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Recent advances in understanding CD4+ T-cell differentiation suggest that previous mod-
els of a few distinct, stable effector phenotypes were too simplistic. Although several
well-characterized phenotypes are still recognized, some states display plasticity, and
intermediate phenotypes exist. As a framework for reexamining these concepts, we use
Waddington’s landscape paradigm, augmented with explicit consideration of stochastic
variations. Our animation program “LAVA” visualizes T-cell differentiation as cells mov-
ing across a landscape of hills and valleys, leading to attractor basins representing stable
or semistable differentiation states. The model illustrates several principles, including:
(i) cell populations may behave more predictably than individual cells; (ii) analogous to
reticulate evolution, differentiation may proceed through a network of interconnected
states, rather than a single well-defined pathway; (iii) relatively minor changes in the
barriers between attractor basins can change the stability or plasticity of a population;
(iv) intrapopulation variability of gene expression may be an important regulator of differ-
entiation, rather than inconsequential noise; (v) the behavior of some populations may be
defined mainly by the behavior of outlier cells. While not a quantitative representation of
actual differentiation, our model is intended to provoke discussion of T-cell differentiation
pathways, particularly highlighting a probabilistic view of transitions between states.
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Introduction

Purpose of review

CD4+ T-cell differentiation into effector subtypes has been exten-
sively studied, and much is known about the molecular pathways
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influencing differentiation into subsets, such as Th1, Th2, Th17,
and others. However, there has always been a slight uneasiness
about the heterogeneity of the cell populations at different stages
of this process—differentiation is often a trend rather than a
uniform alteration of all cells in the population. We will briefly
discuss CD4+ T-cell differentiation from näıve into effector cells,
with reference to many excellent recent reviews in this area,
then suggest the use of Waddington’s “epigenetic landscape” as a
metaphor for visualizing and better comprehending the behavior
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of individual cells and how these contribute to the behavior of
populations.

Landscape models

In order to integrate the stochastic and regulated patterns of gene
expression within the same conceptual framework, and explain
their respective manifestation in flow cytometry as either broad
continuous distributions or discrete clusters, it is useful to think
of cell state changes as a process on a landscape. Waddington
(1957) introduced the idea that the differentiation of cells could
be represented as the movement of cells across a landscape, rep-
resenting a continuum of states [1] in which the cell states change
according to the shape of the terrain and the force of gravity:
rolling down valleys and accumulating at the lowest points
accessible from a given position. While originally introduced as
an intuitive metaphor, Waddington’s landscape is more than just
a useful visualization: it provides access to abstract mathemati-
cal principles that describe how gene regulatory networks (GRNs)
govern the changes of gene expression patterns of each cell as
they differentiate [2]. As long as one obeys common principles
shared with the elementary properties of landscape topographies,
the properties of this visualization are readily adapted to known
qualitative properties of biological systems even without detailed
knowledge of the regulatory pathways that produce the landscape.

Although quantitative, accurate landscape models can in prin-
ciple be constructed if one knows the structure of the relevant GRN
and the numerical parameters that specify the interactions in the
GRN [3], these would be very high-dimensional because of the
large number of interacting genes (and their products) that influ-
ence T-cell differentiation. We will not attempt to describe such a
quantitative landscape model in this review—rather, to maintain
the simplicity of the landscape visualization, we use a 3D land-
scape metaphor to bring forward conceptual issues for discussion
[4]. Our goal is to provoke discussion regarding the behavior of
populations versus cells, and stimulate experimentation to more
conclusively resolve these issues.

Types of effector T-cell diversity, and
regulatory mechanisms controlling subtype
differentiation

Before introducing our landscape model, we briefly summarize
current knowledge of T-cell differentiation states and pathways.
This area has been covered by many excellent recent reviews
[5–10], therefore we summarize the information necessary to
frame the questions that we address in the landscape model.

The main themes — recognized “stable” phenotypes

How many discrete subsets of effector CD4+ T cells exist? Since
the initial recognition of the Th1/Th2 dichotomy [11–13], sev-
eral other T-cell subtypes have been identified based on cytokine

secretion and effector functions, including regulatory T (Treg)
cells [14–16], Th17 cells [17, 18], primed precursor T (Thpp)
cells [19–21], Th9 cells [22, 23], Th22 cells [24, 25], and also
follicular helper T (Tfh) cells [26–28], although it is not yet clear
whether Tfh cells are truly a distinct lineage or derive from cells
already committed to Th1, Th2, or Th17 lineages [6, 29–31].

Differentiated CD4+ T cells can also be classified, based on acti-
vation markers, tissue-homing specificity, and proliferative poten-
tial into short-lived effector cells and memory precursor effector
cells, the latter further differentiating into central memory (Tcm),
effector memory (Tem), and tissue-resident memory (Trm) cells
[10, 32–38]. While these memory/effector categories may not be
appropriate for classifying Treg, Tfh, and memory stem cells [39],
the effector and memory subsets may all include committed Th1,
Th2, and Th17 cells, as well as Thpp, Th9, and Th22 cells.

Regulation of differentiation of major subsets

Cytokines from dendritic cells, other innate immune cells, and
CD4+ T cells themselves are the dominant regulators of the dif-
ferentiation of näıve CD4+ T cells into Th1, Th2, Th17, and other
subsets [40, 41]. IFN-γ, IFN-α, and IL-12 induce Th1 differen-
tiation, IL-4 is the primary inducer of differentiation into Th2
cells, and combinations of IL-1, TGF-β, and IL-6 induce Th17
differentiation. Overlaid on these cytokine effects, strength of
TCR signaling, and possibly the kinetics of antigen exposure,
can also influence polarization, with strong signals generating
Th1, Th17, and Tfh responses, and weaker stimulation generating
Th2 responses [42–47]. Other soluble factors, including hormones
(progesterone, estradiol), eicosanoids, retinoids, and nucleosides,
also play a role. The major differentiation signals are described in
Fig. 1 of [7].

Differentiation into effector T cells is a complex process that
takes a few days for complete commitment, and may pass through
several intermediate stages [6]. The committed phenotypes are
stabilized by a network of mutually inhibitory transcription fac-
tors, and epigenetic modifications of the relevant cytokine genes,
as well as the transcription factors that dominate the regulation
of each T-cell type [5, 48, 49]. In addition to the regulation of
the differentiation pathway, it is important to consider the regu-
lation of the stability of the resulting phenotype. This may be a
complex network of positive and negative regulatory loops, oper-
ating through transcription factor networks, epigenetic (DNA and
chromatin) modifications, and miRNA regulatory networks. The
net result is the existence of several moderately stable states.

Variations on the basic themes

More recently, evidence has accumulated that there is more
flexibility/plasticity of the main effector phenotypes than previ-
ously surmised, particularly in vivo, and particularly in humans
(reviewed in [50–53]). Treg and Th17 cells in particular show
considerable potential for further differentiation, for example,
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Figure 1. Static images from LAVA animations. These images are taken from Supporting Information Animations 1–9. (A) A frame from the
middle of Animation 1 shows differentiation of naı̈ve CD4+ T cells into two well-defined phenotypes, Th1 and Th2 (left). Seven individual tracks
illustrating the variable paths taken by different cells are shown (right). (B) Animation 2 suggests that reticulate differentiation can occur, with
both Th1 and Th2 basins acquiring cells that have taken different paths, indicated by different colors, through several intermediate metastable
states. C) Animation 3 shows two cycles of activation of Th1 cells to secrete cytokines. The images show the cytokine pattern histories of cells
with a brief (left pair) or extended (right pair) period of equilibration between stimulations. (D) Animation 4 shows the equilibration of two starting
populations within two overlapping basins. The histograms show the two initial populations (green and yellow) and the total population (black)
after 0, 300, 600, and 1000 cycles of the simulation. (E) Animation 5 shows the plasticity of two overlapping attractors (Th17 and Treg) when a
differentiation-inducing “wind” is applied. (F) Animation 6 illustrates parallel versus convergent differentiation of Th17 and Th1 phenotypes. The
images show the final cell positions for the convergent (left) and parallel (right) cases. (G) Animation 7 shows the effect of positive feedback on
Th2 differentiation. The images show early Th1-biased (left) and late Th2-biased (right) stages, as driven by the changing “wind.” (H) Animation
8 shows that a low level of stochastic variability retains all cells in the initial naı̈ve state (left), whereas higher variability alone can induce cells
to escape down the differentiation path (right). (I) Animation 9 illustrates very slow leakage of naı̈ve T cells toward an inflammation-induced
phenotype (“aged naı̈ve” T cells, left), and the subsequent stimulation of the two populations into separate activation states by an exogenous
“wind” (right).
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Treg → Th17 and Th17 → Th1-like transitions [54–61]. Th1
and Th2 cells are also more flexible than originally thought. Th1
cells can convert to IL-4-producing cells during a strongly Th2-
polarizing helminth infection [62], Th2 cells can secrete IL-17 in
asthma models [63], lymphocytic choriomeningitis virus (LCMV)
infection reprograms Th2 cells to GATA3+Tbet+ “Th2+1” long-
lived cells that secrete IFN-γ and IL-4 [64], and parasite infection
can prime stable GATA3+Tbet+ Th1/Th2 hybrid cells [65].

In these transitions, do the cells convert fully to a different
state, for example, Th1 → Th2, or do the cells acquire some charac-
teristics of the other state, but retain part of their original identity?
Th17 cells that convert to IFN-γ-producing cells [66] nevertheless
retain chromosomal marks and cytokines characteristic of the orig-
inal Th17 cells. This separate identity of “Th1-like Th17 cells” is
consistent with the possibility that Th17 effectors may be derived
from a distinct lineage of näıve cells expressing CD161 [67, 68]. In
some cases, it remains to be determined whether full conversion
is achieved, for example, in the Th1 conversion to IL-4-producing
cells in helminth infection [62].

In addition to the familiar linear branched differentiation dia-
grams, it may also be useful to describe four major subsets of CD4+

T cells—Th1, Th2, Th17, and Treg cells—each of which can take
on characteristics of the other subsets, or further characteristics.
Cells expressing the Th1, Th2, or Th17 cytokines and transcription
factors can all acquire characteristics of Tfh (follicular homing,
bcl6 expression, B-cell help), as illustrated, for example, in figure
3 of [29]. Associated with the modified phenotypes, epigenetic
marks on cytokine genes can be altered. This may be facilitated
by the ambivalent status of epigenetic regulation of the charac-
teristic transcription factors—Tbx21, Gata3, Bcl6 can have both
permissive and nonpermissive marks even in differentiated cells
[5, 69].

Short-term environmentally induced changes

In general, the processes described above represent nonreversible
differentiation. T effector cells can also undergo short-term,
reversible changes in their expression patterns of cytokines and
other effector molecules. Although in some cases it is not yet
known whether some changes are reversible, for this review we
distinguish between stable differentiation versus reversible mod-
ulation to a state that reverts to the original state after with-
drawal of the inducing agent. Environmental factors present dur-
ing activation can alter cytokine patterns, for example, cAMP-
elevating agonists, such as prostaglandin E2 and adenosine, can
reduce the expression of most cytokines, but enhance the synthe-
sis of amphiregulin [70]. IL-12 enhances cytokine synthesis by
Th1 cells, and IL-12 and IL-18 induce IFN-γ production even in
the absence of TCR signals [71, 72]. Location-specific alterations
in T-cell function occur in CD4+ effector cells during localized
infection [73], although it is not yet clear whether these represent
reversible modulation, selective recruitment, or further differenti-
ation. CD8+ resident memory (Trm) cells probably develop locally
from circulating precursors [74].

Variation within a recognized phenotype

Single-cell data from flow cytometry and PCR analysis suggest con-
siderable heterogeneity of gene expression, or at least gene prod-
uct levels. Even when apparently homogeneous populations are
isolated by high-resolution automated clustering algorithms [75],
measured markers for most populations spread across one or more
decades of expression in a distribution that appears approximately
symmetrical and Gaussian on a log scale. Importantly, most mark-
ers vary independently within a population, unless these markers
are part of the same multicomponent complex, for example, CD8α

and CD8β, or share a regulatory pathway. To put this level of
variation into perspective, for some genes there is a recognizable
haploinsufficiency phenotype in +/− mice compared to +/+ mice.
If twofold changes in expression levels at the population level can
have consequences, what is the significance of the normal ten-
fold range among individual cells? Does this variation just repre-
sent noisy fluctuations? As suggested by Hodgkin and colleagues,
variation within a population may contribute to cell behavior by
providing a more graded, regulatable response [76].

A more dichotomous example of this type of diversity is the
well-known variable expression of several cytokine genes, both
at the level of on/off expression, for example, Th1 cells may be
IL-2+ IFN-γ+, IL-2+ IFN-γ−, IL-2− IFN-γ+, or IL-2− IFN-γ− during
any single stimulation cycle [77], and also in mono- and dial-
lelic expression patterns [78–82]. These two phenomena may be
linked, as stochastic expression of individual alleles would predict
a mixture of positive and negative cells. Mechanisms underlying
stochastic expression are currently unknown, but could involve
threshold effects [83], competitive binding of positive and neg-
ative transcription factors, or stochastic epigenetic modifications
[84, 85].

Summary of T-cell diversity

The current picture of CD4+ T-cell differentiation retains the idea
of specialized effector phenotypes with different functions, but
also incorporates a high level of diversity of cell populations and
transitions. We believe that this diversity may be best understood
at the level of populations, rather than individual cells, and that a
more probabilistic approach may help to make sense of the rapidly
expanding set of phenotypes and transitions. We will explore this
using an animated landscape visualization, which may be an ideal
metaphor for this discussion.

Our landscape model for T-cell
differentiation

The basic idea of the landscape model [2] is that it captures the
constraints imposed by the regulatory network in the cell, which
dictates how cells can change their properties. The regulatory net-
work can include interactions in transcription, protein phospho-
rylation, miRNA, epigenetic modifications, glycosylation, protein
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and mRNA degradation, and potentially other cell processes. Every
position on the landscape represents a potential cell state (or phe-
notype) as defined by the cell’s full regulatory network, aptly pic-
tured by Waddington [1] as a ball poised to roll down the terrain.
The animation uses balls to represent cell positions (states) upon
the landscape. Thus, any change in cell phenotype, that is, in reg-
ulatory state, is embodied by movement of the ball (cell).

Through the implied gravity, the landscape picture captures
the intrinsic driving forces for phenotypic change emanating from
the regulatory pathways. A ball at each point rolls down the slopes,
tending toward a “lower energy” state until it comes (nearly) to
rest at the bottom of a basin, where all local deviations are directed
uphill against the gravitational potential and therefore disfavored.
The basins represent stable “attractor” states that impose no driv-
ing force to change the cell phenotype. The region in the land-
scape that “drains” into a given attractor state constitutes its
“basin of attraction” [4, 86]. A central historical thesis in the land-
scape formalism is that attractor states represent (quasi) discrete,
semistable, or stable cell phenotypes. This idea was first proposed
by Delbruck [87] and later by Monod and Jacob [88] independent
of Waddington’s landscape [2]. In the simplest landscape model,
the ball rolling down to the attractor states is guided by the topo-
graphy of the landscape. This trajectory is the developmental path
for an individual cell. The landscape, predestined by the regu-
latory network, constrains how regulatory network profiles can
change.

The landscape can also be used to visualize switching between
attractors, that is, between distinct phenotypes. In one type of
transition, alteration in the parameters that characterize the reg-
ulatory network interactions (e.g., by mutation) can change the
landscape topography: flattening a hill here, deepening a valley
there, etc., thereby influencing the course of the gravity-defined
trajectories of the ball/cells.

In this review, we focus on another type of change, triggered
by external perturbations, which can be represented by forces that
push a cell against the dictate of “gravity” represented by slopes
of the landscape. Perturbations can influence the choice of valleys
for individual cells traversing the landscape, or even kick cells
“uphill,” away from the lowest points in attractors, potentially
driving them across hills to other attractor states.

The LAVA program for animation of landscape models

To represent the behavior of cells over time as different molecular
parameters are varied or as perturbations are imposed, we have
developed the MATLAB program LAVA (landscape animation for
visualizing attractors) to animate the progression of cells’ states
across a landscape with time. LAVA uses a set of reasonably simple
rules, yet can produce effects that are consistent with biological
intuition. The concrete assumptions that underlie our model for
T-cell differentiation in principle comply with the fundamental
properties of the landscape model, but the specific details are
arbitrary. LAVA operates under the following assumptions.

The landscape

In our model parameterization, the landscape represents the char-
acteristics of the interactions of all regulatory networks in the cell,
including transcriptional, protein degradation, signaling (phos-
phorylation, other modifications), DNA modification, miRNA net-
works, etc. In contrast, external signals (see below) do not affect
the shape of the landscape. Every position on the landscape thus
represents a unique regulatory network state, and hence a cell phe-
notypic state. Barring external influences and stochastic variations
described below, cells starting in a given state would experience
identical gravitational forces and follow the same trajectory. The
semistable cell differentiation states within the T-cell lineage, for
example, Th1, Th2, are represented by attractor basins. The full
landscape of T-cell differentiation that incorporates all regulatory
interactions that drive T-cell differentiation into all T-cell subtypes
is extremely large, multidimensional, and not fully known, so we
show only simplified small components to illustrate our points.

External influences—winds

In addition to the shape of the landscape, movement on the land-
scape can also be driven by temporary external factors. As the
landscape topography remains unchanged, these influences can
be represented as “winds” that exert forces on the cells. Winds
change the position, that is, state of the cells, hence correspond
to the alteration of one or more components of the regulatory
networks. Due to their extrinsic origin, winds can defy the slopes
of the landscape that reflect internal driving forces. Thus, the net
“movement” of cells is due to the integrated effect of the winds and
slopes in the landscape. Examples of “winds” could include exter-
nally applied cytokines or drugs that transiently alter network
components and thereby influence the trajectory of cell pheno-
type changes, for example, differentiation. Pathogens would also
be represented as “winds.” Susceptibility to wind can vary with
location on the landscape, for example, a cytokine receptor may
be expressed only in certain regions of the landscape.

Probabilistic variation

A very important component of our model is the introduction of
stochastic fluctuations in gene expression [89]. This is biologically
warranted because gene expression is subject to random fluctu-
ations due to the stochastic nature of biochemical reactions in
the cell. This produces the variability in gene expression within a
population of cells of identical type, as described above. On the
landscape such gene expression noise is manifest as small-scale
“wiggling” movements of individual cells that are independent of
the pull of gravity. However, attractors limit this stochastic vari-
ability and cells tend toward the center of the attractor [4, 90].
Collectively, for a cell population the balance between stochastic
variability and movement toward an attractor results in a dis-
tribution similar to the familiar clusters in flow cytometry. Such
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variability has important consequences for the behavior of cell
populations. The magnitude of the probabilistic variation can vary
in different regions of the landscape and will interact with the
“depth” of attractor basins: diffuse populations will result from
flatter attractor basins and/or higher stochastic variability in reg-
ulatory network components.

Cell state changes

The landscape is initially seeded with a predetermined number
of cells at a defined location (with some stochastic variation).
The cells then “move” stepwise across the landscape. At each
time step, the cell’s new position is determined by the local slope
of the landscape, the local wind, and a probabilistic component
(with random direction, but specified magnitude). These three
sources of cell movement on the landscape represent internal reg-
ulation, external signals, and regulatory network noise, respec-
tively. The simulation is then run to allow cells to reach new
states, resulting in an animation representing the temporal evo-
lution of the cells’ states. In some cases, the magnitudes of either
the “winds” or the stochastic variation are changed during the
animation.

General principles and biological equivalents

A deep attractor basin represents a stable state in the regulatory
network, typically mapping into a well-recognized cell (sub)type
that would require a strong stimulus (wind) for that cell to escape
and reach another state. Winds could represent, for example, anti-
gen stimulation or the addition of cytokines in vitro, or an infection
or other environmental change in vivo. The rate at which a cell
can sample new states around its current state on the landscape is
related to the stochastic variation and the winds and is inversely
related to the height of the barriers between states. The portion of
the landscape represented in each animation is typically inclined,
so that many of the transitions are irreversible unless a strong
wind is applied. This mimics the general trend for unidirectional
differentiation.

The animations

Each animation is intended to stimulate discussion of a differ-
ent concept. For each, we describe the concept being explored,
the biological examples in which this concept might operate, the
implementation of this concept in an animation, and the conclu-
sions and potential questions that might be addressed by biologi-
cal experimentation. Animations are provided in the Supporting
Information, and frame captures from each movie are shown in
Fig. 1.

Animation 1: Populations versus single cells

Concept

The differentiation of cell populations may be more predictable
than the differentiation of individual cells. Due to the large degree
of variability of expression of many cell products within a single
population, different cells will not behave identically during dif-
ferentiation, but the behavior of the cell population as a whole
will be well-regulated if homeostasis—as represented by the size
and depth of an attractor basin—is sufficiently strong.

Biological examples

This animation conceptually mimics the differentiation of näıve
T cells into the moderately robust effector phenotypes, Th1 and
Th2. Differentiation is assumed to proceed under the influence of
weak Th1 and Th2 driving influences, which can result in a mixed
Th1/Th2 population (J. Kobie and T. R. Mosmann, unpublished)
and mixed, less dichotomous populations [91]. This example rep-
resents the elementary scenario in which a multipotent cell faces
a fate decision, that is, it can differentiate into two alternative cell
types.

Implementation

The landscape in Supporting Information Animation 1 and Fig. 1A
has three attractor basins, an uphill näıve T-cell basin and two
downhill effector (Th1 and Th2) basins. After a brief period
demonstrating stability of the näıve state, a wind pushes cells
out of the näıve basin, and the cells accumulate in the two effector
states in equal proportions. The simulation is seeded with 500 cells
that all have the same properties (except for stochastic variation).
Two cells have been colored to allow them to be tracked in the
animation.

Conclusions and potential questions

The animation results in the reproducible “differentiation” of the
population of näıve T cells into the Th1 and Th2 phenotypes, in
approximately equal proportions. Although the population results
are consistent on repeated runs of the animation, the tracks of
individual cells are highly variable, and the final destination of
an individual cell cannot be predicted until late in the process.
Thus, the behavior of cell populations is more predictable than
the behavior of individual cells. This is consistent with our high-
resolution analysis of flow cytometry data [75, 92], in which we
can define populations with more precision than we can designate
each individual cell.
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Animation 2: Reticulate T-cell differentiation

Concept

As an extension of Supporting Information Animation 1, we pro-
pose that there are multiple semistable states (shallow basins)
during the differentiation of T cells to a dichotomous outcome.
Cells can take different paths through the intermediate states to
reach the same final state. This process of reticulate differentiation
may be conceptually analogous to reticulate evolution [93, 94]
proposed, for example, for corals in response to shifting ocean
currents [95].

Biological examples

This animation mimics näıve T cells differentiating to Th1 or
Th2 effector states, but includes several semistable intermediate
states. These could include the uncommitted Thpp [21, 77] and
Tbet+GATA3+ [96] differentiation states that can both be inter-
mediates on the Th1 and Th2 differentiation pathways.

Implementation

Supporting Information Animation 2 (Fig. 1B) shows the addition
of shallow attractor basins and peaks within the broad valley,
leading to the Th1 and Th2 effector states. Three of the basins
were given the property of changing the color of any cell entering
the basin (adding red, green, or blue to the existing cell color),
thus indicating the partial history of each cell reaching the Th1
or Th2 states, for example, a yellow cell had passed through the
green and red basins.

Conclusions and potential questions

Our speculative model suggests that cell differentiation may take
alternative paths through quasi-discrete, metastable intermedi-
ate states, not necessarily passing through the same sequence of
states. Can these states be identified? Longitudinal measurement
of gene expression in single, living cells is required, which lim-
its the approaches available for detecting intracellular molecules.
Lineage tracing using bar coding [97], or fluorescent reporter
constructs [98, 99], may provide insight into these possibilities
[100]. Similar approaches have revealed intermediate states dur-
ing induced stem cell reprogramming, including first and second
waves driven by c-Myc/Klf4 and Oct4/Sox2/Klf4 transcription fac-
tors, respectively [101].

Animation 3: T-cell activation and re-randomization

Concept

Apparently stochastic initiation of cytokine expression by activated
T cells is stable during a single stimulation cycle, but may be
rerandomized within the population after return to the resting

state [79]. The degree of rerandomization may vary depending
on the time chosen for restimulation.

Biological examples

Th1 cells may express IL-2 in an apparently random pattern,
whereas IFN-γ expression shows more continuity (“memory” for
the previous state) [77]. This may be due to different kinetics of
randomization.

Implementation

In Supporting Information Animation 3 (Fig. 1C), the resting state
of a differentiated Th1 cell is depicted as a low basin on a land-
scape, with two uphill states representing IL-2+ and IL-2− pheno-
types. A strong wind (activation by antigen) pushes cells uphill
toward the two states. Cells reaching each state are assigned a
different color, then the stimulation “wind” is turned off, and cells
fall back to the resting state. Cells are then reactivated without
any further change in color.

Conclusions and potential questions

If restimulation is applied before the cells have returned fully to
the resting phenotype basin, then some memory of the phenotype
generated by the initial stimulation will be carried through to the
second stimulation phenotypes (Supporting Information Anima-
tion 3A). If more time is allowed, the stochastic variability in the
resting basin causes the second stimulation to produce cell pop-
ulations with mixed histories (Supporting Information Animation
3B). Thus, the (re-)randomization of cytokine synthesis patterns
may depend on elapsed time since the previous stimulation. This
could be tested by mapping the extent of phenotypic conversion
as a function of time, by sorting cytokine-positive and cytokine-
negative cells and culturing for different times before restimulat-
ing and testing cytokine expression [79].

Animation 4: Single populations may have
multi-modal distributions

Concept

If barriers between two states are low, that is, the stochastic vari-
ability readily causes intermixing of cells between the states, then
the two states may normally exist as a single but multimodal pop-
ulation (overlapping “peaks”) in which all cells are in short-term
equilibrium with both substates.

Biological examples

Supporting Information Animation 4 mimics the variable expres-
sion of cytokines in an otherwise uniform population [78, 82, 102].
Cytokine + and − states may be due to the “capture” of two
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preexisting states, that is, the starting population may exist in a
bimodal state, and activation freezes the cells in these two half
states. In principle, if a process can be regulated by a single mRNA
molecule (e.g., for a transcription factor regulating several down-
stream genes), if the rates of synthesis and degradation of that
mRNA result in approximately 50% probability of a cell express-
ing that mRNA at any one time, and the rate of +/− conversion
is significantly longer than rates of protein synthesis and degrada-
tion, then the population can be bimodal.

Implementation

Two overlapping basins are shown, with two starting cell popula-
tions in different colors in each basin. The simulation is allowed
to run with no external wind, that is, cells move only accord-
ing to the landscape and stochastic variability. Figure 1D shows
that the total population always remains bimodal, while the two
starting populations approach equilibrium after 1000 cycles of the
simulation.

Conclusions and potential questions

Although the cells are concentrated mainly in the two basins, these
are in equilibrium. If a population is defined as a group of cells
with freely interchangeable properties in the absence of external
influences, then even a single population may display a multi-
modal distribution if there are distinct sets of possible properties
(i.e., partially separated attractors). As in Supporting Information
Animation 2, fate mapping by bar coding or fluorescent reporter
constructs may help to identify such populations.

Animation 5: Robustness and plasticity of T-cell
effector phenotypes

Concept

The landscape model suggests that both robust, difficult-to-alter
T-cell phenotypes and flexible T cells with further differentiation
potential may be represented just by quantitative changes in the
shape and relative depth of the attractor basins.

Biological examples

Th1 and Th2 are robust phenotypes that are stable under many
(but not all) circumstances. In contrast, Thpp cells can easily be
induced to differentiate into either Th1 or Th2 phenotypes, Treg
cells can differentiate into Th17-like cells, and Th17 cells can
differentiate into Th1-like cells [54, 59, 60].

Implementation

The landscape comprises an initial uphill basin representing näıve
cells, and four downhill attractors representing Th1, Th2, Treg,
and Th17. The Treg and Th17 basins are at an intermediate level,
and have a low barrier between these two states, whereas the Th1
and Th2 basins are deep, further downhill, and well-separated
from the other basins. Cells start in the näıve basin (Support-
ing Information Animation 5A, to populate all four differentiation
states) or in the Th1 or Treg basins (Supporting Information Ani-
mation 5B and Fig. 1E).

Conclusions and potential questions

Although naive cells can become any one of the four effector phe-
notypes, once a cell has differentiated into a Th1 or Th2 cell, it
is difficult to induce further differentiation because of the deep
Th1 and Th2 attractor basins. Th17 and Treg attractors are not as
strongly separated, so further differentiation is possible with mod-
erate external stimuli. Thus, the difference between stable and
plastic cell phenotypes may be a matter of degree, that is, more
stable phenotypes may simply be cells that need a stronger push,
such as may occur in vivo during strong responses to infection
[62, 64]. Such redifferentiation may occur directly (transdifferen-
tiation), or by partial dedifferentiation followed by redifferentia-
tion [103]. The landscape in Supporting Information Animation
5 also suggests that Th17 or Treg cells, under the right condi-
tions, could be pushed into the downhill Th1 or Th2 basins. This
is explored in more detail in the next animation.

Animation 6: Parallel or convergent differentiation
of T cells

Concept

Cells that acquire similar properties may represent convergence
to the same state, or may be cells that share some properties but
are distinct in others (which may not be measured). Therefore,
if the model includes information on all variables, similar but
nonidentical states will occupy different attractor basins, but if
one or more distinctive (stratifying) variables are not measured,
this may result in “hidden” dissimilarity.

Biological examples

This animation mimics the induction of IFN-γ production by
human Th17 cells—these “Th1-like” cells still maintain differences
from normal Th1 cells [104]. Similarly, Th1 cells can be induced to
produce IL-4 during a parasite response in vivo [62]—these may
be true Th2 cells, or the Th1-derived cells may maintain some of
the initial Th1 regulatory pathways.

C© 2014 The Authors. European Journal of Immunology published by
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Implementation

Convergent differentiation is illustrated using two landscapes in
which there is an initial separation into two valleys leading to
Th1 and Th17 states. In the first landscape, a wind then pushes
the Th17 cells further down the valley to fully converge with Th1
cells (Supporting Information Animation 6A and Fig. 1F left). The
second landscape illustrates parallel differentiation without true
convergence, as Th17 cells are pushed to an attractor basin close
to the Th1 state by the same wind, but never reach the actual Th1
state (Supporting Information Animation 6B and Fig. 1F right)
because of an intervening ridge.

Conclusions and potential questions

This model illustrates the principle that the sharing of some key
(monitored) characteristics does not mean that two cell states are
identical. Therefore, it is important to check as many markers as
possible to capture the discriminatory variables, and particularly
to test cell behavior experimentally, before concluding that cells
have truly converged on an identical state. Th1-like cells may be
derived from Th17 cells by parallel differentiation [104], whereas
conversions from Th1-like to Th2-like cells, or from Treg cells to
Th17-like cells may need further examination [62, 105].

Animation 7: Cell interaction – positive feedback

Concept

Supporting Information Animations 1–6 assumed that cells differ-
entiate as independent units only under the influence of landscape,
winds, and stochastic fluctuations. However, cell–cell interactions
can influence differentiation rate and direction in both positive
and negative regulatory loops. A more realistic model therefore
needs to incorporate this principle.

Biological examples

This example mimics the differentiation of Th2 cells, which pro-
duce IL-4, which strongly enhances differentiation of näıve cells
into more Th2 cells. Similarly, IFN-γ and IL-17 participate in pos-
itive feedback loops for Th1 and Th17 cells, respectively.

Implementation

Supporting Information Animation 7A is set up as in Support-
ing Information Animation 1, with the addition of a small “wind”
pushing cells toward the Th1 state (cells turn green on arrival).
However, cells arriving in the Th2 attractor basin (red in the ani-
mation) acquire the property of contributing to a “wind”’ pushing

cells in the Th2 direction (Fig. 1G). Note that this is a slightly dif-
ferent use of the “wind,” which in all other animations represents
only exogenously applied signals. The endogenous and exogenous
“winds” are depicted by colored arrows in Supporting Information
Animation 7B. (In an alternative model, feedback could be cap-
tured by deforming the landscape: for example, cells that arrive in
the Th2 attractor will deepen and enlarge its basin of attraction.)

Conclusions and potential questions

Näıve cells differentiate predominantly into Th1 cells at first, but
as mature Th2 cells accumulate, further differentiation becomes
more biased toward the Th2 pathway. The model also suggests
that positive feedback influences not only the overall outcome,
but may also alter the proportion of cells in intermediate states.

Animation 8: Variability increased by external forces

Concept

Instead of a wind, differentiation may also be initiated by increas-
ing stochastic variation in a population, overcoming the barriers
around a relatively stable state. This could be represented as “heat”
that increases the stochastic fluctuations of cell states within a
basin. For a given attractor basin, there will be a level of stochas-
tic variation below which all the cells will remain in that attractor
state, and above which cells occasionally “spill over” out of the
basin, that is, there is a minimum “escape velocity” required for
leaving an attractor.

Biological examples

The apparently stochastic variability of gene expression within
a population can be regulated [106], with positive and nega-
tive feedback generally increasing or reducing the noisy fluctua-
tions, respectively. Probabilistic gene expression is well-described
in the immune system [107], but we are not aware of regula-
tion of this variability in immune cells. However, an example in
another cell type is that Wnt signaling may regulate the variability
of gene expression of key regulators in neuroblast development,
thereby controlling the probability that a cell exits the multipotent
state and enters an adjacent attractor—representing differentia-
tion [106, 108].

Implementation

In Supporting Information Animation 8, differentiation is initiated
not by a “wind” but rather by increasing stochastic variation, or
“heat,” so that cells occasionally acquire enough energy to escape

C© 2014 The Authors. European Journal of Immunology published by
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the näıve cell basin (Fig. 1H). The shape of the landscape dictates
that escaping cells mainly flow toward the effector attractors.

Conclusions and potential questions

Variability of expression and modification of gene products within
an otherwise uniform population may thus be an important regu-
latory mechanism for cell differentiation, instead of representing
inconsequential noise. This would provide an alternative mecha-
nism for initiating differentiation by expanding the range of states
that could be sampled by näıve cells. Once initiated, the over-
all landscape dominantly directs further differentiation. Are there
examples of external regulation of gene product expression fluc-
tuations in T cells?

Animation 9: Chronic, weak influences may induce
long-term effects

Concept

If stochastic variation barely reaches an escape threshold, a very
weak “wind” may slowly transfer cells to a “downhill” state that
will react differently when stimulated.

Biological examples

Supporting Information Animation 9 (Fig. 1I) mimics chronic
inflammation in aging (inflammaging) [109], which may alter
the long-term responsiveness of T-cell populations. Other chronic
inflammatory states include chronic infections and autoimmunity.

Implementation

A weak “wind” (chronic inflammation) slowly pushes näıve cells
from one low-lying attractor basin to another even lower basin,
with the rate being controlled by the joint effect of the “wind” and
the stochastic variation that provides rare outlier cells that escape
the initial attractor. If antigen stimulation (an exogenous “wind”
that blows the cells uphill) occurs early, most cells are activated
from the normal population, whereas later stimulation will act
also on cells that have accumulated in the “inflammaged naive”
attractor basin (orange cells in the animation).

Conclusions and potential questions

In chronic inflammatory conditions, very slight effects may slowly
alter populations if cells reach a transfer threshold at a very
low rate. However, once the cells have transitioned to the
inflammation-induced state, “uphill” reversion to normal may be

more difficult. This simulation also emphasizes the importance of
the interplay between the magnitudes of four parameters: wind
(representing external stimuli), depth of attractor basin (repre-
senting the stability or robustness of the regulatory network of a
particular state), stochastic variability of protein expression and
modification, and time (age). Note that the effect of aging could be
either to provide a small wind (Supporting Information Animation
9) or to increase variability, as in Supporting Information Anima-
tion 8. While Supporting Information Animation 9 is intended to
depict the alteration of näıve cells due to chronic inflammation,
similar animations could be designed to illustrate slow conversion
of memory cells to an “inflammaged” phenotype.

Further animation possibilities

Proliferation and death

Differentiation of CD4+ T cells is normally accompanied by exten-
sive proliferation. This could be modeled in the LAVA animations
by assigning a probability of division to individual cells in cer-
tain states, with some interesting consequences. Daughter cells
could stochastically end up in different attractors. The outcome
may also be affected by the phenomenon of asymmetric divi-
sion, in which T cells can become polarized by interaction with
an antigen-presenting cell, leading to different properties of the
two daughter cells [110–112]. Undirected, random asymmetric
division adds stochasticity, whereas directed asymmetric division
could be modeled in LAVA as reciprocal “jumps” of the two daugh-
ter cells into two distinct (polarized) states. A third point of inter-
est is that selectively increased proliferation of cells in a partic-
ular state may appear as increased differentiation toward that
state. Although proliferation could be represented in an additional
dimension (axis) of the state space, this is difficult because the ani-
mations become crowded in higher dimensional spaces, given that
the landscape intuition exists only in the 3D animation. Analogous
to the effect of selective proliferation, selective death in certain
states could also influence the proportion of cells in the final effec-
tor basins and thus also contribute to selective differentiation. This
could also be modeled in LAVA.

Closing comments

In developing these animations, we were struck by the importance
of stochastic variation for obtaining a satisfactorily plausible out-
come. It has been proposed that variation within cell populations
is not just an irrelevant property of the system, but has real value
in smoothing dose–response curves, providing more graded, reg-
ulatable responses [76, 113], and controlling access to further
differentiation states [90]. The example of regulated variability in
stem cells versus more differentiated cells [106] opens up the pos-
sibility that this is a more general mechanism, and that regulation
of variability, along with the constraints of the landscape topo-
graphy, could fine-tune stability and flexibility of defined T-cell
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types. Mechanisms that generate variability within a single state
(i.e., in one basin) are likely to cause variability in phenotypic
behavior. Interestingly, flow cytometry shows us that many pro-
teins are expressed over a substantial range (more than tenfold),
far exceeding technical noise (approximately two- to threefold
[90]) and that for each protein, this variation is apparently ran-
dom relative to most other proteins. Is the consistency of this range
a consequence of regulated variability? What types of mechanism
regulate variability in lymphocytes?

In flow cytometry data, cell populations appear as diffuse
clouds that often overlap with other populations even in high
dimensions [75, 92]. This single-cell resolution information offers
a more accurate picture of the differences between the states than
bulk biochemical measurements on populations because the diver-
sity of the cells within a recognized phenotype is an important
property of the population [90, 114, 115]. It is tempting to draw
parallels between the “clouds” in flow cytometry and the attractor
basins populated by heterogeneous cells in the landscape model.
Although attractive, this has to be interpreted cautiously. While
the landscape and attractor basins are more than just a metaphor,
and can be reduced to first principles of the dynamics of regulatory
networks that dictate the stability of cell states [3], specific quan-
titative details of all regulatory pathways, necessary for quantita-
tively accurate landscape models, are still lacking. Notwithstand-
ing, the landscape visualizations, informed by general principles
of how molecular networks dictate cell phenotypic states, suggest
that a probabilistic approach to T-cell differentiation and state sta-
bility may capture essential biological properties, and may make
us more comfortable with heterogeneous cell populations in which
only a proportion of the cells show a particular behavior. The prob-
abilistic description may not be as intuitive, but may be a more
accurate description of cellular behavior.

In closing, we would like to emphasize that the visualizations
we present are intended to serve as a conceptual framework to
help thinking about a complex high-dimensional and probabilis-
tic T-cell differentiation process, and to provoke discussions that
are not easily conducted by talking in the abstract. The LAVA ani-
mations capture the generic features of regulatory systems: prob-
abilistic processes constrained by deterministic regulatory inter-
actions. We hope that these animations will bring several
concepts into the 3D realm with which we are most comfortable,
thus facilitating discussion.

LAVA availability

The LAVA program (MATLAB) is available on request at http://
www.ece.rochester.edu/projects/siplab/Software/LAVA.html
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