanine HCD‐Neg, HCD‐Pos, IT‐Pos 74839

N‐Acetyl‐L‐tyrosine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 68310

N‐Acetylmannosamine HCD‐Pos, IT‐Pos 65150

N‐Acetylneuraminic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 906

NAD HCD‐Neg, HCD‐Pos, IT‐Pos 925

NADH HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 439153

NADP HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 4412

N‐alpha‐Acetyl‐L‐ornithine HCD‐Pos 907

N‐Formyl‐L‐methionine HCD‐Neg, IT‐Neg 439750

N‐Glycolylneuraminic acid HCD‐Neg, IT‐Neg 123802

Niacinamide HCD‐Pos, IT‐Pos 936

Nicotinamide riboside HCD‐Pos 439924

Nicotinamide ribotide HCD‐Pos 16219737

Nicotinic acid adenine dinucleotide HCD‐Neg 165490

Nicotinic acid mononucleotide HCD‐Neg, IT‐Neg 5288991

N‐Methyl‐L‐glutamic acid HCD‐Pos 439377

N‐Methyllysine HCD‐Pos 164795

N‐Methyltyramine HCD‐Pos 9727

N‐Palmitoyl‐D‐sphingosine HCD‐Pos, IT‐Pos 5353456

Oleamide HCD‐Pos 5283387

Oleic acid HCD‐Pos 445639

Oleoyl glycine HCD‐Pos 6436908

Oleoyl serine HCD‐Neg, HCD‐Pos, IT‐Pos 44190514
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TABLE 1 (Continued)

Metabolite Library PubChem ID

O‐Phosphotyrosine IT‐Pos 30819

Orotic acid HCD‐Neg 967

O‐Tyrosine HCD‐Pos 91482

Oxidized glutathione HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 65359

PA(16:0/16:0) HCD‐Neg 3099

PA(16:0/18:1(9Z)) HCD‐Neg 5283523

PA(18:1/0:0) HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 5311263

Palmitic amide HCD‐Pos 69421

Palmitoyl ethanolamide HCD‐Pos 4671

Palmitoyl sphingomyelin HCD‐Neg, HCD‐Pos, IT‐Pos 9939941

Pantothenic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6613

Paullinic acid HCD‐Pos 5312518

PC(14:0/0:0) HCD‐Neg, HCD‐Pos, IT‐Pos 460604

PC(14:0/14:0) HCD‐Neg, HCD‐Pos, IT‐Neg 5459377

PC(14:0/16:0) HCD‐Neg, HCD‐Pos 129657

PC(14:0/18:0) HCD‐Pos 131150

PC(15:0/15:0) HCD‐Pos, IT‐Neg 24778654

PC(16:0/0:0) HCD‐Pos, IT‐Pos 460602

PC(16:0/12:0) HCD‐Pos 10676014

PC(16:0/14:0) HCD‐Neg, HCD‐Pos, IT‐Neg 24778679

PC(16:0/16:0) HCD‐Pos 452110

PC(16:0/18:1(9Z)) HCD‐Neg, HCD‐Pos, IT‐Pos 5497103

PC(16:0/18:2(9Z,12Z)) HCD‐Pos 5287971

PC(16:1(9Z)/16:1(9Z)) HCD‐Pos 24778764

PC(18:0/0:0) HCD‐Neg, HCD‐Pos 497299

PC(18:0/14:0) HCD‐Pos 3082163

PC(18:0/18:0) HCD‐Pos 94190

PC(18:0/18:1(9Z)) HCD‐Neg 24778825

PC(18:0/18:2(9Z,12Z)) HCD‐Pos 6441487

PC(18:1(9Z)/0:0) HCD‐Neg, HCD‐Pos, IT‐Pos 16081932

PC(18:1(9Z)/14:0) HCD‐Pos, IT‐Neg 24778931

PC(18:1(9Z)/16:0) HCD‐Neg, HCD‐Pos 24778933

PC(20:1(11Z)/20:1(11Z)) HCD‐Pos 24779063

PC(22:0/0:0) HCD‐Pos 24779479

PC(22:1(13Z)/22:1(13Z)) HCD‐Pos 24779126

PC(24:0/0:0) HCD‐Pos 24779481

PC(O‐16:0/0:0) HCD‐Pos, IT‐Pos 162126

PC(O‐16:0/18:1(9Z)) HCD‐Pos 24779266

PC(O‐16:0/2:0) HCD‐Pos 108156

(Continues)
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TABLE 1 (Continued)

Metabolite Library PubChem ID

PC(O‐16:0/20:3(8Z,11Z,14Z)) HCD‐Pos 16759365

PC(O‐18:0/0:0) HCD‐Pos 2733532

PC(P‐16:0/0:0) HCD‐Pos 10917802

PC(P‐18:0/0:0) HCD‐Neg, HCD‐Pos 24779527

PC(P‐18:0/18:1(9Z)) HCD‐Pos 42607428

PE(14:0/0:0) HCD‐Neg, HCD‐Pos, IT‐Neg 9547070

PE(16:0/0:0) HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 9547069

PE(16:0/16:0) HCD‐Neg, IT‐Neg 445468

PE(16:0/18:1(9Z)) HCD‐Pos 5283496

PE(16:0/18:2(9Z,12Z)) HCD‐Pos 9546747

PE(18:0/0:0) HCD‐Neg, HCD‐Pos, IT‐Pos 9547068

PE(18:0/18:1(9Z)) HCD‐Pos 9546742

PE(18:0/18:2(9Z,12Z)) HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 9546749

PE(18:1(9Z)/0:0) HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 9547071

PE(18:1(9Z)/18:1(9Z)) HCD‐Pos 9546757

PE(O‐16:0/18:1(9Z)) HCD‐Neg, HCD‐Pos 42607455

PE(P‐18:0/18:1(9Z)) HCD‐Neg 42607457

PE(P‐18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) HCD‐Neg, IT‐Neg 42607458

PE‐NMe2(18:1(9Z)/18:1(9Z)) HCD‐Neg, IT‐Neg 9547022

PG(18:0/18:1) HCD‐Neg, IT‐Neg 24779551

Phenylacetic acid HCD‐Neg 999

Phenylacetylglutamine HCD‐Neg, HCD‐Pos, IT‐Pos 92258

Phosphoadenosine phosphosulfate HCD‐Neg, IT‐Neg 10214

Phosphorylcholine HCD‐Pos, IT‐Pos 135437

Phosphoserine HCD‐Neg 106

PI(16:0/18:1(9Z)) HCD‐Neg, IT‐Neg 5771758

Pip(18:1(9Z)/18:1(9Z)) HCD‐Neg 53480169

p‐Octopamine HCD‐Pos 4581

Proline betaine IT‐Pos 115244

PS(16:0/18:1(9Z)) HCD‐Neg, HCD‐Pos, IT‐Neg 5283499

PS(16:0/20:4) HCD‐Neg 24779544

PS(18:0/18:0) HCD‐Neg 9547096

PS(18:0/18:1(9Z)) HCD‐Neg, HCD‐Pos, IT‐Neg 9547087

PS(18:0/20:4(5Z,8Z,11Z,14Z)) HCD‐Neg 24779545

PS(18:1(9Z)/18:1(9Z)) HCD‐Neg, HCD‐Pos, IT‐Neg 6438639

Pterin HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 73000

Pyridoxal HCD‐Pos, IT‐Pos 1050

Pyridoxal 5'‐phosphate HCD‐Neg, HCD‐Pos 1051

Pyridoxamine HCD‐Pos, IT‐Pos 1052
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TABLE 1 (Continued)

Metabolite Library PubChem ID

Pyroglutamic acid HCD‐Neg, HCD‐Pos, IT‐Pos 7405

Raffinose HCD‐Neg, HCD‐Pos 10542

Ribitol HCD‐Neg 6912

Riboflavin HCD‐Neg, HCD‐Pos, IT‐Pos 493570

Ribono‐ϒ‐lactone HCD‐Neg 111064

Ribose 1‐phosphate HCD‐Neg, IT‐Neg 1074

Ribose 5‐phosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 77982

Ribulose 5‐phosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 439184

S‐Adenosylhomocysteine HCD‐Pos, IT‐Pos 13792

S‐Adenosylmethionine HCD‐Pos, IT‐Pos 34755

Sebacic acid HCD‐Neg, IT‐Neg 5192

Sedoheptulosan HCD‐Neg 5460956

Serotonin HCD‐Pos 5202

S‐Glutathionyl‐L‐cysteine HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 10455148

SM(d18:1/18:0) HCD‐Pos 6453725

SM(d18:1/18:1(9Z)) HCD‐Pos 6443882

SM(d18:1/24:1(15Z)) HCD‐Pos 53481791

Sorbitol HCD‐Neg, IT‐Neg 5780

Spermine HCD‐Pos 1103

Stachyose HCD‐Pos, IT‐Pos 439531

Stearoyl ethanolamide HCD‐Pos 27902

Succinic acid HCD‐Neg, IT‐Neg 1110

Succinic acid semialdehyde HCD‐Neg 1112

Sucrose HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 5988

Tetradecanoyl‐CoA HCD‐Neg 11966124

Thiamine HCD‐Pos, IT‐Pos 1130

Thiamine monophosphate HCD‐Pos 3382778

Thiamine pyrophosphate HCD‐Neg, HCD‐Pos, IT‐Pos 5431

Threonic acid HCD‐Neg, IT‐Neg 151152

trans‐13‐Octadecenoic acid HCD‐Pos 6161490

trans‐Vaccenic acid HCD‐Pos 5281127

Trehalose HCD‐Neg 7427

Trigonelline HCD‐Pos 5570

Triolein HCD‐Pos, IT‐Pos 5497163

Tripalmitolein HCD‐Pos 9543989

Ubiquinone‐1 HCD‐Pos 4462

Undecanedioic acid HCD‐Neg, IT‐Neg 15816

Uracil HCD‐Pos 1174

Uric acid HCD‐Neg, HCD‐Pos, IT‐Neg 1175

(Continues)
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features (Mahieu et al., 2014) and isotopic ratio outlier analysis

(IROA; de Jong & Beecher, 2012) are two isotopic‐labeling techni-

ques that have been developed to provide further confidence in

metabolite identifications. Such techniques were not used in the

creation of the mass spectral libraries. Therefore, an annotation

strategy based on the comparison of the extracted ion chromatogram

(EIC) between the sample and blank runs was developed to filter

library spectra. Once spectra are filtered, efforts can be focused on

identifying compounds that are likely to be unidentified recurrent

spectra originating from CHO cells and/or media (vs. the environ-

ment or instrument) by searching the spectra against other available

tandem mass spectral libraries and in silico prediction libraries.

MassBank of North America (MoNA) in combination with the NIST

MS/MS Library and in silico fragmentation tools CSI:FingerID and

LipidBlast has been demonstrated to be effective in assigning

structural annotation to MS/MS spectra (Blaženović et al., 2019).

To develop the annotation strategy, the search results of all the

mass spectra contained in a representative data file were manually

evaluated. Figure 2 is a graphical summary of the annotation strategy

developed for filtering. First, spectra are removed if they do not have

a sufficiently narrow chromatographic peak width (<30 s), unless they

are identified. Second, spectra without sufficiently high spectral

purity (>80%) are removed. Third, spectra without sufficient frag-

ment ion abundances (summed product ion abundance/precursor ion

TABLE 1 (Continued)

Metabolite Library PubChem ID

Uridine HCD‐Pos 6029

Uridine 5'‐diphosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6031

Uridine 5'‐monophosphate HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6030

Uridine 5'‐triphosphate HCD‐Neg, HCD‐Pos, IT‐Neg 6133

Uridine diphosphate glucose HCD‐Pos, IT‐Pos 8629

Uridine diphosphate glucuronic acid HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 17473

Uridine diphosphategalactose HCD‐Neg, HCD‐Pos, IT‐Neg, IT‐Pos 6857410

Urocanic acid HCD‐Pos 736715

Xanthine HCD‐Pos, IT‐Pos 1188

Xanthosine HCD‐Pos 64959

Xanthylic acid HCD‐Neg, HCD‐Pos, IT‐Pos 73323

Xylulose 5‐phosphate HCD‐Neg, HCD‐Pos, IT‐Pos 439190

Zymosterol HCD‐Pos 92746

F IGURE 1 Plot of a single LC‐MS/MS analysis of a 50% acetonitrile extract of CHO cell metabolites after searching against the NIST17 MS/
MS library (left) or Recurrent Library (right). LC, liquid chromatography; MS, mass spectrometry [Color figure can be viewed at

wileyonlinelibrary.com]
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abundance < 10) are removed. The data shown in Figure 1 was fil-

tered using these parameters, which eliminated two‐thirds of the

5335 spectra. The spreadsheet used for sorting and eliminating

spectra can be found in Spreadsheet 4 of the supporting information.

Of those eliminated, 9.5% of were background, 77.8% were possibly

contaminated (due to the presence of another peak close in mass to

the parent ion), and 12.8% contained insufficient fragmentation.

Figure 3 shows the distribution of abundances of the 1752 identified

(by direct and hybrid MS/MS match) and unidentified ion clusters.

This figure shows that less abundant compounds are less likely to be

identified. These unidentified ion clusters could be comprised of

spectra of previously unidentified metabolites or metabolites that are

not represented in the library as well as spectra of background and

artifacts, which is why annotation is crucial.

In the next step in spectral annotation after filtering, the EIC of

the ion of the corresponding spectrum is compared to the EIC of the

same ion in a blank run via visual inspection. If the peak is not present

in the blank with intensity within 100x that of the sample, then this

spectrum is labeled as either a known (if it is identified by MS/MS

match) and annotated with the identification or as an unknown

(metabolite not identified by library searching). If the peak is in the

blank, then the spectrum can either be due to an artifact/carryover

or background. During manual evaluation of EICs, we found that for

the purposes of spectral classification, artifact/carryover ions can be

F IGURE 2 Workflow for annotation of spectra [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Distribution of identified and unidentified ion clusters after filtering.
*0.2% of hybrid identified and 2.9% of unidentified spectra that were assigned abundance in this bin because the abundance could not be

calculated were removed [Color figure can be viewed at wileyonlinelibrary.com]
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separated from background ions by examining the peak width. The

background has a broad peak width (in regions where both hydro-

philic and hydrophobic compounds elute) while an artifact/carryover

has a narrow peak width. For most of the cases, differentiating be-

tween background and artifact/carryover was straightforward,

however, for cases that were difficult to differentiate, we labeled ions

as background if there was a substantial signal in both halves of the

chromatogram (0–15 and 15–30min). Separation using peak width is

a quick method to classify spectra, but more accurate methods could

be applied in an automated pipeline. Multiple algorithms (Cleary

et al., 2019; Ho, Kuo, Wang, Chen, & Tseng, 2013; Zhang & Yang,

2008; Zhu et al., 2009) have been developed for the purpose of

subtracting the background from LC‐MS data. In addition, a hier-

archical cluster analysis technique was developed to identify che-

mical interferants that are not removable by background subtraction

(Caesar, Kvalheim, & Cech, 2018). Figure 4 shows examples of each

of the above‐mentioned classifications. For the unidentified re-

current spectra, these classifications are an effective way (that can be

automated) to annotate the spectra for the library. These labels allow

us to prioritize spectra needing identification first through library

and literature searching. Unknowns represent compounds that ori-

ginate from the CHO cells or cell culture media and are the highest

priority to attempt to identify. Artifacts/carryover are the next

priority because these may still be compounds that originate from

the CHO cells or cell culture media. Background spectra are likely

not worth an analyst's time to try to identify as the background will

be different in analyses from different labs. Table S4 shows the re-

sultant annotation of the 20 most abundant unidentified ion clusters.

Fifteen percent of the clusters are unknowns and would be the most

useful to search the literature and online databases for the identities.

Fifty percent of the clusters are artifacts/carryover and the re-

maining 35% are background.

3.6 | Confidence in library match identifications

A framework for reporting confidence in metabolomics identifica-

tions was proposed in 2007 by the Chemical Analysis Working Group

of the Metabolomics Standards Initiative (MSI) and is composed of

four levels of metabolite confidence. These are identified compounds

(Level 1), putatively annotated compounds (Level 2), putatively

characterized compound classes (Level 3), and unknown compounds

(Level 4) (Sumner et al., 2007). There has been discussion in the

metabolomics community about providing more information about

confidence by modifying/expanding the level system, introducing a

quantitative system, or providing alphanumeric identification me-

trics, but no consensus has been reached (Creek et al., 2014;

Schrimpe‐Rutledge et al., 2016; Schymanski et al., 2014; Sumner

et al., 2014; Viant et al., 2017). Schymanski et. al. (2014) proposed a

framework for reporting confidence that was based on the MSI levels

F IGURE 4 Examples of each type of annotated ion [Color figure can be viewed at wileyonlinelibrary.com]
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and adapted for high‐resolution mass spectrometry (HR‐MS). These

HR‐MS specific confidence levels are most appropriate for our data

and consist of five confidence levels. These are confirmed structure

(Level 1), probable structure (Level 2), tentative candidate(s) (Level

3), unequivocal molecular formula (Level 4), and exact mass (Level 5).

In this study, we have Level 2, 3, and 5 confidences. Level 1 is con-

firmed using two or more properties of reference standards using the

same experimental conditions. Although the NIST17 MS/MS library is

acquired using reference standards, the experimental data in this

paper was not acquired on the same platform, so it is not a Level 1

confidence. This type of confirmation is unrealistic for our work

where we are trying to catalogue all metabolites and identify as many

as possible. The direct identifications reported in this study represent

Level 2 confidence structure identifications as they are obtained with

library matching. Hybrid match identifications are Level 3 because

they are chemical class identifications made with library searching.

To assign a Level 4 confidence, we would need to attempt to assign a

chemical structure to the spectra in the libraries, which we have not

done to date. All the spectra in the libraries are associated with

accurate mass data, and spectra annotated as unknowns would have

a Level 5 confidence. Some of the spectra annotated as artifact/

carryover could be originating from the sample and have a Level 5

confidence but finding these could be challenging and a method for

doing this would require further development.

To provide additional detail about the confidence of both our

direct and hybrid library MS/MS matches, we developed a workflow

to assign a qualitative confidence level to each metabolite identifi-

cation. The workflow starts with the match score and incorporates

prior probability information about whether the identified compound

has been previously observed as a metabolite. The workflow also

incorporates the annotation as described above to ensure the iden-

tified spectrum originates from the sample. Match scoring performed

by the pipeline is well documented in the literature for the NIST

Tandem MS library and for the NIST MS Search program and is based

upon the dot product of the spectra being compared (S. E. Stein,

1999). The match score has been validated by manual inspection of

matches and correlates very well with the match quality as de-

termined by visual inspection. A score cut‐off of 400 removes es-

sentially all poor matches and has been chosen as the default cutoff

for metabolites. To assign confidence, an identification can initially be

classified as high, medium, or low confidence, depending on the

match score. Scores of 400–599, 600–799, and 800–999 correspond

to low, medium, and high confidence, respectively. Of course, in cases

of isomers with similar spectra, distinguishing them may not be

possible without the use of reference standards. Prior probability as

well the spectrum annotation can be used to raise or lower the

qualitative level of confidence and can, to some degree, assist in

isomer identification. Figure 5 depicts the workflow that was devel-

oped for assigning confidence. The workflow starting with a medium

confidence is depicted at the top of the figure and is described below.

The workflow starting with a low or high confidence is depicted at

the bottom of the figure with the differences from the medium

highlighted in green. The first step in the workflow is to determine if

the identified compound is a known metabolite. For this study,

we performed a literature search for reported CHO cell

metabolites and searched the Human Metabolome Database

F IGURE 5 Workflow for assigning confidence in MS/MS identifications. Initial confidence level is determined by the match score and initial

medium confidence is shown at the top. MS, mass spectrometry [Color figure can be viewed at wileyonlinelibrary.com]
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(HMDB; Wishart et al., 2013, 2018) and/or PubChem (Kim et al.,

2019) to see if the compound was a reported human metabolite

(it was not considered a metabolite if it was on HMDB, but not en-

dogenous). In addition, we searched for lipids using the LIPID MAPS

structure database (Sud et al., 2007). If it was found in any of these

places, the qualitative confidence level was increased and if not, it was

decreased. For the initial confidence of medium, an identification was

elevated to high confidence if it was a known metabolite and lowered

to low confidence if it was not. The next step is determining if the

spectrum is annotated as a known/unknown. For the right side of the

workflow, if the spectrum is not a known/unknown, confidence

remains low and if it is, confidence is elevated to medium. On the left

side of the workflow, if the spectrum is a known/unknown, confidence

remains high and if it is not, it is determined if the spectrum is

annotated as an artifact/carryover. If the spectrum is an artifact/

carryover, then confidence remains high, and if it is not, confidence is

lowered to medium. Confidence is only elevated once in the workflow

to prevent a match with a low score from being elevated to high

confidence. Table S5 shows the 20 most abundant identified ions from

the data in Figure 1 and their associated confidence.

3.7 | Automation

One of the goals of this study was to develop tools that could be

automated after initial development. The two workflows for anno-

tation of spectra in the library and assignment of a qualitative con-

fidence level for library identifications are amenable to automation

via development of software tools. This will drastically increase the

speed at which annotation and confidence assignment can occur. In

addition, development of software tools for assessing prior prob-

ability and tools for automatic detection of spectra that are likely to

be originating from the Pluronic F‐68 in the cell culture media will be

beneficial. However, expert evaluation of the output of any devel-

oped software tools will be required until the methods become

routine.

4 | CONCLUSIONS

We have created the first recurrent spectral library for use in identi-

fying CHO cell metabolites and outlined a procedure for future ex-

tensions. The library contains metabolites originating from a single

CHO cell variety in a single cell culture media and represents the

spectra of all compounds repeatedly observed in these samples and

can be used as a tool by others in the field to quickly identify com-

pounds in a CHO cell metabolite sample. During this analysis, we have

developed a method capable of identifying all components commonly

found in the LC‐MS analysis of CHO cell metabolite extracts and

media. An extension of this approach is expected to lead to both an

automated way to extend this library and to develop similar libraries

for other metabolite materials. Finally, we developed a strategy to

assign qualitative confidence to NIST MS/MS library identifications.

Although methods of representing the confidence of measurement

have been developed for reporting individual metabolite identifica-

tions, this scheme could not adequately represent the confidence

needed to properly annotate the identification made here—many of

which cannot be regarded as definitive. The next step for this project

will be automation of the workflows and release of the recurrent

spectral libraries. The libraries can then be used in metabolomics

studies of CHO cell metabolites using LC‐MS/MS analyses.
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