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Abstract: Aimed at improving the navigation accuracy of the fixed-wing UAVs in GNSS-denied
environments, this paper proposes an algorithm of nongravitational acceleration estimation based
on airspeed and IMU sensors, which use a differential tracker (TD) model to further supplement
the effect of linear acceleration for UAVs under dynamic flight. We further establish the mapping
relationship between vehicle nongravitational acceleration and the vehicle attitude misalignment angle
and transform it into the attitude angle rate deviation through the nonlinear complementary filtering
model for real-time compensation. It can improve attitude estimation precision significantly for
vehicles in dynamic conditions. Furthermore, a lightweight complementary filter is used to improve
the accuracy of vehicle velocity estimation based on airspeed, and a barometer is fused on the height
channel to achieve the accurate tracking of height and the lift rate. The algorithm is actually deployed
on low-cost fixed-wing UAVs and is compared with ACF, EKF, and NCF by using real flight data. The
position error within 30 s (about 600 m flying) in the horizontal channel flight is less than 30 m, the
error within 90 s (about 1800 m flying) is less than 50 m, and the average error of the height channel is
0.5 m. The simulation and experimental tests show that this algorithm can provide UAVs with good
attitude, speed, and position calculation accuracy under UAV maneuvering environments.

Keywords: GNSS-denied navigation; nonlinear complementary filter; sensor fusion; the fix-wing
UAV; nongravitational acceleration estimation; airspeed

1. Introduction

Small fixed-wing unmanned aerial vehicles (UAVs) play an essential role in future
air battles and civilian fields due to their low cost, small size, full autonomy, and dense
formation. The normal autonomous flight of UAVs is inseparable from the accurate ground
velocity and absolute position provided by the Global Navigation Satellite System (GNSS),
and especially the real-time kinematic (RTK) measurement can provide centimeter-level
position using the technique of dispersion assignment. The traditional navigation mode
of the Inertial Navigation System (INS) assisted by GNSS is greatly challenged, since the
GNSS is easily interfered with by complex external environments or human factors [1,2].

State estimation of UAVs can be defined as the process of tracking the current attitude,
velocity, and position of the vehicle [3]. The design of the motion estimation algorithm is
necessary for flight control and is a crucial step in the development of autonomous flying
machines. The accuracy of the attitude and heading reference systems (AHRS) have a crucial
role. With the continuous improvement in the chip manufacturing process, the current low-
cost UAV airborne sensors mainly use microelectromechanical systems (MEMS), which are
limited by the performance of low-cost sensors and inevitably introduce interference noise
and random noise. The rapid development of modern wireless communication systems
provides technical support for various UAV positioning systems [4], and provides good and
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fast data communication links for various positioning methods such as the Ultra-Wide Band
(UWB) and GNSS, which rely on antenna to receive data [5]. The traditional GNSS/INS-
integrated navigation of UAVs use GNSS positioning measurement information to estimate
the bias of the gyroscope, accelerometer, and attitude error, then feedback [6]. According to
the different fusion levels of the GNSS/INS-integrated navigation system, it can be divided
into loose integration, tight integration, and deep integration [7]. This method can improve
the accuracy of attitude estimation significantly. However, in GNSS-denied environments,
the UAV cannot rely on GNSS positioning information for guidance and control, which has
a great impact on the autonomous flight of the UAV.

In recent years, many researchers have been exploring autonomous navigation tech-
niques in GNSS-denied environments to improve positioning and attitude accuracy. Visual-
based position does not depend on external equipment support and has high autonomy.
Visual and inertial navigation integration technologies have made great strides in recent
years. Mourikis et al. [8] presented an EKF-based algorithm for real-time vision-aided iner-
tial navigation. Tong Qin et al. [9] proposed a tightly coupled, nonlinear optimization-based
method used to obtain highly accurate visual–inertial odometry by fusing preintegrated
IMU measurements and feature observations, which successfully solved the navigation
problem of rotorcraft in GNSS-denied environments. At present, fixed-wing UAVs have the
following difficulties in navigating GNSS-denied environments: (1) High flying speed [10]:
Higher speeds bring higher flight dynamics and vibrations caused by airflow, which puts
higher requirements on the UAV damping design. The G-sensitivity of the gyroscope
is more difficult to process directly at the algorithm level, and direct inertial integration
will cause rapid dispersion of attitude position. (2) The high speed and high altitude of
fixed-wing UAVs results in a vast field of view for the airborne camera. Consequently,
capturing high-quality feature points becomes more complex, making it hard to apply
vision-based inertial navigation algorithms to fixed-wing UAVs directly.

Most commonly used attitude estimation algorithms can be concluded to three kinds:
the extended Kalman filter, the gradient descent algorithm, and the complementary filter
algorithms. The EKF is more precise in the process of the state error transfer and the
bias error, and the process noise of the gyroscope and accelerometer are modeled, thence
the error parameters are estimated and compensated by other sensors, but it obviously
adds computational complexity [11]. Leutenegger, S et al. [12] used an extended Kalman
filter estimation framework to replace GPS updates with airspeed measurement under
GPS-denied environments. The experiment demonstrates that the position error enlarges
linearly with time. Despite its widespread use in UAV navigation, the EKF is subject
to limitations. The local linearization of the process dynamic models and measurement
models for feature points can degrade with the increasing nonlinearity in the system dy-
namics [13]. The gradient descent algorithm uses a quaternion representation, allowing the
accelerometer and magnetometer data to be used in an analytically-derived and optimized
gradient descent algorithm to compute the direction of the gyroscope measurement error
as a quaternion derivative [14]. Based on the principle of dual vector gravity and magnetic
field fixation in the complementary filters algorithm, the accelerometer data is considered
as an approximate observation of the local gravity vector, and the accumulated error of the
heading angle is corrected by magnetic field measurements [15,16]. Mahony, R. et al. [15]
first proposed and established the complementary filter on the special orthogonal group
(SO3) and proved the Lyapunov stability to ensure the global stability of the observer error.
However, this algorithm is sensitive to nongravitational acceleration, which may lead to
the wrong attitude correction in maneuvering environments. In [17,18], the GPS velocity
measurement was used to establish the model of the nongravitational acceleration of the
vehicle, and the covariance of the measured noise was increased in the absence of the GPS
signal, which did not solve the problem of the accurate estimation of nongravitational ac-
celeration under GPS-denied conditions. Euston, M. et al. [19] used airspeed measurement
in vehicle nongravitational acceleration observation for the first time. By establishing the
centripetal force model, the result of the gravity vector observation can be ameliorated, and
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the accuracy of attitude estimation enhanced under GPS-denied conditions can be main-
tained for a short time. Unfortunately, a large attitude error will be caused in maneuvering
environments since the influence of linear acceleration was not considered in the gravi-
tational acceleration estimation. Moreover, it is only used as attitude estimation without
calculating the reliability of the velocity and position estimation. Li, X. et al. [20] proposed
a method to estimate the external acceleration with the purpose of improving navigation
performance under dynamic conditions. Marantos et al. [21] fully combined the visual
algorithm and multisensor speed/position estimation with an adaptive complementary
filter, which gave the algorithm a low computational complexity.

Compared with the convenience of rotorcraft to deploy intelligent algorithms related
to vision, and lidar for simultaneous localization and mapping (SLAM) due to its low
speed and more stable flight performance, there has been less work on the navigation
and position of low-cost fixed-wing UAVs in the GNSS-denied environments because of
the reasons mentioned above. Most of the previous works simply provide stable attitude
output for UAVs in denied environments. The main contribution of this paper is to explore
the provision of UAV stable state estimation in denied environments. The main work
and innovations are as follows: (1) Based on [19], the filtering model further improves
the accuracy of dynamic modeling, and an estimation algorithm of UAV nongravitational
acceleration using airspeed and inertial sensors is proposed. We then further establish
the mapping relationship between vehicle nongravitational acceleration and the vehicle
attitude misalignment angle by combining the magnetometer. (2) Subsequently, the data
of the barometer are fused to realize the stable tracking of the UAV in the altitude and
lifting rate channels. (3) Aiming at the defect that the horizontal velocity and position
errors of UAVs are easy to accumulate, a complementary filter for inertial navigation speed
correction using airspeed assistance is designed, which greatly elevates the accuracy of the
velocity position estimation of the vehicle.

The framework of the algorithm is shown as Figure 1. As a fully autonomous naviga-
tion solution, the algorithm proposed in this paper has been verified by real flight, which
can be used as a key switch to airspeed compensation when GNSS is denied, and thus
provides a more stable navigation result.
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Figure 1. The framework of the multisensor fusing algorithm in this paper is divided into four
parts. The green area shows the sensors we used in this study; the original sensor’s data will first be
preprocessed, including using the Butterworth low-pass filter to reduce the high-frequency noise of
the gyroscope and accelerometer, and using a differential tracker (DT) for the airspeed and barometer.
The blue part is the attitude fusion frame, mainly divided into three parts: the main filter, the
gravitational acceleration estimation described in Section 2.1, and the attitude misalignment angle
calculation and the error feedback compensation are described in Section 2.2. Meanwhile, the yellow
area presents the velocity fusion frame, and in Section 2.3, the filter which combines the barometer
and airspeed is mainly described. The gray area represents the altitude fusion frame by the Kalman
filter, which is established in Section 2.4.

2. Airspeed-Aided Navigation Filter
2.1. Estimation of Nongravitational Acceleration

Euston, M. et al. [19] proposed a model that use airspeed and gyroscope measurements
to estimate the centripetal acceleration of a vehicle, which the following equation can express.

^
an =ωb

ib ×
^
V

b

TAS, (1)

whereωb
ib is the 3-axis angular rate vector measured by the gyroscopes,

^
V

b

TAS is the projection

of the airspeed vector in the body frame, and
^
an is the vector of centripetal acceleration.
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Only considering centripetal acceleration in flight is not sufficient to describe the
maneuvering process of the vehicle accurately. When the vehicle speeds up or slows down,
the effect of linear acceleration also needs to be taken into consideration.

^
aL =

d
^
V

b

TAS
dt

, (2)

where
^
aL is the linear acceleration vector of the vehicle. The airspeed measured directly

by the pitot tube is a scalar quantity defined in the velocity coordinate frame a. The
longitudinal plane difference between frame a and the body frame b is the angle of attack α,
and the horizontal difference is the sideslip angle β.

Accurate angle-of-attack calculation requires unique sensors. The angle of attack can
be estimated by flight dynamics approximation on low-cost UAVs. We just consider the
vertical channel of the UAV, which can be described as follows:

α = ϕ− θ

θ = arcsin
( vh

v
)
,

(3)

where θ is the flight path angle, which can be calculated from the triaxial velocity, and ϕ is the
pitch Angle. The airspeed vector can be described in the airflow frame as va

air =
[

0 vair 0
]T,

the transfer to body frame as vb
air = Cb

ava
air, where Cb

a denotes the attitude rotation matrix from

the airflow frame to the body frame. Therefore, vb
air =

[
−vcosαcosβ vcosαcosβ −vsinα

]T

Cb
a =

 cosβ −cosαcosβ −sinαsinβ
sinβ cosαcosβ sinαcosβ

0 −sinα cosα


For small fixed-wing UAVs, the angle of attack and the sideslip angle are difficult to

measure directly by sensors because accurate measurements require atmospheric parameter
sensors, but they are not suitable for small vehicles. We notice that if the sideslip angle β in
flight is approximately no more than 10 degrees (in reference [22], as for small fixed-wing
UAVs, the sideslip angle estimation is no more than 5 degrees), and the cosine of 10 degrees
is equal to 0.9848, it makes only 1.52% velocity errors if we assume the effect of the sideslip
angle is ignored. In contrast, the angle of attack α is the angle between the incoming
direction of the flow vector and chord line of an airfoil. As the angle of attack increases,
the relative lift of the airfoil increases. When the UAV makes a turn, additional centripetal
acceleration is provided by increasing the angle of attack. To ensure centripetal acceleration
at the turn, the vehicle enters a Bank-to-Turn (BTT) inclined turn mode where the increased
lift from the wing is decomposes into a vertical component and a horizontal component. In
order for the vehicle to maintain altitude, the vertical component of lift must counteract
gravity, which requires increasing α to gain additional lift. So, the angle of attack α cannot
be ignored, especially when the vehicle in turning.

Obviously, the field winds are dynamic and inevitable. Due to the fact that small
fixed-wing UAVs are lightweight, they are not suitable to fly in high field wind. Moreover,
the wind speed is as hard to estimate as the angle of attack or sideslip, so we try to ignore
the effect of the wind. Figure 2 shows the comparison between the true airspeed and the
ground velocity measured by RTK in real flight.

The linear acceleration of the vehicle can be calculated from the differentiation of the
linear velocity. Random noise inevitably exists in the pitot airspeed measurement, which
leads to an additional error in acceleration estimation. The function of the differential
tracker (TD) of the Active Disturbance Rejection Control (ADRC) is to extract differential
signals properly from those polluted by noise, so the second-order differential tracker [23]
in the ADRC is used to achieve data filtering and differential signal extraction.

The second-order differential tracker is described as follows:{
x1(k + 1) = x1(k) + Tx2(k)
x2(k + 1) = x2(k) + T · f st

, (4)
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where x1(k) tracks the original signal, x2(k) calculates the differential value of the original
signal, and the f st is calculated as follows:

δ = rh
δ0 = δh
y = x0 − u + hx2

a0 =
√

δ2 + 8r|y|

a =

{
x2 +

y
h , |y| ≤ δ0

x2 + 0.5(a0 − δ)sgn(y), |y| > δ0

f st =

{
−r a

δ , |a| ≤ δ

−rsgn(a), |a| > δ

, (5)

here, T is the period of the input signal and h is the filter factor; when h = T, the algorithm
is close to the first-order difference. The higher the value of h, the better the filter effect will
be. Still, it will bring the corresponding time delay. Factor r is the rate factor, which can
be used to adjust the tracking speed. The speed will raise as the factor r increases, but the
signal noise will be amplified.
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Based on the above equation, the vehicle acceleration model is:

^
a =ωb

ib ×
^
V

b

TAS +
dva

TAS
dt

(6)

2.2. Attitude Calculation Model Based on External Acceleration Correction

The inertial navigation-specific force equation under local horizontal frame is written as:
.
vn

= Cn
b fb + gn − (2Ωn

ie + Ωn
en)v

n, (7)

here, the corner marks b and n, respectively, denote the East-North-Up (ENU) and the
body frame. Vn represents the speed of the vehicle, fb represents the specific force vector
under the body frame, gn denotes the gravity field vector in the ENU frame, and Cn

b is the
coordinate transformation matrix from the body frame to the ENU frame. Moreover, Ωn

ie
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denotes the Earth-rotation skew-symmetric matrix in the local navigation frame, and Ωn
en

denotes the transport rate skew-symmetric matrix from the rotation of the local-frame to
the center frame, which can be neglected due to the short flight span.

an = Cn
b fb + gn, (8)

here, an is the nongravitational acceleration of the vehicle in the local horizontal frame. The
Cn

b is the theoretical value of the attitude rotation matrix. Due to the measurement error of

the gyroscope, the relationship between Cn
b and the real calculated value

~
C

n

b is shown as
follows [24]:

an = (I +φn×)
~
C

n

b fb + gn, (9)

here,φn is the projection of the attitude misalignment angle vector in the ENU frame.
Because the gyroscope bias accumulates large attitude errors over time, it is necessary

to estimate and compensate the gyroscope bias in real-time. The bias of the accelerometer
is usually small, and we only want to calculate the nongravitational acceleration of the
vehicle, which is not cumulative, so we assume that the accelerometer measurement error

is negligible as fb ≈
~
f

b
. Then, the equation written as:

~
f

n
×φn = gn +

~
f

n
− an (10)

The left
~
f

n
can be approximated as

~
f

n
≈ an − gn, where gn =

[
0 0 −g

]T .
Construct the above equation in component form as: aE

aN
aU − g

×
 φE

φN
φU

 =

 fE − aE
fN − aN

fU − g− aU

 (11)

Due to rank((a− g)×) = 2 < 3, Equation (11) can only solve two attitude misalign-
ment angles. Because horizontal acceleration only provides information about horizontal
misalignment angle, the heading misalignment angle cannot be observed. Accordingly,
make φU = 0.

Then, the misalignment angle under the navigation system can be described as Equation (12).
The e3 =

[
0 0 1

]T presents the z-axis unit vector. Convert to the body frame:

φb = fb−ab

aU−g × (Cb
ne3)

= fb−ab

aU−g ×CT
3 ,

(12)

where C3 is the third-row vector of the Cn
b . The specific force fb, the acceleration of air

velocity measurement ab, and the acceleration of gravity g are all vectors whose errors do
not diverge with time. Since the attitude rotation matrix Cb

n is obtained by integrating the
angular rate, it will generate cumulative errors over time. The cumulative errors can be
converted into the projection of the horizontal attitude misalignment angleφb

ϕγ under the
body frame by multiplying these two vectors.

For the yaw channel, the magnetometer complementary filter is adopted.

φb
ψ =

mb∣∣mb
∣∣ × (Cb

n
^
m

n
), (13)

φb = φb
ϕγ

[
1 1 0

]T
+φb

ψ

[
0 0 1

]T , (14)

similarly,φb
ψ is the projection of the heading error angle under the system, and mb is the

triaxial magnetometer measurement vector.
Take the misalignment angle into the complementary filter, and the measurement error

generated by the gyroscope can be corrected in the next step. The negative feedback model
of the complementary filters uses a PI controller. It can be defined as:

ωbias = kpφb + kI

∫
φb. (15)
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the gains kp and kI are proportional and integral gains, respectively. Adjusting the appro-
priate kp gain can make the system track the angular motion quickly and compensate the
attitude misalignment angle continuously.

qk+1 = qk ⊗ ∆qk, (16)

here, ∆qk is the delta quaternion, which can be defined as:

∆qk = cos
∆θ

2
+

∆θ

‖∆θ‖ sin
(

∆θ

2

)
, (17)

∆θ = (ωb
ib +ω

b
bias) · ∆T (18)

At high sampling times, the delta angle ∆θ from k moment to k + 1 moment is usually
tiny and can be approximated as follows:

qk ≈
[

1 ∆θx
2

∆θy
2

∆θz
2

]T
(19)

The three-axis attitude can be solved from the quaternion.

2.3. Adaptive Complementary Fusion in Horizontal Channel

UAV velocity estimation can be obtained recursively through a specific force equation:

vn =
∫
(Cn

b fb + gn)dt (20)

Due to the errors of inertial measurement and attitude calculation accumulation with time,
the velocity position estimation will become meaningless over a long time. A complementary
filter is used to smooth and correct the horizontal velocity by airspeed measurement.

v̂E = vTASsin(ψ) + ṽwindE

v̂N = vTAScos(ψ) + ṽwindN
(21)

Using the above Equation (21), the airspeed can be converted to the local frame.

vk,N/E
I = vk− ,N/E

I + Kv
TAS(

^
v

k− ,N/E

TAS − vk− ,N/E
I ), (22)

here, Kv
TAS is the gain of the complementary filter fused with airspeed. The state estimator pa-

rameters have adaptive functions to obtain the best performance based on sensor characteristics.
We use the following function to adjust the gain Kv

TAS and use an activation function
to smooth the gain Kv

TAS switching process of the observer. The adaptive strategy is given
in the following equation.

Kv
TAS =

{
0, i f t ≤ t0

G
1+e−(t−t0−t1)

, i f t > t0
, (23)

where t0 is the time switching threshold, and the velocity solved by the inertial navigation
algorithm can maintain a low error when t ≤ t0. This error is lower than that in the direct
estimation of the ground velocity from the airspeed, so the gain should be set to a low
value, indicating complete trust in the vehicle velocity calculated by the inertial integration.
When t > t0, the inertial velocity integration error gradually accumulates and is greater
than the estimated value using the airspeed, and at this time should improve the gain
correction effect. G is the gain value and t1 factors the control the curve smoothness.

2.4. High Channel Kalman Filtering Model

For the flight control level, the fixed-wing UAVs require a high accuracy of altitude
position and lift rate, which affects the climbing, landing, and cruising performance of the
UAV. The GNSS-denied environments are limited by the inertial navigation accuracy and
the inability to measure the local gravitational acceleration precisely. Using low-precision
inertial guidance alone for altitude solving, the altitude error will diverge significantly
over time. The barometer is susceptible to high-frequency noise from the atmospheric
environment, so fusing the barometer to the inertial navigation for correction is necessary.
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The inertial sensor, ADIS16488B, has a built-in barometer to measure static atmospheric
pressure. The simplified conversion equation of atmospheric pressure to altitude is shown
below [25]. The performance parameters of the barometer are shown as Table 1.

Hb = 44, 300×
[

1−
(

Ps

P0

) 1
5.255
]

, (24)

here, Hb is the altitude we require. P0 = 1.01325 bar is the value of standard atmosphere
and Ps is the measured value of the barometer.

Table 1. The performance parameters of the barometer we use. The errors of the barometer mainly consist
of the measurement error and measurement noise. The absolute error of measurement reaches 40 m.

Measurement Error Parameters The Parameter Values

Measurement range 300− 1100 mbar −700 ∼ 9165 m

Measurement error 4.5 mbar About 40 m (About 500 m above sea level)

Measurement noise 0.025 mbar About 0.2 m (About 500 m above sea level)

Barometer measurement error is mainly affected by airflow intensity and temperature,
and the changes of temperature make the barometric output drift. Using the temperature
control system in the flight control can achieve the heat balance before the data fusion
solution. In contrast, the ADIS16488B sensor embedded in the flight control component
has been indirectly isolated from airflow, so the error correlation is significantly reduced.
The height measurement error and the rate of change error correlation use the first-order
Markov (Markov) process.

δ
.
hbaro = − 1

τbaro
δhbaro + ωbaro

δ
.
vhbaro

= − 1
τhbaro

δvhbaro
+ ωhbaro

,
(25)

where δhbaro and δvhbaro
, respectively, denote the error of barometer height and lift rate. τbaro

and τhbaro
denote the correlation time coefficient. ωbaro and ωhbaro

represent white noise.

δ
.
vn

= fn
s f × f + vn ×

(
2δωn

ie + δωn
en
)
−
(
2ωn

ie +ω
n
en
)
× δvn

+δfn
s f + δgn

≈ fn
s f × f + δfn

s f + δgn

(26)

The above Equation (26) is the error transfer model of the inertial navigation in the
altitude channel. After ignoring the small error caused by rotation, the error equation of
inertial navigation in the altitude channel is established as Equation (27).

δ
.
vU = − fNφE + fEφN + δg + ∆U , (27)

here, φN and φE are the horizontal misalignment angle and δg denotes the gravity accelera-
tion error. ∆U represents the altitude channel bias of the accelerometer. For the horizontal
misalignment angle, we consider that it has been compensated in Equation (15). In addition,
the error of the gravitational acceleration term is also ignored, so we consider that the
velocity error in the altitude channel comes from the bias of the accelerometer. We describe
the z axis velocity error by using the first-order Markov process.

δ
.
vU = − 1

τ∆
δvU + ωU

δ
.
hINS = δvU + ωh

, (28)

where δvU and δhINS denote the inertial navigation z-axis velocity error and the altitude
error, respectively. τ∆ is the correlation time coefficient. ωU and ωh are the white noise.

According to Equations (25) and (28), the state equation of the system is established
as follows: .

X(t) = F(t)X(t) + W(t) (29)

The state is X(t) =
[

δvU δvbaro δHINS δHbaro
]T
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The system translation matrix is:

F(t) =


− 1

τ∆z
0 0 0

0 − 1
τvbaro

0 0

1 0 0 0
0 0 0 − 1

τhbaro


4×4

The system observation equation is:

Z(t) = H(t)X(t) + V(t),

here, H(t) =
[

1 −1 0 0
0 0 1 −1

]
.

The system equation is discretized and solved by the Kalman filter equation. The
algorithm flow chart of the filter is shown as Figure 3:

v̂U = vU − K1δvU

ĤINS = HINS − K2δHINS,
(30)

where K =
[

K1 K2
]T is the error feedback coefficient. Adjusting the appropriate gain

can make the signal smoother.
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in two steps: time updating and measurement updating. The time-update step predicts the navigation
states vector and its covariance matrix by propagation through a model of the system dynamics. The
measurement-update uses the data from the sensors and is incorporated to correct the prediction and
output an optimal estimation by calculating the optimal Kalman gain. The system error state can be
estimated by the Kalman filter, then the system error can be corrected by closed-loop feedback.

3. Experiment

The small fixed-wing drone was used for experiments to verify the correct functionality
in a practical scenario, and the vehicle is shown in Figure 4 and the UAV parameters are
shown in Table 2. As an algorithm-verified vehicle, the UAV flight is fully autonomous
on route. The flight control system was synthesized on an OMAP-L138 C6000 using the
MATLAB/Simulink code generation design tool to build the embedded code. A serial-
to-parallel interface (SPI) was developed to connect directly with the ADIS16488B sensor,
which consisted of the three-axis gyro, three-axis accelerometer, three-axis magnetometer,
and the barometer sensor. This IMU error indicator is shown in Table 3. We can see in
Figure 2 that the maximum wind speed under this experiment is 3 m/s.
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Both the flight control algorithm and the multisensor fusion algorithm are arranged
into the flight control hardware platform. The flow chart of the experimental tasks of the
whole system is shown in Figure 5.
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Table 2. Parameters of fixed-wing UAV.

Parameters Value

Total Weight 6.9 kg
Span 2100 mm

Body length 1620 mm
Power Electric drive

Table 3. Specifications of ADIS16488B.

Parameters Typical Value

In-Run Bias Stability of Gyroscope 6.25◦/hr
Angular Random Walk 0.3◦/

√
hr

In-Run Bias Stability of Accelerometer 0.1 mg
Velocity Random Walk 0.029 m/s/

√
hr

The main parameter values of the algorithm are shown in Table 4. Since no higher accu-
racy inertial navigation is applied as the flight attitude reference, the combined GNSS/INS
mode is still used for comparison and analysis in the UAV navigation control loop. The
algorithm result data of the fused TAS/INS/BARO are saved to the flight log, and the
vehicle completes the maneuvers of turning, circling, pulling up, and descending in the
air independently to verify the navigation accuracy. Finally, the flight log is read after the
vehicle lands for data comparison and analysis. The algorithm proposed in this paper is
compared with the two-vector EKF model (denoted as EKF/TAS) proposed by [16], the
centripetal force compensation model fused with airspeed presented in [19] (denoted as
NCF/TAS), and the ACF model with adaptive adjustment weights estimated from external
acceleration (denoted as ACF). Since there is little difference between the offline solution
and online real-time calculation, we use offline processing to compare the accuracy of
different algorithms. The results of the GPS/INS combination are used as true values for
error calculation analysis. The results are shown below.
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Figure 5. The system experimental task flow chart. The flight control system needs to wait for 5 s
for bias correction and self-alignment after power-on. When receiving RTK signal, the system enters
GNSS/INS cooperative mode. The algorithm switches to TAS/INS/BARO fusion mode during the
flight after receiving the navigation switching command from the ground station.

Table 4. The main parameter values of the algorithm we used in the following experiment.

Categories Variable Definition Value

Differential tracker filter
T Period of the input signal 0.005
h Filter factor 0.15
r Rate factor 900

Attitude calculation model

kp The φ γ compensation gain 0.05
kI The φ γ compensation integral gain 0.01
kp The ψ compensation gain 0.2
kI The ψ compensation integral gain 0.01

Horizontal channel adaptive
complementary fusion

Kv
TAS The gain factor of the complementary filter 0.9
G The gain value 1
t0 The time switching threshold 30
t1 The curve smoothness control factor 10

High Channel Kalman
Filtering

Q The error covariance matrix diag ([0.1, 0.5, 0.1, 2])2

R The measurement noise covariance matrix diag ([1, 10])2

P0 The initial covariance matrix diag ([0.1, 1, 0.1, 10])2

K1 The error feedback coefficient of lift rate 0.2
K1 The error feedback coefficient of altitude 0.8

Figures 6 and 7, respectively, show the Euler angles calculation and attitude error
comparison of the four algorithms. It can be seen from Table 5 and Figure 7 that the attitude
error of the ACF is relatively stable, but it is challenging to correct the attitude error directly
with the accelerometer because the external acceleration estimation of the air velocity is
not accurate. It is obvious that attitude errors accumulate over time. EKF/TAS, NCF/TAS,
and the algorithm proposed in this paper add airspeed measurement into the filter. Due
to the influence of wind, higher fluctuations in attitude error can be seen. As EKF/TAS
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and NCF/TAS algorithms do not consider the effect of linear acceleration, the difference
in attitude error among the three is not significant when the UAV flight speed is close to
constant. At about 200 s, the UAV began to descend. It can be seen that the pitch error
increased rapidly, and the instantaneous maximum reached nearly 11◦. In 190 s, it can
be seen in Table 5 that the MAE and RMSE of the roll error are 1.1388◦ and 1.4195◦, the
MAE and RMSE of pitch error are 1.1114◦ and 1.4672◦, and the MAE and RMSE of yaw
error are 4.7935◦ and 5.5443◦, respectively. The yaw angle preformed worse due to the
accuracy of the yaw estimation and was affected by the precision of the magnetometer. (It
is difficult to calibrate the magnetic field around the UAV accurately, and the magnetometer
is highly susceptible to disturbances from the electromagnetic environment, which makes
the heading angle accuracy worse.) Generally, the error of the proposed algorithm is stable.
The results suggest that this algorithm can adapt to the attitude estimation of the UAV
under flight dynamics.
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Figure 8 shows the comparison among the velocity solutions of the different algo-
rithms and RTK truth values. The horizontal velocity of the model in this paper can well
track RTK velocity measurement with an error within 2 m/s. The defect of horizontal
velocity error accumulated over time can be changed by using complementary filter and
integrated airspeed. The vertical channel is integrated with a barometer to gain the max-
imum error of 0.5 m/s, which has obvious advantages over the other three algorithms.
Figure 9 shows a comparison of the positions settled by RTK and the other four algorithms.
Figure 10 compares the position errors of the different algorithms, while Figure 11 depicts
the comparison between the track solution and the real track. It can be seen that the new
algorithm can better track the position of the RTK. The error of 30 s (about 600 m flying)
in the horizontal channel flight is within 30 m, the error of 90 s (about 1800 m flying) is
within 50 m, and the average error of the height channel is 0.5 m, with higher accuracy
than the other three. We also notice that during 140–190 s, the north position error of the
proposed algorithm is a little more than the ACF and NCF/TAS. The low-precision INS
position error transfer equation is established as Equation (31).
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∆
.
Rn =

∫
( fUφE − fEφU − 2ωU∆vE)dt, (31)

where the φE and φU is the east and up direction attitude misalignment angle, respectively,
which are the main source of north position errors. From Figures 7 and 11, after the first
turn, the roll angle error caused by random wind disturbance is converted to the north
position cumulative error. After 160 s, the adaptive complementary filter in Equation (22)
makes sense, and the north error stops growing. The algorithm eliminates the accumulated
error caused by attitude misalignment error to position as much as possible.
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Table 5. In the experiment, the attitude error evaluation indexes of MAE (Mean Absolute Error)
and RMSE (Root Mean Square Error) calculated by the proposed fusion algorithm are compared
with those calculated by the adaptive complementary filter (ACF), the two-vector extended Kalman
filter fused with airspeed (EKF/TAS), and the nonlinear complementary filter fused with airspeed
(NCF/TAS).

Methods
Attitude (deg)

Roll (γ) Pitch (φ) Yaw (ψ)

ACF MAE 0.9871 1.8859 9.4879
RMSE 1.1324 2.0623 9.8084

EKF/TAS MAE 1.2389 1.8450 7.0168
RMSE 1.5633 3.1493 8.4507

NCF/TAS MAE 1.2564 1.8770 6.2642
RMSE 1.5557 3.2114 7.0386

PROP MAE 1.1388 1.1114 4.7935
RMSE 1.4195 1.4672 5.5443
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Figure 8. Three-axis velocity solution of five algorithms in flight is shown for east, north, and up velocity
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proposed use the same height model, so the curve of NCF/TAS is not drawn in the bottom figure.
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Figure 9. Three-axis position solution of five algorithms in flight is shown for east position, north
position, and altitude (from (a–c), respectively). In order to find difference of horizontal position,
NCF/TAS and what we proposed use the same height model, so the curve of NCF/TAS is not drawn
in the figure (c).
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We also compared the offline computing efficiency of the four algorithms. The host
computer with the 3.2 GHz AMD Ryzen 7 5800H CPU was used to run the four models
with MATLAB 2021A. The total running time was set to 200 s with each step length of
0.005 s. Table 6 shows the comparison of the running time and its actual ratio among the
different algorithms.

Table 6. Comparison of the computational efficiency among different algorithms.

Algorithm Total Time (s) The Ratio of the Actual Running Time of
the Algorithm to the Total Simulation Time

ACF 4.2402 2.12%
EKF/TAS 12.6251 6.31%
NCF/TAS 6.4150 3.21%

PROP 8.1774 4.09%

As can be seen from the Table 6, the adaptive complementary filter algorithm (ACF) has
the highest computational efficiency, accounting for only 2.12% of the actual operating time
of the algorithm. It is usually a nice choice for a lightweight sensor fusion algorithm. The
value of the fusion airspeed nonlinear complementary filter (NCF/TAS) is 3.21%. Due to
differential tracking of airspeed data and other algorithm modules, the ratio of the running
time in the proposed algorithm is 4.09%, slightly higher than ACF and NCF/TAS. Although
the computation time is slightly longer, this processing improves the navigation accuracy,
and this algorithm can be deployed in our flight control equipment for real autonomous
flight verification. As for the EKF algorithm, it requires several high-dimensional matrix
operations and is not superior in operational efficiency, accounting for 6.31%. The proposed
algorithm consumes fewer computing resources than the EKF/TAS and can provide the
higher precision attitude, position, and speed solutions than the EKF/TAS algorithm. The
performance of the fusion algorithm is very satisfactory.

4. Conclusions

This paper proposes a robust and universal sensor fusion algorithm, including an IMU,
barometer, magnetometer, and airspeed sensor. The contributions of this paper include the
following: (1) We use airspeed to improve the estimation accuracy of the nongravitational
acceleration of vehicle, subsequently, to optimize the nonlinear complementary filter model
of the vehicle’s attitude misalignment angle based on observability derivation, which
can adapt to the state estimation accuracy of the UAV under different maneuvers. In
the flight test, the MAE and RMSE of roll error are 1.1388◦ and 1.4195◦, the MAE and
RMSE of pitch error are 1.1114◦ and 1.4672◦, and the MAE and RMSE of yaw error are
4.7935◦ and 5.5443◦, respectively, and, when compared with the more commonly used EKF
algorithm, is improved. (2) At the level of the horizontal velocity fusion, a complementary
filtering model using airspeed correction is established to suppress the accumulated errors
caused by the calculation speed of INS. (3) At the height level, the Kalman filter model
is designed using barometer data so that the vehicle can obtain the accurate solution of
the lift rate and altitude without GNSS. The average error of the height channel is 0.5 m,
and the maximum error of the lift rate is 0.5 m/s. This design idea uses a cascade fusion
strategy that combines the benefits of an individual systems model using a cascade fusion
strategy, combining the advantages of a single system. Compared against the other three
conventional methods, the proposed method shows superior performance, providing good
attitude velocity and position estimation, even in GNSS-denied environments. In addition,
the algorithm proposed in this paper consumes lower computing resources and is suitable
for common embedded systems. Taken as a whole, the new approach provides a feasible
solution for the navigation and positioning of small UAVs, as much as possible in GNSS-
denied environments; however, the result is still not very precise. In further works, we will
continue to explore multiple fusion navigation technologies, and explore the use of low-cost
camera sensors to enhance the robustness and fault tolerance of navigation systems.
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