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Structural changes in the brain due to Alzheimer’s disease dementia (ADD)

can be observed through brain T1-weighted magnetic resonance imaging

(MRI) images. Many ADD diagnostic studies using brain MRI images have

been conducted with machine-learning and deep-learning models. Although

reliability is a key in clinical application and applicability of low-resolution

MRI (LRMRI) is a key to broad clinical application, both are not sufficiently

studied in the deep-learning area. In this study, we developed a 2-dimensional

convolutional neural network-based classification model by adopting several

methods, such as using instance normalization layer, Mixup, and sharpness

aware minimization. To train the model, MRI images from 2,765 cognitively

normal individuals and 1,192 patients with ADD from the Samsung medical

center cohort were exploited. To assess the reliability of our classification

model, we designed external validation in multiple scenarios: (1) multi-cohort

validation using four additional cohort datasets including more than 30

different centers in multiple countries, (2) multi-vendor validation using three

different MRI vendor subgroups, (3) LRMRI image validation, and finally, (4)

head-to-head validation using ten pairs of MRI images from ten individual

subjects scanned in two different centers. For multi-cohort validation, we

used the MRI images from 739 subjects from the Alzheimer’s Disease

Neuroimaging Initiative cohort, 125 subjects from the Dementia Platform of

Korea cohort, 234 subjects from the Premier cohort, and 139 subjects from

the Gachon University Gil Medical Center. We further assessed classification

performance across different vendors and protocols for each dataset. We

achieved a mean AUC and classification accuracy of 0.9868 and 0.9482
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in 5-fold cross-validation. In external validation, we obtained a comparable

AUC of 0.9396 and classification accuracy of 0.8757 to other cross-validation

studies in the ADNI cohorts. Furthermore, we observed the possibility of broad

clinical application through LRMRI image validation by achieving a mean AUC

and classification accuracy of 0.9404 and 0.8765 at cross-validation and

AUC and classification accuracy of 0.8749 and 0.8281 at the ADNI cohort

external validation.

KEYWORDS

Alzheimer’s disease, multi-cohort validation, structural magnetic resonance imaging,
deep learning, reliability, clinical application, low-resolution magnetic resonance
imaging

Introduction

Alzheimer’s disease dementia (ADD) is a degenerative
neurological disease that causes disability in the overall
performance of daily life due to the gradual decline of
neurological function. Since neurodegeneration occurs before
the decline of neurological function, brain T1-weighted
magnetic resonance imaging (MRI) was used for diagnosing
ADD. In this context, many researchers studied MRI-
based computer-aided ADD diagnostic with machine learning
(Magnin et al., 2009; Cho et al., 2012; Gray et al., 2013). Within
the success of convolutional neural networks (CNNs), several
ADD diagnostic studies have been conducted (Aderghal et al.,
2017; Liu et al., 2018; Bae et al., 2020; Yee et al., 2021; Zhang
et al., 2021) with CNN in recent years due to several advantages:
CNN can learn meaningful features from data without a feature
extraction preprocessing process. In addition, transfer learning
can be employed to develop a model with high performance
when the amount of data used for training is limited.

Reliability is essential when transferring technology to
clinical applications. However, the heterogeneity of MRI scan
parameter settings (e.g., repeat time, echo time, and slice
thickness), MRI scanner vendors, and several factors cause the
diverse-protocol problem. This problem causes bias in the MRI-
derived features and the prediction of CNN models (Han et al.,
2006; Schnack et al., 2010; Mårtensson et al., 2020). Several
methods have been suggested for the MRI-derived features to
solve the issue by harmonizing features (Chung et al., 2017;
Fortin et al., 2018; Ma et al., 2019). However, the diverse-
protocol problem has not yet been studied sufficiently in the
deep learning-based classification of brain disease.

Moreover, the type of clinically applicable MRI protocols
is also important. Most deep learning studies focus on 3-
dimensional (3D) T1-weighted MRI, which we referred to as
high-resolution MRI (HRMRI). HRMRI takes more time and
costs than 2-dimensional (2D) T1-weighted MRI, which we
referred to as low-resolution MRI (LRMRI). LRMRI images

are scanned more frequently in the clinic than HRMRI images
due to these advantages. Thus, the reliability of LRMRI image-
based prediction should be considered from a broad clinical
application perspective.

In this study, we sought to find surrogate solutions for
the reliability problem by developing robust deep learning
methods with comprehensive validation using multiple possible
scenarios. A new 2D CNN-based deep learning model
was developed based on the pretrained ImageNet weights
(Deng et al., 2009) with label smoothing (Müller et al.,
2019). Our model further adopted several methods for
reliability across heterogeneous MRI scan types. Candidate
methods are as follows: individual slice encoding to extract
sufficient information from each slice and to lessen the
effect of slice thickness, which is noticeable in a three-
dimensional setting. On the assumption that providing multiple
slices at once lets CNN models learn the relationship
between the slices and causes degradation of robustness
in various slice thickness settings, we encoded each slice
individually and concatenated feature vectors before the fully
connected layer, rather than concatenating several slices in
the channel axis. Instance normalization performs contrast
normalization on its input (Ulyanov et al., 2016). It has
been known that instance normalization performs style
normalization (Huang and Belongie, 2017), which helps
learn features invariant to the style (Pan et al., 2018).
Mixup augments data by convex combination of samples
and their labels, which improves model performance and
helps train a model with data that have noise on its
label (Zhang et al., 2017). Sharpness-aware minimization
(SAM) finds flat minima by adding regularization terms
related to sharpness (Foret et al., 2020). By searching flat
minima, SAM can find weights that generalize well than
the usual approach.

To validate the efficacy of the proposed methods,
multiple scenarios were designed, including multi-cohort
validation, multi-vendor validation, and head-to-head
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validation. Furthermore, for broad clinical application, we
generated LRMRI images from HRMRI images in each cohort
and further performed LRMRI image validation for every
validation scenario.

Materials and methods

Participants and magnetic resonance
imaging acquisitions

We used the MRI images from 5,204 subjects from six
different cohorts in this study to train and extensively validate
and evaluate model development.

Participants
The Samsung medical center (SMC) cohort consisted

of 2,765 cognitive normal (CN) subjects and 1,192 ADD
subjects who have undergone the 3D T1-weighted turbo field
echo MRI scans using the Philips 3T MRI scanner. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort
consisted of 453 CN subjects and 286 ADD subjects. Each
subject in the ADNI cohort had undergone 3D T1-weighted
MRI scans using one of the six protocols. The Dementia
Platform Korea project (DPKR) cohort consisted of 67 CN
subjects and 58 ADD subjects. Each subject in the DPKR
cohort had undergone 3D MRI scans using one of the
four protocols. The Premier (PRM) cohort consisted of 69
CN subjects and 165 ADD subjects who have undergone

TABLE 1 The number of subjects used in this study.

Cohort Vendor Tesla Imaging
technique

Slice
thickness
(mm)

Repeat time
(ms)

Echo time
(ms)

Flip angle
(◦)

NCN NADD Ntotal

SMC Philips 3.0 TFE 0.5 9.9 4.6 8 2765 1192 3957

Alzheimer’s
disease
neuroimaging
initiative
(ADNI)

GE 1.5 MPRAGE 1.2 8.6–10.4 3.8–4.1 8 105 88 193

3.0 IR-FSPGR 1.2 7–7.68 2.8–3.2 11 91 47 138

Philips 1.5 MPRAGE 1.2 8.6 4 8 8 8 16

3.0 MPRAGE 1.2 6.7 3.1 9 13 5 18

Siemens 1.5 MPRAGE 1.2 2400–3000 3.5–3.9 8 91 68 159

3.0 MRPAGE 1.2 2300 3.0 9 145 70 215

Total 453 286 739

Dementia
platform Korea
project (DPKR)

GE 3.0 IR-FSPGR 1.0–1.3 7.4–8.2 2.7–3.2 11–12 13 8 21

Philips 3.0 TFE 0.5–1.2 6.7–9.4 3.1–4.6 8–9 40 40 80

3.0 MPRAGE 1.0 8.3 3.8 8 4 1 5

Siemens 3.0 MPRAGE 1.0–1.26 1470–2300 2.3–3.9 9–15 10 9 19

Total 67 58 125

Premier (PRM) Philips 3.0 TFE 0.5 9.9 4.6 8 69 165 234

Gachon medical
center (GMC)

Siemens 3.0 MPRAGE 1.0 1900 2.9 8 61 78 139

SMC/Chaum SMC Philips 3.0 TFE 0.5 9.9 4.6 8 - - 10

Chaum GE 1.5 Ax BRAVO 0.5 9.1 3.6 12 - - 10

Total - - 10

Total 3415 1779 5204

It is noted that the number of subjects whose MRI image registration was failed is not included in this table. MRI images from the SMC cohorts are used for a train set and LRMRI image
validation. MRI images from the SMC/Chaum cohorts are used for head-to-head validation. MRI images from the other cohorts are used for multi-cohorts, multi-vendors, and LRMRI
image validation.
MRI, magnetic resonance imaging; SMC, Samsung medical center; LRMRI, low-resolution MRI; N, number of subjects; TFE, turbo field echo; MPRAGE, magnetization-prepared
rapid gradient-echo; IR-FSPGR, inversion recovery–prepared fast spoiled gradient-echo; Ax BRAVO, axial 3-dimensional brain volume; CN, cognitive normal; ADD, Alzheimer’s
disease dementia.
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3D T1-weighted MRI scans using the same protocol as
the SMC cohort case. The Gachon medical center (GMC)
cohort consisted of 61 CN and 78 ADD subjects who
have undergone 3D T1-weighted magnetization-prepared rapid
gradient-echo MRI scans using the Siemens 3T scanner.
The SMC/Chaum cohort consisted of 10 subjects who had
undergone two 3D T1-weighted MRI scans, one using the
same protocol in the SMC cohort case and the other
using the Chaum’s.

The MRI images belonged to one vendor subgroup: GE,
Philips, and Siemens. A total of 352, 353, and 307 MRI
images from subjects belong to the GE, Philips, and Siemens
vendor subgroups, respectively. We excluded MRI images
from subjects from the SMC and SMC/Chaum cohorts in
the vendor subgroups. Except for the SMC/Chaum cohort,
we used only one MRI image per subject. Table 1 shows the
detailed information of subjects per diagnostics group, MRI scan
protocol, and MRI scanner vendors.

The MRI images from the SMC cohort’s subjects were used
for model training. MRI images from subjects belonging to
the ADNI, DPKR, PRM, and GMC were used for external
validation. Moreover, ten pairs of MRI images from subjects in
the SMC/Chaum cohort were used for head-to-head validation.

Low-resolution magnetic resonance imaging
image generation

Since most public MRI datasets consist of HRMRI images,
we generated LRMRI images by downsampling axial slices of
non-preprocessed original HRMRI images to perform LRMRI
image validation. We sampled a maximum total of 25 slices
in an axial plane containing cerebral from original HRMRI
images with uniform intervals. Figure 1 shows the example of
the input HRMRI image and the output LRMRI image. After
downsampling, slice thickness becomes 0.5–1.25mm to 4.5–
5.5mm, and the imaging plane was converted to an axial plane
from the sagittal plane. We used the downsampled template
and skull mask to preprocess downsampled images. After
image preprocessing, we checked its quality and excluded 150
subjects due to registration failure. Table 2 shows the detailed
information of the MRI images from subjects per diagnostics
group, MRI scan protocol, and MRI scanner vendors.

Image preprocessing

As shown in Figure 2, all MRI images including both
HRMRI and LRMRI were first non-uniformly corrected
using the N4ITK algorithm (Tustison et al., 2010) and
non-linearly registered to MNI space using the Advanced
Normalization Tools (ANTs) software package (Avants et al.,
2009). After registration, all MRI images were skull stripped,
and their intensity has trimmed by the sum of the mean
intensity of the white matter (WM) mask and 2.5 times

FIGURE 1

Low-resolution magnetic resonance imaging (LRMRI) image
generation. LRMRI images were generated from high-resolution
magnetic resonance imaging (HRMRI) images in this study by
sampling a maximum total of 25 slices in an axial plane
containing cerebral in uniform intervals. After sampling, the slice
thickness becomes 0.5–1.25 mm to 4.5–5.5◦mm.

the standard deviation of the WM mask, where the WM
mask was calculated using the fuzzy C-means clustering
algorithm (Reinhold et al., 2019). Finally, MRI images were
min-max normalized, and then three axial slices, including
the hippocampus region, were extracted to use ImageNet
pretrained weights.

Model development

We used the Inception Res Net V2 (Szegedy et al., 2017)
architecture as a backbone since it is fast and lightweight and
performs well. To access the effect of model developments, we
trained five versions of the models, models A, B, C, D, and
E, in which all of their encoders have the same input size of
130× 130× 3.

Model A is a vanilla Inception Res Net V2 model without a
top. We added a dropout layer with a 0.2 dropout ratio, a fully
connected layer with one output node, and a sigmoid activation
layer at the end of model A. For model A, the three preprocessed
slices were concatenated into a channel axis, encoded into a
1,536-dimensional vector, passed three layers, and created a
scalar prediction which means the probability of ADD that
can be used in classification when the threshold is applied.
Model A structure would be a usual choice for researchers
who plan to use pretrained weights. Model B is the same as
model A except for MRI slice encoding. To encode enough
information from each slice individually and combine them at
a high level, we encoded each of the three axial slices from one
subject and concatenate them before the fully connected layer.
The three preprocessed slices were converted into a total of
three individual three-channel images by duplicating its single-
channel image three times. After converting, three images were
encoded into three 1,536-dimensional vectors, concatenated
into a 4,608-dimensional vector, and passed the three layers
mentioned above. Model C is the same as model B except for
its normalization layer. Instance normalization was used instead
of batch normalization (Ioffe and Szegedy, 2015). Model D is
the same as model C except for the training procedure. Mixup
(Zhang et al., 2017) with its hyperparameter of 10 was used
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TABLE 2 The number of subjects whose low-resolution magnetic resonance imaging image registration was succeeded.

Cohort Vendor Tesla Imaging
technique

Slice thickness
(mm)

Repeat time
(ms)

Echo time
(ms)

Flip angle
(◦)

NCN NADD Ntotal

SMC Philips 3.0 TFE 4.5 9.9 4.6 8 2765 1186 3951

Alzheimer’s
disease
neuroimaging
initiative
(ADNI)

GE 1.5 MPRAGE 4.7–5.5 8.6–10.4 3.8–4.1 8 104 88 192

3.0 IR-FSPGR 5.1 7–7.68 2.8–3.2 11 91 47 138

Philips 1.5 MPRAGE 4.7–4.9 8.6 4 8 8 8 16

3.0 MPRAGE 5.0 6.7 3.1 9 13 5 18

Siemens 1.5 MPRAGE 5.0–5.4 2400–3000 3.5–3.9 8 91 68 159

3.0 MRPAGE 4.9–5.5 2300 3.0 9 145 70 215

Total 452 286 738

Dementia
platform Korea
project (DPKR)

GE 3.0 IR-FSPGR 4.5–5.0 7.4–8.2 2.7–3.2 11–12 13 8 21

Philips 3.0 TFE 4.5–5.0 6.7–9.4 3.1–4.6 8–9 25 24 49

3.0 MPRAGE 5.0 8.3 3.8 8 1 4 5

Siemens 3.0 MPRAGE 4.5–5.0 1470–2300 2.3–3.9 9–15 10 9 19

Total 49 45 94

Premier (PRM) Philips 3.0 TFE 4.5 9.9 4.6 8 2 1x26 128

Gachon medical
center (GMC)

Siemens 3.0 MPRAGE 5.0 1900 2.9 8 61 78 139

Total 3329 1721 5050

It is noted that MRI images were generated from HRMRI images.
MRI, magnetic resonance imaging; SMC, Samsung medical center; LRMRI, low-resolution MRI; HRMRI, high-resolution MRI; N, number of subjects; TFE, turbo field echo; MPRAGE,
magnetization-prepared rapid gradient-echo; IR-FSPGR, inversion recovery–prepared fast spoiled gradient-echo.

FIGURE 2

Study overview. Magnetic resonance imaging images are preprocessed with our preprocessing pipeline, and three axial slices including the
hippocampus were extracted. The extracted slices are converted into scalar prediction by passing through the encoder, dropout, fully
connected, and sigmoid layers.
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FIGURE 3

The 5-fold cross-validation and low-resolution magnetic
resonance imaging image validation with the samsung medical
center cohort. The blue line indicates the result of the
high-resolution magnetic resonance imaging images, while the
red line indicates the result of the LRMRI images. Models:
A = vanilla inception res net V2; B = same with A except for slice
encoding. Instead of encoding three slices at once, each of the
three is encoded; C = same with B except for the normalization
layer. Instead of batch normalization, the instance normalization
layer was used; D = same with C except for the training
procedure. Mixup with its hyperparameter value of 10 was used;
E = same with D except for the optimizing process.
Sharpness-aware minimization was used. SMC, Samsung
medical center; HRMRI, high-resolution magnetic resonance
imaging; LRMRI, low-resolution magnetic resonance imaging.

in model D. Model E is the same as model D except for the
optimizing process. We used SAM when optimizing model E.
As a result, A, B, and C each have their own structure and the
same optimizing procedure, but C, D, and E all have the same
structure and different optimizing procedures.

Also, ImageNet pretrained weights except for the
normalization layers were adopted to speed up model
training. We trained all models for 100 epochs with a
batch size of 64, optimized through SGD optimizer with
the momentum of 0.9, and label smoothing (Müller et al.,
2019) with its hyperparameter of 0.1 using weighted binary
cross-entropy loss. Left and right flip was performed
for real-time data augmentation. For each of the five
models, a 5-fold cross-validation was conducted with
the SMC cohort. The SMC cohort’s MRI scans were
randomly divided into five groups, four of which were
used for training and the remaining for validation. For
the random split, the random seed 0 was used. We
saved weights with the best validation area under the
receiver operating curve (AUC) at the end of an epoch
for each fold. Then, we averaged the predictions of the
models obtained by 5-fold cross-validation, from models
A to E when evaluating the model with external cohorts.

All training was conducted using NVIDIA P100 GPUs with
16GB of memory per GPU, and all deep learning models were

implemented using Tensorflow version 2.5.0 (Abadi et al., 2016)
and Keras version 2.5.0 (Chollet, 2015).

The design of multi-scenario validation

We developed the following hypotheses concerning an ideal
trustworthy MRI-based ADD classification model: an ideal
reliable MRI-based ADD classification model would not have
poor performance when given unseen protocol MRI, would be
robust to scanner vendor differences, would be robust to LRMRI
images, and would have the same prediction values when given
MRI scans from the same subject at similar time points. We
built multi-scenario validation to analyze how our models satisfy
those hypotheses in various conditions.

Multi-cohort, multi-vendor, and low-resolution
magnetic resonance imaging image validation

We designed multi-cohort validation with the ADNI,
DPKR, PRM, and GMC cohorts. MRI images from the
PRM cohort have the same protocol as the SMC cohort,
while the other cohorts have different protocols. Thus, we
evaluated the model’s reliability by comparing the two model’s
performance in the ADNI, DPKR, and GMC cohorts. Also,
we would interpret the effect of applied methods on the
model’s classification performance by comparing the model’s
performance to the PRM cohort.

Similarly, we designed multi-vendor validation with the
GE, Philips, and Siemens vendor subgroups. For multi-vendor
validation, we would interpret the effect of applied methods
on the model’s reliability by comparing the two model’s
performance on the GE and Siemens vendor subgroups. Also,
we would interpret the effect of applied methods on the
model’s classification performance by comparing the model’s
performance on the Philips vendor subgroup.

To evaluate the model’s performance on LRMRI images, we
designed LRMRI image validation with the generated LRMRI
images. We repeated multi-cohort validation and multi-vendor
validation with LRMRI images. It is noted that the input image’s
size is not changed from 130 × 130 × 3 when evaluating the
models on LRMRI images.

Two metrics were used to assess performance: AUC
and classification accuracy. The classification accuracy was
determined using Youden’s J statistics (Youden, 1950), which
determines the cutoff point for the maximum summation value
of specificity and sensitivity.

Head-to-head validation
To explore the reproducibility of the model at the

subject level, we performed head-to-head validation with the
SMC/Chaum cohort. Subjects in the SMC/Chaum have paired
MRI images: one is from the SMC and the other one is from the
Chaum, and the mean time interval between the two scans was
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FIGURE 4

Multi-cohorts and low-resolution magnetic resonance imaging image validation. All the results are calculated by averaging the predictions of
the models obtained from 5-fold cross-validation. The blue line indicates the result of the high-resolution magnetic resonance imaging images,
while the red line indicates the result of the LRMRI images. Models: A = vanilla inception res net V2; B = same with A except for slice encoding.
Instead of encoding three slices at once, each of the three is encoded; C = same with B except for the normalization layer. Instead of batch
normalization, the instance normalization layer was used; D = same with C except for the training procedure. Mixup with its hyperparameter
value of 10 was used; E = same with D except for the optimizing process. Sharpness-aware minimization was used. ADNI, Alzheimer’s Disease
Neuroimaging Initiative; DPKR, Dementia Platform Korea project; PRM, Premier; GMC, Gachon medical center; HRMRI, high-resolution
magnetic resonance imaging; LRMRI, low-resolution magnetic resonance imaging.

300◦days. We calculated two metrics, namely, 1 prediction and
slope,

1 prediction =
1
n

n∑
i=1

∣∣∣predictionSMC
i − predictionChaum

i

∣∣∣
slope = min

(
α,

1
α

)
,

where predictionSMC = the model’s prediction of the images
scanned from the SMC; predictionChaum = the model’s
prediction of the images scanned from the Chaum; i = the index
of the subject; and α = the value obtained from the slope of the
linear regression equation of the model’s predictions. We could
interpret a model with a smaller 1 prediction value, and a bigger
slope value would be more reliable.

Results

Cross-validation

The mean AUC and the mean classification accuracy across
5-fold are plotted in Figure 3, the blue line. The performance

gap was the biggest between model A and model B, respectively,
0.0093 and 0.024 for the mean AUC and classification accuracy.
From model B to model E, the gap was relatively small.

Exploring the effect of modification on
reliability via multi-scenario validation

We assessed our five models with multi-scenario validation.
Since the models are the same as adjacent versions of the
models except for one option, we explored the effect of model
modifications on reliability by comparing two adjacent versions
of the models, e.g., model B and model C are the same but
differ in their normalization layers. By comparing two adjacent
models, for example, we can assess the effect of the instance
normalization vs. the batch normalization.

Multi-cohort, multi-vendor, and low-resolution
magnetic resonance imaging image validation

The AUC and classification accuracy for four cohorts
are plotted in Figure 4, the blue line. Moreover, the
AUC and classification accuracy for three vendor subgroups
is plotted in Figure 5, blue line. The overall AUC and
classification accuracy increases from model A to model
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FIGURE 5

Multi-vendors and low-resolution magnetic resonance imaging image validation. The values in this figure were calculated by averaging the
predictions of the models obtained from 5-fold cross-validation. The blue line indicates the result of the high-resolution magnetic resonance
imaging, while the red line indicates the result of the LRMRI. Models: A = vanilla inception res net V2; B = same with A except for slice encoding.
Instead of encoding three slices at once, each of the three is encoded; C = same with B except for the normalization layer. Instead of batch
normalization, the instance normalization layer was used; D = same with C except for the training procedure. Mixup with its hyperparameter
value of 10 was used; E = same with D except for the optimizing process. Sharpness-aware minimization was used. HRMRI, high-resolution
magnetic resonance imaging; LRMRI, low-resolution magnetic resonance imaging.

E for all cohorts and vendor subgroups, which means
that the modifications enhanced the model’s classification
performance. This implies that the modifications are not
only successful in the perspective of the model’s classification
performance but also successful in the perspective of the
model’s reliability.

For the LRMRI image validation, the mean AUC and
the mean classification accuracy across 5-fold are plotted in
Figure 3, the red line. It is noted that we trained the models with
only HRMRI images. In this study, it is hard to tell which models
C, D, or E classify LRMRI better.

For multi-cohort validation, the results are plotted in
Figure 4, the red line. In addition, for multi-vendor validation,
the results are plotted in Figure 5, the red line. In this study,
the overall tendency follows the above multi-cohort validations
without the PRM cohort since the generated LRMRI images in
the PRM cohort are poor-balanced: the PRM cohort contains

only two LRMRI images for the CN subjects. The overall
tendency in the multi-vendor validation also follows the multi-
vendor validation performed above.

Head-to-head validation
The 1 prediction, slope, and the prediction score of each

subject per model are plotted in Figure 6. The x-axis is the
model’s prediction score of the SMC scans, while the y-axis is for
the Chaum scans. From models A to E, 1 prediction decreases,
and slope increases, meaning that the modifications enhanced
the model’s reliability.

Discussion

In this study, we constructed an MRI-based ADD
classification CNN model using individual slice encoding,
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FIGURE 6

Head-to-head validation. The black dotted line indicates y = x. Subjects in the SMC/Chaum cohort have undergone two magnetic resonance
imaging scans, one at the SMC and the other at the Chaum. The x-axis represents the averaged predictions of the SMC scans from the models
obtained from 5-fold cross-validation, while the y-axis represents the averaged predictions of the Chaum scans from the models obtained from
5-fold cross-validation. 1 pred is the mean of the absolute value of the difference between the predictions for the SMC scans and the Chaum
scans. The slope is the smaller of the two values, α and α

1 , where α is the value obtained from the slope of the linear regression equation of the
predictions from the SMC scans and the Chaum scans. The blue line indicates the result of linear regression. The smaller 1 pred and the bigger
slope are better. Models: A = vanilla inception res net V2; B = same with A except for slice encoding. Instead of encoding three slices at once,
each of the three is encoded; C = same with B except for the normalization layer. Instead of batch normalization, the instance normalization
layer was used; D = same with C except for the training procedure. Mixup with its hyperparameter value of 10 was used; E = same with D except
for the optimizing process. Sharpness-aware minimization was used. SMC, Samsung medical center.

TABLE 3 Comparison of published cognitive normal vs. Alzheimer’s disease dementia classification performances in the Alzheimer’s disease
neuroimaging initiative cohort.

Study AUC Acc NCN NADD NTotal Evaluation scheme Description

Aderghal et al. (2017) - 0.9141 228 188 416 Single split 2D CNN

Liu et al. (2018) 0.9586 0.9109 200 159 359 ADNI1 train, ADNI2 test Landmark-based 3D CNN

Yee et al. (2021) 0.945 0.881 423 330 753 5-fold CV 3D CNN

Bae et al. (2020) 0.94 0.89 195 195 390 5-fold CV 2D CNN

0.88 0.83 External validation

Zhang et al. (2021) 0.984 0.913 231 200 431 5-fold CV 3D CNN

Ours, model A 0.8274 0.7716 453 286 739 External validation 2D CNN

B 0.8862 0.8324

C 0.9269 0.8608

D 0.9389 0.8770

E 0.9396 0.8757

Models: A = vanilla inception res net V2; B = same with A except for slice encoding. Instead of encoding three slices at once, each of the three is encoded; C = same with B except for the
normalization layer. Instead of batch normalization, the instance normalization layer was used; D = same with C except for the training procedure. Mixup with its hyperparameter value
of 10 was used; E = same with D except for the optimizing process. Sharpness-aware minimization was used.
CN, cognitive normal; ADD, Alzheimer’s disease dementia; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AUC, area under the receiver operating curve; Acc, accuracy; N, number
of subjects used for the test; 2D, 2-dimensional; 3D, 3-dimensional; CNN, convolutional neural networks; CV, cross-validation.

instance normalization, Mixup, and SAM and showed that
the model’s reliability could be improved by adopting those
methods. We further validated the efficacy of the proposed
model using comprehensive multi-scenarios: multi-protocols,
multi-vendors, LRMRI image, and head-to-head validation
that are critical in the usage of our tool in the real-
world clinical field.

Via multi-scenario validation, we extensively investigated
the effect of each option in terms of reliability across

heterogeneous environments: (1) the individual slice
encoding method improved the model’s performance in
various experimental settings. The individual slice encoding
method integrates information at a higher level, thereby the
model can extract more reliable information related to ADD
and avoid overfitting, and (2) the instance normalization
method increased the model’s reliability by learning invariant
features to different styles (Pan et al., 2018). In our problem
setting, the features learned by different styles could be
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related to different MRI scan protocols. Therefore, the
instance normalization technique makes our model robust
against different MRI protocols, and (3) the Mixup method
sometimes failed to improve the model’s performance on
LRMRI if augmented data are different from test data. But it
improved the model’s performance in most cases by generating
a convex combination of the input samples, which would
approximate various intermediate stages of disease progression,
and (4) the SAM technique failed to improve the model’s
performance on LRMRI when the sharp minima which skipped
to find the flat minima performed better in test data than
flat minima. However, it increased the model’s reliability
in most cases by finding weights that are more robust to
distributional shifts, which might be related to heterogeneous
MRI scan protocols.

We compared the performance of the proposed method
with other previous deep learning-based ones (Table 3). The
data used for training or validation are different from each other,
so it is not comfortable to directly compare the performance
in detail. Nevertheless, we can see that our model E achieved
comparable performance with other studies, even though our
model E had not seen protocols in the ADNI cohort during the
training process.

Our LRMRI image validation has limitations since the
generated LRMRI images were used as the surrogate of the
original LRMRI images. Nevertheless, the performance could be
meaningful because it used an image that reflects low resolution
in its axial axis of LRMRI images, a significant difference
between LRMRI image and HRMRI image.

In conclusion, we showed that we could improve a
CNN model’s reliability with a small computational cost
by adopting minor modifications to the existing deep
learning model, which was then extensively validated
through multiple scenarios. The proposed method
would be worth applying to researchers who want to
conduct CNN-based ADD diagnostic research in various
experimental settings. Our study can potentially be improved
further by designing additional real-world encounterable
validation scenarios.
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