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Abstract 

Background:  RNA deleterious point mutation prediction was previously addressed 
with programs such as RNAmute and MultiRNAmute. The purpose of these pro-
grams is to predict a global conformational rearrangement of the secondary structure 
of a functional RNA molecule, thereby disrupting its function. RNAmute was designed 
to deal with only single point mutations in a brute force manner, while in MultiR-
NAmute an efficient approach to deal with multiple point mutations was developed. 
The approach used in MultiRNAmute is based on the stabilization of the subop-
timal RNA folding prediction solutions and/or destabilization of the optimal folding 
prediction solution of the wild type RNA molecule. The MultiRNAmute algorithm is 
significantly more efficient than the brute force approach in RNAmute, but in the case 
of long sequences and large m-point mutation sets the MultiRNAmute becomes 
exponential in examining all possible stabilizing and destabilizing mutations.

Results:  An inherent limitation in the RNAmute and MultiRNAmute programs 
is their ability to predict only substitution mutations, as these programs were not 
designed to work with deletion or insertion mutations. To address this limitation we 
herein develop a very fast algorithm, based on suboptimal folding solutions, to predict 
a predefined number of multiple point deleterious mutations as specified by the user. 
Depending on the user’s choice, each such set of mutations may contain combinations 
of deletions, insertions and substitution mutations. Additionally, we prove the hardness 
of predicting the most deleterious set of point mutations in structural RNAs.

Conclusions:  We developed a method that extends our previous MultiRNAmute 
method to predict insertion and deletion mutations in addition to substitutions. The 
additional advantage of the new method is its efficiency to find a predefined number 
of deleterious mutations. Our new method may be exploited by biologists and virolo-
gists prior to site-directed mutagenesis experiments, which involve indel mutations 
along with substitutions. For example, our method may help to investigate the change 
of function in an RNA virus via mutations that disrupt important motifs in its secondary 
structure.
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Background
The RNA molecule can be examined at several structural levels. The secondary structure 
of an RNA is a representation of the pattern, given an initial RNA sequence, of com-
plementary base-pairings that are formed between the nucleic acids. Represented as a 
string of four letters, the sequence is a single strand that consists of the nucleotides A, 
C, G, and U, which are generally assumed to pair to form a secondary structure with 
minimum free energy. As such, the secondary structure of an RNA is experimentally 
accessible based on minimum free energy calculations, thus making its computational 
prediction a challenging but practical problem: it can be directly tested in the laboratory 
with minimal experimental efforts relative to, for example, RNA tertiary structure. In 
addition, in many cases there is a known correspondence between the secondary struc-
ture of an RNA and the molecule’s ultimate function.

In examining RNA viruses, they are known to possess unique secondary structures. 
The secondary structure of an RNA virus such as the Hepatitis C Virus (HCV) is mostly 
elongated due to the large number of base pairings that are formed, thereby lowering 
its free energy considerably and making the virus much more thermodynamically stable 
than a random RNA sequence. The typical stem-loop structure motif of an RNA virus, 
which consists of a long stem (a chain of consecutive base pairs) that ends in an external 
unpaired loop, has been experimentally observed to play a significant role in both virus 
replication and translation initiation. For example, in HCV, disruptive mutations were 
found to cause a structural change that directly led to either an alteration in virus repli-
cation [1, 2] or to a dramatic reduction in translation initiation [3].

Deleterious mutation prediction in RNAs is a sub-problem of the RNA folding predic-
tion problem, which is fundamental in RNA bioinformatics. Thus, all tools for delete-
rious mutations analysis utilize methods developed for the RNA folding problem. The 
most common methods for RNA folding prediction in general are energy minimiza-
tion methods that use dynamic programming, for example the mfold server [4], RNA-
structure [5] and the ViennaRNA package and server [6, 7]. For the sub-problem 
considered in this work, the first publicly available methods for the analysis of deleteri-
ous mutations in RNAs were the RNAmute Java tool [8] and a web server called RDMAS 
[9]. Both of these methods utilize the Vienna RNA package for RNA folding prediction 
and are able to analyze only single point mutations in RNA sequences with applications 
ranging from in-silico whole-genome screening for cancer related SNPs [10], in-silico 
design of small RNA switches [11], studying bacterial resistance against antibiotics [12], 
studying the function mechanism of the spliced leader RNA [13], in addition to predict-
ing disruptive mutations in viruses as mentioned above. To deal with multiple point del-
eterious mutations, the MultiRNAmute program [14] was developed, which uses an 
efficient method to find multiple point mutations using suboptimal folding solutions of 
an RNA sequence. The approach used in MultiRNAmute is based on examining a lim-
ited number of mutations, which stabilize some distant suboptimal secondary structure 
or/and destabilize the optimal secondary structure of the RNA sequence under consid-
eration. Other approaches, among which the most well-known is RNAmutants [15], 
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were also developed [16]. More recently, RNAsnp was developed [17, 18], with applica-
tions such as in studying gene variants [19] by utilizing dot plot representations that can 
be analyzed in a variety of ways (e.g., [20]). RNAsnp offers an efficient method to predict 
the effect of SNPs on local RNA secondary structure [21, 22] whereas the approaches 
reviewed in [16] are for global RNA secondary structure rearrangements.

A major limitation of the above described methods is that the methods are able to pre-
dict only substitution mutations, but not insertions or deletions. The suggested approach 
to extend the MultiRNAmute to predict deletions and insertions was briefly introduced 
in [23]. In addition, although the algorithm used in the MultiRNAmute program is 
considerably more efficient than any brute-force algorithm, it still may become exponen-
tial for sizable inputs such as sequences longer than 100-150 nts and large multiple point 
mutations sets. Herein, out motivation is to develop a method that predicts some prede-
fined number (user’s input) of deleterious mutations of different types, without search-
ing all “good” mutations as in MultiRNAmute.

The paper is organized as follow. We first prove the NP-hardness of predicting the 
most deleterious set of mutations in structural RNAs. We show that, even for a simplistic 
energy model, the associated optimization problem is NP-complete. We then describe 
a fast algorithm, based on the approach used in MultiRNAmute, for the prediction 
of a predefined number of deleterious multiple point insertion, deletion and substitu-
tion mutations. Our new method is named IndelsRNAmute, and is freely available at: 
https://​www.​cs.​bgu.​ac.​il/​~dbara​sh/​Churk​in/​SCE/​Indel​sRNAm​ute/.

Problem definition and NP‑hardness
An RNA w is a nucleotide sequence of length n over an alphabet � = {A,C,G,U} . A 
secondary structure is a set of base-pairs S = {(ai, bi)}i ⊂ [1, n]2 such that ai < bi , and 
each position is involved in at most one base pair. We consider a simple, base pair based, 
energy model where the energy of a sequence/structure pair (w, S) is given by

Non-canonical base pairs do not contribute to the energy in the model.
For a given RNA w, a mutation is a pair µ = (i, b) , expressing the choice of a new, 

mutated, nucleotide b ∈ � − {wi} for the position i. An edit script M = {µ1, . . . ,µm} 
consists of a set of mutations, each acting on a different position. Denote by (wM (resp. 
SM ) the application of an edit script M onto a sequence w (resp. structure S). Note that, 
when edit operations are limited to single-points mutations, one has SM = S.

Ew,S := − (x, y) ∈ S | {wx,wy} ∈ B with B := {{A,U}, {C,G}, {G,U}}.

https://www.cs.bgu.ac.il/%7edbarash/Churkin/SCE/IndelsRNAmute/
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Note that the result of the argmax is not affected by constant terms, so the objective 
can be equivalently defined as

Theorem 1  MaxDelMuts ∈ NP

Proof
Clearly, the number of ways to choose locations for m mutations within a sequence w is 

given by 
(

n
m

)

∈ �(2n) , while there exists exactly 3m ways to assign a nucleotide content 

of those positions, thus the number of sets of mutations is bounded by an exponential 
function in n. Moreover, evaluating the objective function only requires the free-energy 
computation for k + 1 pairs of secondary structures/mutants, which can be performed in 
�(n× k) time.

Theorem 2  MaxDelMuts is NP-hard.

Proof
We first remind the MaxCoCycle problem for a graph G = (V ,E) , which consists in find-
ing a vertex subset V ′ ⊂ V  such that a maximum number of edges E′ ⊂ E see one of their 
ends (but not both) in V ′.

The MaxCoCycle problem was proven NP-hard by Yannakakis [24], even under the 
restriction of a cubic graph G, where all nodes have degree 3. We show that MaxCoCycle 
can be reduced to MaxDelMuts.

Indeed, consider an instance G = (V ,E) for MaxCoCycle, assuming without loss of gen-
erality that V = [1, n] . We build an instance of MaxDelMuts, consisting of a sequence 
wt = An , a number of mutations m = n , a functional empty structure MFE = ∅ , and 
a set S  of competing secondary structures, obtained by partitioning E into O(|E|) 

(1)M⋆ = argmax
M={µ1,...,µm}

EwtM,MFEM −

k
∑

i=1

E
wtM,S

M

i
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competing secondary structures1. Using the simplified expression (1), the objective func-
tion becomes:

Since S  represents a partition of E, then the expression of E⋆ further simplifies as:

Let us turn to the properties of M and wtM . Clearly, since n = m , all positions of wt 
have to be mutated exactly once. Thus, after application of M , there is no longer any 
occurrence of A in wtM . It follows that any base pairs contributing to the objective func-
tions is either {G,C} or {G,U} , i.e. a valid base pair must present exactly one occurrence 
of G , thus ({wtMx ,wtMy } ∈ B) is equivalent to ((wtMx = G)⊕ (wtMy = G)). Denoting as 
G(M) := {x ∈ [1, n] | wtMx = G} the set of occurrences of G in wtM , one has:

In other words, the objective value achieved by M for MaxDelMuts coincides with the 
objective value of G(M) for MaxCoCycle.

This suggests a proof by contradiction for the optimality of G(M⋆) ⊆ V  as a solution for 
MaxCoCycle. Denote by α (resp. β ) the objective value of V ⋆ (resp. G(M⋆) ) for MaxCo-
Cycle, and assume that α > β . Then consider the edit script M′ , which sets all positions 
of V ⋆ to G , and all other positions to C . M′ provably achieves an objective value of α > β 
for MaxDelMuts. This contradicts the optimality of M⋆ , and one concludes that α = β , 
i.e. G(M⋆) represents a (co-)optimal solution of MaxCoCycle. Thus any polynomial 
algorithm for solving MaxDelMuts, coupled with a linear time computation of G(M⋆) , 
would provide an exact polynomial algorithm for the NP-hard MaxCoCycle. Therefore, 
MaxDelMuts is NP-hard.

Methods
Similar to the MultiRNAmute method, the IndelRNAmute method uses suboptimal 
secondary structures as a starting point. The motivation behind this decision is to start 
with some distant (from optimal structure) suboptimal structures and to convert such 
suboptimal structures to an optimal one by introducing “wise” mutations, which stabi-
lize the stems of the suboptimal structure and destabilize the stems of the optimal one.

The mutation analysis algorithm consists of several steps. First, given an input 
sequence with several input parameters, the Minimum Free-Energy (MFE) and a set of 
suboptimal secondary structures are calculated using the RNAfold and RNAsubopt 
programs from the Vienna RNA package [6], followed by a filtering step to reduce the 
number of suboptimal structures. Next, for each optimal and suboptimal structure, 

M⋆ = argmax
M

k
∑

i=1

−E
wtM,S

M

i
= argmax

M

k
∑

i=1

∣

∣

∣

{

(x, y) ∈ Si | {wt
M

x ,wtMy } ∈ B

}
∣

∣

∣
.

M⋆ = argmax
M

∣

∣

∣

{

(x, y) ∈ E | {wtMx ,wtMy } ∈ B

}∣

∣

∣
.

M⋆ = argmax
M

∣

∣

{

(x, y) ∈ E |
(

(x ∈ G(M))⊕ (y ∈ G(M)
)}∣

∣.

1  Note that, if crossing pairs (aka pseudoknots) are allowed, the Vizing theorem implies that S  can be reduced in poly-
nomial time to 3 structures, although this observation bears no consequence on the hardness of the problem.
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stems are identified and used for selecting “good” single-point mutations of several 
types: insertions, deletions and substitutions, depending on the user’s choice.

Finally, these single-point mutations are combined together to form deleterious mul-
tiple-point mutations for the output. A summary of the algorithm is shown in Algo-
rithm 1. We expand on each step of the method in the following sub-sections.

Input parameters

The parameters of the method include:

•	 RNA sequence field (S)—the maximum sequence length allowed in our application is 
1000 bases;

•	 dist 1 ( D1)—this distance parameter is used for filtering suboptimal solutions that are 
close to the optimal solution. The suggested value to use is around 30% of the RNA 
sequence length;

•	 dist 2 ( D2)—this distance parameter is used for filtering suboptimal solutions that are 
close to each other. The suggested value to use is around 30% of the RNA sequence 
length;

•	 e range (E)—this energy parameter is used in the RNAsubopt program to calculate 
the suboptimal structures within a range of kcals/mol of the mfe. The suggested 
value is around 15% of the RNA sequence length;
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•	 #Point mutations (M)—number of allowed point mutations in RNA (one M-point 
mutation set);

•	 #Results (N)—number of M-point mutations in the output;
•	 Type of mutations (SUM, INS, DEL)—the user may choose to allow insertions, dele-

tions and substitutions in the M-point mutation set;
•	 Open Prev Run—The application saves the results in a file, allowing to open previous 

runs without running the application again;
•	 Open Run—The user may save the results and insert them later in the GUI.

Optimal and suboptimal structures calculation

At the initial step, after starting the calculation by pressing “Start” in the GUI, the pro-
gram calculates the dot-bracket representations of the optimal and suboptimal second-
ary structures of the provided RNA sequence. The optimal structure is calculated using 
RNAfold and the suboptimal structures are calculated using RNAsubopt with param-
eter e from the GUI. Both routines are available in the Vienna RNA package [6].

Filtering suboptimal secondary structures

Running RNAsubopt may lead to a huge number of, largely redundant, suboptimal fold-
ing solutions. In order to consider a small and diverse set of suboptimal structures, dis-
tant from the optimal structure, we use two filters. The first filter removes all suboptimal 
structures that are similar to the optimal one using dist1 input parameter as a distance 
threshold. After the first filter the suboptimal structures are sorted by their distance 
from the optimal structure. The second filter removes suboptimal structures that are 
close to each other.

Herein for each set of similar structures we proceed with only one representative that 
is the most distant from the optimal structure and also distant from all representatives 
of other sets. As an example, Table 1 shows structures generated for an artificial RNA 
sequence:
CCG​GAA​GAG​GGG​GAC​AAC​CCG​GGG​AAA​CUC​GGG​CUA​AUC​CCC​CAUGU​

GGA​CCC​GCC​CCU​UGG​GGU​GUG​UCC​AAA​GGG​CUU​UGC​CCG​CUU​CCGG​

Table 1  Optimal and suboptimal structures of the artificial RNA sequence after filtering

Structure Dot-bracket representation Distance

opt  (((((((.((((((...((((((....))))))....))))))...(((((.
(((((....))))).)))))..((((...)))).)))))))

0

sub1  .........(((.....)))..((((...(((((.((..(((....(((((.(((((.
...))))).)))))..)))..))))))).))))..

43

sub2  (((((((.((((((((((((((((.....(((((((..........))).))))))))
...)))).)))))...........))).)))))))

39

sub3  (((((((.(((.((......(((...((..(((.......)))..))...)))((((.
(((((.....))))).)))).)).))).)))))))

39

sub4  (((((..((.(((.(((((((((....))))))......((......))....((((.
(((((.....))))).)))).)))))).)))))))

36

sub5  .((((((.(((.((...((((((....))))))...((.(((((...
((.....))...))))).))((((...)))).)).))).)))))).

35

sub6  ........((((((...((((((....))))))....))))))..((((....((((.
(((((.....))))).)))).....))))......

34
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The table contains the optimal secondary structure and 6 suboptimal structures that 
passed the filtering stage with dist1 and dist2 thresholds = 30 and e = 15. The first row 
in the table corresponds to the optimal structure and the six rows below correspond to 
the suboptimal structures. The last column in the table shows the base-pair distance 
of the structure from the optimal structure. If more distant suboptimal structures are 
required, the e parameter in the GUI should be increased.

Collecting candidates for deleterious mutations

For each suboptimal structure that survived the filtering, we find mutations (inser-
tions, deletions and substitutions depending on the user’s choice) that may potentially 
convert the optimal secondary structure to a suboptimal one. To perform this task, we 
first calculate the start and end positions of all stems in the optimal and all suboptimal 
structures. For instance, the secondary structure ((((..(((....))).)))) has two 
stems, with start/end at positions (1, 21)/(4, 18) and (7, 16)/(9, 14), respectively.

Next, we collect the mutations that stabilize the stems of the suboptimal structure and 
destabilize the stems of the optimal structure. The program searches for “good” places 
(indices) in the sequence for potential deleterious mutations. The “good” places for 
mutations are between stems of the suboptimal structure and in the middle of the stems 
of the optimal structure. This is true for substitutions, insertion and deletions. In the 
case of insertions that destabilize the optimal structure, it is possible to insert an expo-
nential (in the size of M-mutation set) number of combinations of insertions in each 
index of the stem. To solve this problem we allow to insert only one mutation some-
where in the middle of each stem of the optimal structure. This is sufficient for the desta-
bilization of the stem.

Example 1

Deleterious deletions:

GAG​UGU​CGA​CUC​CGCC​ - RNA wildtype sequence

((((....)))).... - Optimal structure

..(.(.((....)))) - Suboptimal structure

In the example above the “good” indices for deletions are 4 and 6. Deletions U4 and 
U6 stabilize (elongate) the stems of the suboptimal structure, while mutation U4 also 
destabilizes (shortens) the single stem of the optimal structure. By introducing two point 
mutation U4-U6 into the wild type RNA sequence we obtain the following result:

GAG​GCG​ACU​CCG​CC - RNA wildtype sequence

(((....))).... - Optimal structure

..((((....)))) - Suboptimal structure
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We can clearly see from the example that mutation U4-U6, consisting of two deletions, 
converts the suboptimal structure to become more stable than the optimal one.

Example 2
Deleterious insertions and substitutions:

GAG​GGU​CGC​CUC​CGCGC​ - RNA wildtype sequence

((((....))))..... - Optimal structure

..(.(.((....))).) - Suboptimal structure

In this example, one of the “good” indices for substitution is 4 and one of the “good” indi-
ces for insertions is 15 (insertion between two stems from the narrow side). Substitution 
G4C connects two stems of the suboptimal structure and shortens one stem of the opti-
mal structure. Insertion 15A connects two stems of the suboptimal structure. Finally, by 
introducing the two mutations G4C-15A into the wildtype RNA sequence we obtain the 
following result:

GAG​CGU​CGC​CUC​CGA​CGC​ - RNA wildtype sequence

(((......)))...... - Optimal structure

..((((((....)))))) - Suboptimal structure

Calculation of M‑point mutation sets

At this stage, the program combines deletions, insertions and substitutions up to N sets 
of M mutations. The algorithm is implemented in a recursive way that searches all pos-
sible combinations of all types of mutations found in the previous stage, but stops after 
reaching N mutations or all possible combinations of M-sets (if N is very large). For 
sequences longer than 150 bases, and values of M greater than 3, the number of all pos-
sible M-sets may be very large, much larger than N provided by the user.

Practically, it is sufficient to find a small amount of deleterious mutations (no more 
than 100) for laboratory experiments. In order to obtain a diversity of mutation types in 
the output, the algorithm combines single-point mutations randomly by choosing the 
calculation path through mutation types in a random way. To add to the diversity in the 
output, the algorithm uses all available diverse suboptimal structures for mutation anal-
ysis. For example, if the N provided by the user is 100 and the filtering stage produces 5 
suboptimal structures, the algorithm will limit itself to 20 random deleterious M-point 
mutation sets for each suboptimal structure. The deleterious nature of each M-point 
mutation is validated by checking that the mutation structure is distant enough from the 
structure of the wild type RNA sequence.
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Results
The input screen of IndelsRNAmute with an example sequence and input param-
eters is shown in Fig. 1. A typical output of IndelsRNAmute is shown in Fig. 2. The 
resultant parameters for the sequence discussed in Sect. 3.3 are dist1 = 30 , dist2 = 30 , 
e = 15 , N = 100 , M = 4 and all three types of mutations. The output lists up to N 
M-point mutations, sorted by the distance of their structure from the wildtype struc-
ture. The most deleterious mutations are listed first. Each row in the table includes 
the name of mutation, free energy, distance from wildtype RNA and the dot-bracket 
representation of its structure.

Fig. 1  Input screen of IndelsRNAmute with an example input sequence and other parameters for the 
results shown in Fig. 2

Fig. 2  Typical output of IndelsRNAmute and detailed structural analysis of mutation 
29G − C39− A50− G77
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Interactive features

A user may further investigate a given mutation, by pressing on some row in the 
table to see more information about a specific mutation. For example, selecting the 
mutation 29G − C39− A50− G77 will open the screen shown in Fig. 2. The struc-
ture of this mutation was obtained from the second suboptimal structure in Table 1 
by one insertion and three deletions. The insertion 29G and deletions C39 and G77 
destabilize stems in the optimal structure, while deletion A50 both stabilizes the 
suboptimal structure by connecting two stems and destabilizes the stem of the opti-
mal structure.

Fig. 3  Distributions of base-pair distance to the WT MFE of mutations sets ( M = 5 ) produced for random 
sequences of length 200 nts

Fig. 4  Distributions of energy distance to the WT MFE of mutations sets ( M = 5 ) produced for random 
sequences of length 200 nts
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Analysis of mutations sets for random sequences

The importance of considering indels in the prediction of deleterious sets of mutations is 
illustrated by Fig. 3 and Fig. 4. In this analysis, 100 sets of M = 5 deleterious mutations 
were predicted for 10 random sequences of length 200 nts, respectively, in the presence 
and absence of support for indels.

As can be seen in Fig. 3, mutations in presence/absence of indels are equally deleteri-
ous, and induce distributions whose exponential fitted curves are virtually indistinguish-
able. However, as shown in Fig.  4, mutations sets including indels retain comparable 
free-energy as the wild type, while substitutions appear to induce a drastic decrease of 
the free-energy.

We interpret these results as indicative of the fact that mutations sets including indels, 
predicted by IndelsRNAmute, are much more geared towards the identification of 
deleterious sets of mutations, rather than a mere optimization of the thermodynamic 
stability of alternative structures. This interpretation suggests more realistic sets of 
mutations being produced by IndelsRNAmute. Indeed, due to kinetics effects, alterna-
tive structures associated with extreme shifts in MFE may not be reachable within fold-
ing landscapes in time comparable to adverse processes such as RNA degradation.

Conclusion
We present a method called IndelsRNAmute that extends our MultiRNAmute 
method to predict insertion and deletion mutations in addition to substitutions. The 
additional advantage of the new method is its efficiency to find a predefined number of 
deleterious mutations. The running time of MultiRNAmute depends on the number 
of possible deleterious mutations, which may be very large and depend exponentially 
on number of mutations in the multiple-point mutation set, while the running time of 
IndelsRNAmute depends on N and only depends linearly on M. For example, for the 
same input, MultiRNAmute may run more than an hour predicting only substitutions, 
while IndelsRNAmute predicts 100 “good” mutations in a few seconds, and depending 
on the user’s choice may include insertions, deletions and substitutions. We do not com-
pare running times of MultiRNAmute with IndelsRNAmute in a quantitative manner 
because the fast running time of the new method is achieved only by limiting the size 
of the output. Not limiting the size of the output of the new method will cause it to run 
slower than MultiRNAmute because more types of mutations and their combinations 
are taken into account. Obviously, when limiting the size of the output, IndelsRNAmute 
would run faster.

All our mutation prediction methods were shown practical in predicting deleteri-
ous mutations in the P5abc subdomain of the Tetrahymena thermophila group 1 intron 
ribozyme, and in the 5BSL3.2 sequence of a subgenomic HCV replicon [2]. Fig. 5 illus-
trates potential deleterious 2-point indel mutations in the 5BSL3.2 sequence of a sub-
genomic HCV replicon, in addition to 2-points deleterious substitutions, which may be 
predicted by both IndelsRNAmute and MultiRNAmute. One such experimentally 
approved deleterious 2-point substitution was reported in [14], and one of the good can-
ditates for deleterious 2-point indel mutations (C12-41A) predicted by IndelsRNA-
mute is illustrated in Fig. 6.
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In order to show the potential difference between IndelsRNAmute and the Mul-
tiRNAmute method, we ran both methods on a very short sequence GGG​GAA​
ACCCC and with only one point mutation. Figure  7 shows the output of the Mul-
tiRNAmute method that contains only substitution mutations. Using the Indel-
sRNAmute method we may obtain the results shown in Fig.  7 by selecting the 
“Substitutions” option in the input screen. In addition, we can obtain the results 

Fig. 5  List of mutations screen of IndelsRNAmute, for the case of 2-point indel mutations in the 5BSL3.2 
wild-type

Fig. 6  Output screen of one of the rearranging 2-point indel mutations in the 5BSL3.2



Page 14 of 16Churkin et al. BMC Bioinformatics          (2022) 23:424 

shown in Figs. 8 and 9 by selecting the “Insertions” and “Deletions” options, respectiv
ely.

In future work we plan to implement k-medoids clustering, using medoids (centroids) 
as set representatives instead of our current filtering. A significant concern to overcome 
with such a clustering method could be that finding the optimal k is time consuming and 
the user will have to provide k as an additional parameter in the GUI and some “good” 
suboptimal structures may be missed. The advantages in pursuing this clustering strat-
egy is that it will explain filtering better in terms of thermodynamics. In all distance 
calculations in our application we use linear base-pair distance for efficiency, but the 
method can be easily adapted to work with any other distance, like Hamming distance or 
tree edit distance as possible extensions.
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