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A modified GC-specific MAKER gene
annotation method reveals improved and
novel gene predictions of high and low GC
content in Oryza sativa
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Abstract

Background: Accurate structural annotation depends on well-trained gene prediction programs. Training data for
gene prediction programs are often chosen randomly from a subset of high-quality genes that ideally represent the
variation found within a genome. One aspect of gene variation is GC content, which differs across species and is
bimodal in grass genomes. When gene prediction programs are trained on a subset of grass genes with random
GC content, they are effectively being trained on two classes of genes at once, and this can be expected to result
in poor results when genes are predicted in new genome sequences.

Results: We find that gene prediction programs trained on grass genes with random GC content do not completely
predict all grass genes with extreme GC content. We show that gene prediction programs that are trained with grass
genes with high or low GC content can make both better and unique gene predictions compared to gene prediction
programs that are trained on genes with random GC content. By separately training gene prediction programs with
genes from multiple GC ranges and using the programs within the MAKER genome annotation pipeline, we were able
to improve the annotation of the Oryza sativa genome compared to using the standard MAKER annotation protocol.
Gene structure was improved in over 13% of genes, and 651 novel genes were predicted by the GC-specific MAKER
protocol.

Conclusions: We present a new GC-specific MAKER annotation protocol to predict new and improved gene models
and assess the biological significance of this method in Oryza sativa. We expect that this protocol will also be beneficial
for gene prediction in any organism with bimodal or other unusual gene GC content.

Background
Most widely used gene prediction programs depend on
Hidden Markov Models (HMMs) to predict gene struc-
ture within genomic sequence [1–3]. Typically, genes are
modeled within HMMs using a series of hidden states
that represent generic gene structure. The hidden states
are filled with transition probabilities based on k-mer
sequences taken from the genes that are used to train
the HMM. It is known that gene GC content can affect

gene predictions. Korf found that accuracy of predicting
genes in one species using a SNAP HMM that was
trained for a second species was more correlated with
the GC content of the two species’ genomes than with
the phylogenetic distance between the two species [1].
Additionally, in mammalian genomes, which contain
so-called isochores, gene GC content is correlated with
the GC content of the surrounding genome. The AU-
GUSTUS gene prediction program has a feature that
trains multiple HMMs that are each specialized for
different narrow isochore-specific GC ranges in order to
improve gene predictions [4–6].
We perceived that two factors might limit the accuracy

of gene prediction in grass genomes. First, in many spe-
cies including most plants, the GC content of genes has
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a relatively narrow and unimodal distribution, but in the
grasses (Poaceae), the GC content of genes has a broad
bimodal distribution (Fig. 1a; [4, 7–10]). The bimodal
distribution of GC-content in the grasses suggests that
there exist two classes of genes (high GC and low GC)
that the gene prediction programs are attempting to
learn.
While gene prediction programs perform well with

grasses [11], we hypothesized that the accuracy of grass
gene predictions could be improved by accounting for
the high and low GC gene classes. Furthermore, as with
any supervised machine learning technique, we expect
that it is difficult to predict grass genes at the tails of the
natural GC distribution and that some grass genes may
not be predicted at all using existing protocols. Second,
grass gene GC content is not well correlated with the
surrounding genomic regions (Fig. 1b; [10, 12, 13]), and
therefore, grass genomes do not contain isochores. We
also predict that grass genome annotation will not bene-
fit from analysis by the isochore-sensitive AUGUSTUS
protocol [6]. Therefore, it is probable that gene annota-
tion in grasses can be improved further.

MAKER is a commonly used structural annotation
engine that has been used to annotate numerous plant
genome assemblies [11, 14–18]. The MAKER gene
annotation pipeline makes it very easy to train and then
predict gene models from commonly used ab initio gene
prediction programs, such as SNAP and AUGUSTUS
[1, 6, 19]. We developed a new GC-specific MAKER
protocol that makes use of genes with high and low GC
content as training data in order to derive separate
versions of the SNAP and AUGUSTUS HMMs that are
tuned to accurately predict high and low GC genes. Using
this new method, we improved regular MAKER gene pre-
dictions in Oryza sativa (rice) relative to available tran-
script and protein evidence. Furthermore, we identified
novel genes with high and low GC content that had not
been predicted by the standard MAKER protocol.
Comparisons to the AUGUSTUS isochore-based predic-
tion method as well as to the standard MAKER protocol
showed that this GC-specific MAKER protocol shifts the
overall GC content of predicted gene models both higher
and lower than the standard MAKER protocol. This new
GC-specific MAKER annotation method will be of inter-
est to anyone working on structural annotation of ge-
nomes with bimodal GC content but will likely improve
the annotation of any genome.

Results
Reannotation of the O. sativa genome with MAKER using
HMMs trained on high and low GC content
We thought that grass genes identified by gene predic-
tion programs that are trained on genes with specific
GC content could both find different genes and produce
differing gene models at identical loci than prediction
programs that are trained on genes with random GC
content. We tested this hypothesis by reannotating the
genome of O. sativa. In order to compare gene models
within the O. sativa ssp. Nipponbare genome (v7 assem-
bly; [20]) based on the GC content of different HMM
training sets, three MAKER structural annotations were
completed using a modified method. SNAP and AU-
GUSTUS HMMS were trained either with training genes
randomly picked without regard for GC content, with
training genes with low GC content or with training
genes with high GC content. The standard MAKER
annotation using HMMs trained on randomly selected
training genes for SNAP and AUGUSTUS predicted
29,133 gene models with transcript evidence and/or
Pfam protein domains. The structural annotation based
on high GC HMMs produced 26,063 evidence supported
gene models, and the MAKER annotation based on low
GC HMMs produced 26,559 evidence supported models
(Table 1). The average length of transcripts was very
similar for the standard and low GC structural annota-
tions (Table 1). The average transcript length of the high

a

b

Fig. 1 Bimodal distribution and coding region GC content in Oryza
sativa. a Distribution of GC content of IRGSP v7 predicted coding
regions. b GC content of IRGSP v7 predicted coding regions vs.
genomic GC content 5Kb upstream and downstream of predicted
coding regions
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GC predictions was considerably shorter, a trend that has
been previously discussed in eukaryotic genomes [21].
The distribution of GC content of the gene predictions

varied greatly (Fig. 2). The standard MAKER annotation
has a bimodal distribution of gene GC content with a
major peak at 49% and a minor peak at 68%. The GC
distribution of the high GC annotation has a unimodal
distribution with a major peak at 68%. The low GC
annotation has a bimodal distribution with peaks at 47
and 67%. Notably, few low GC genes were predicted by
the high GC HMMs, and a lower percentage of high GC
genes were predicted by the low GC HMMs compared
to the standard GC neutral MAKER annotation.
The SNAP and AUGUSTUS HMMs created for the

standard, high and low GC MAKER structural annotations
were also used together in a single MAKER run to produce
a six HMMs annotation (Fig. 3). For this annotation, up to
six ab initio predictions could be produced at a single locus,
but when provided with multiple gene predictions at a single
locus, MAKER chooses the single best gene model at that
locus. The six HMMs annotation contained 29,942 evidence

supported gene predictions (Table 1). The GC distribution
for the six HMMs gene set was bimodal with a major peak
at 48% and second peak at 68% (Fig. 3). In comparison to
the MSU Rice Genome Annotation Project (MSU-RGAP;
Release 7) annotation [20], 2448 gene predictions were
unique to the MAKER six HMMs annotation of O. sativa
while 7004 gene models found in the MSU annotation were
missing from the six HMMs annotation (Additional file 1).
Using BUSCO [22] to assess the completeness of the six
HMMs annotation, we found that the six HMM predictions
contain a high number of complete BUSCO matches
(86.2% complete; 3.9% fragmented; 9.9% missing), but
that the MSU-RGAP does match more BUSCO sets
(95.6% complete; 2.5% fragmented; 1.9% missing).
To assess the impact of high and low GC specific

HMMs on the structural annotation of O. sativa, GC
content and annotation edit distance (AED) scores were
plotted for each set of predicted gene models and visual-
ized as heatmaps (Fig. 4). AED scores are assigned by
MAKER and can be used to assess gene prediction qual-
ity [23]. AED measures the concordance of a gene
prediction relative to the transcript and protein evidence
that supports it. AED scores range between 0 and 1,
where 0 indicates perfect concordance between the gene
prediction and evidence and 1 indicates that no tran-
script or protein supports the prediction. Genes pre-
dicted by HMMs trained on specific GC content caused
a general shift in the GC distribution of predicted gene
models for both the high and low GC annotations, in
comparison to the standard MAKER annotation (Fig. 4a
and b). In addition to this shift, standard MAKER gene
predictions were improved by high or low GC HMMs as
determined by a decrease in AED scores between over-
lapping gene predictions from the standard MAKER and
high or low GC HMMs annotations (Fig. 4e, f ). The
number of standard protocol gene models improved in
the six HMMs annotation was 3740. The number or
percent of genes with AED scores less than 0.5 (AED0.5)
can be used for genome wide assessment of annotation
quality. The percentages of AED0.5 genes were similar
for all three annotations (Table 1). The high percentage
of well-supported gene predictions reflects the quality of
transcriptome evidence provided during the structural
annotation process.

Comparison of MAKER six HMMs method to alternative
MAKER approaches
The results of the MAKER six HMMs structural annota-
tion were compared to MAKER genome annotations
where combinations of the SNAP and AUGUSTUS gene
prediction programs were used with alternative parame-
ters. As AUGUSTUS can be run so that it considers GC
content of the genomic region (isochores) in which a
gene prediction is made, we also trained AUGUSTUS in

Table 1 Numbers of high quality rice genes predicted by
different MAKER protocols

Annotation Number of
Predictions

Average Transcript
Length

AED0.5 Percentage
(%)

Standard Protocol 29,133 1920 26,809 92.0

High GC 26,063 1439 22,600 86.7

Low GC 26,559 2046 25,091 94.5

Six HMMs 29,942 1947 27,395 91.5

Fig. 2 Distribution of GC content of high-quality MAKER gene predictions.
Distribution of GC content of various MAKER annotations created through
the GC-specific MAKER protocol. The high-quality standard and high GC
MAKER genes retain the bimodal distribution that is common to the
Poaceae, while the high-quality low GC MAKER genes and the novel high
and low GC gene predictions have unimodal distributions centered on GC
content associated with the GC content of the HMM training data
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its isochore-sensitive mode and used it to make gene
predictions within MAKER. Overall, the MAKER six
HMMs annotation produced more genes than any other
annotation strategy tested here (Table 1, Additional file 2:
Table S1). MAKER run with only SNAP identified more
evidence supported genes than either AUGUSTUS alone
trained with randomly chosen training data or the
isochore-specific AUGUSTUS protocol. Only a few hun-
dred more genes were generated by the isochore-specific
AUGUSTUS annotation than by the randomly trained
AUGUSTUS HMM. Using randomly trained SNAP with
either randomly trained or isochore-specific AUGUS-
TUS produced similar numbers of gene predictions but
more than when MAKER is run with any of these pro-
grams alone. The number of AED0.5 gene predictions
follows a similar trend to the total number of gene
predictions made by any annotation protocol (Table 1;
Additional file 2: Table S1; Additional file 3: Figure S1).
However, as more genes are identified by a particular an-
notation method, the proportion of AED0.5 genes de-
creases. The isochore-specific AUGUSTUS and the
randomly trained AUGUSTUS and SNAP gene predic-
tions did not vary in overall GC content (Additional file 3:
Figure S2).
For any machine learning protocol, different sets of

training data can lead to slightly different prediction re-
sults. To ensure that the results that we observed when

we trained SNAP and AUGUSTUS on high and low GC
content training data sets were not random, we repeated
the standard MAKER annotations three times using
independently generated training data. The number of
predicted gene models differed by less than 150 in the
three randomly replicated standard MAKER annotations
(Additional file 2: Table S2), and the AED cumulative
frequency plots were nearly identical (Additional file 3:
Figure S3).

Identification of novel high and low GC content genes
In addition to the improved high and low GC structural
annotations created with the MAKER six HMMs anno-
tation protocol, we discovered novel gene predictions
specific to the annotations from the high and low GC
HMMs. The low GC annotation contained 369 novel
genes, while the high GC annotation contained 282
novel genes. Interestingly, the novel genes predicted by
the low GC HMMs did not always have a low GC
content, and some of the novel genes predicted by the
high GC HMMs did not have high GC content (Figs. 2
and 4c, d). The locations of the novel high and low GC
HMM predictions were distributed across all 12 O.
sativa chromosomes (Table 2; Additional file 4). Of the
novel high GC HMM predictions, 253 genes (90%) had
some level of protein or transcript evidence for the predic-
tion, while 324 (88%) novel low GC HMM predictions

Fig. 3 Six HMMs MAKER structural annotation method. The center workflow depicts the standard method for training hidden markov models for
use in MAKER, while the low GC (top) and high GC (bottom) training methods can be used after creating high and low GC HMM training data
sets. After separately training HMMs with the low and high GC training data, all three SNAP HMMs and all three AUGUSTUS HMMs were specified
in the maker_opts.ctl file (see the Methods section), and MAKER was run to create the six HMMs annotation, which incorporates gene predictions
from the standard, high and low GC MAKER runs
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had protein or transcript support (Fig. 5). Overall, the
AED scores increased as GC content increased for the
novel high GC HMM predictions and as GC content de-
creased for the novel low GC HMM predictions (Fig. 4c
and d). The mean length of the novel high GC genes was
640 bp, while the novel low GC genes were on average
748 bp in length. The novel high and low GC gene predic-
tions are shorter than the mean lengths of the original

MAKER, six HMMs, high GC and low GC gene predic-
tions (Table 1). Gene lengths were more widely distributed
for predictions generated by the original, six HMMs, high
and low GC methods while the distribution of gene
lengths of the novel GC genes were more narrow and
peaked at around 350 bp (Additional file 5). Plotting the
effective codon number of novel high and low GC genes
and the MSU-RGAP rice gene annotations against gene

Fig. 4 Heatmap visualization of annotated edit distance (AED) and GC content of MAKER predicted gene models. a MAKER genes predicted
using the high GC HMMs. b MAKER genes predicted using the low GC HMMs. c Novel genes predicted using the high GC HMMs. d Novel genes
predicted using the low GC HMMs. e Gene predictions from the high GC HMMs that improved gene predictions made by the standard MAKER
protocol. f Gene predictions from the low GC HMMs that improved gene predictions made by the standard MAKER protocol. g Gene predictions
from the standard MAKER protocol. h Gene predictions from the MAKER six HMMs annotation
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GC content at synonymous sites (GC3s) shows a correl-
ation between effective codon usage and GC3 percent
(Additional file 6). The majority of novel high and low GC
genes and MSU-RGAP rice genes fall below the solid line
that represents expected effective codon usage under the
null model where there is no selection on codon usage.

This indicates that some selective pressure affects rice
codon usage beyond compositional variation. However,
the observed deviation from the null model is slight com-
pared to species that exhibit extreme codon usage bias
[24–27]. Additionally, codon usage variation is similar
between the MSU-RGAP rice genes and the novel high
and low GC genes (Additional file 6).
We also compared these novel six HMMs gene predic-

tions to the MSU-RGAP Release 7 gene set and found
112 of the novel low GC HMM predictions and 167 of
the novel high GC HMM predictions were present in
that high-quality gene set [20]. Additional functional
characterization of the novel high and low GC genes
was performed using gene ontology enrichment, but the
novel genes were not found to be enriched in any func-
tional terms (data not shown).

Orthology of novel high and low GC genes to genes from
other grass species
Using the total predictions generated through the
MAKER six HMMs annotation, additional support was
given to the novel predictions made by the high GC and
low GC HMMs by first assessing sequence homology of
the novel gene predictions to the NCBI non-redundant
protein database [28]. Of the 651 novel predictions, 387
had a significant BLASTP hit (e-values less than 1e-10)
to NCBI’s non-redundant protein database. Second, the
homology and orthology of these genes was evaluated
relative to other MAKER six HMM predictions and
Brachypodium distachyon, Sorghum bicolor and Zea
mays using OrthoMCL [29–32] (Additional file 7). Of
the novel high GC predictions, 51 genes were placed
into orthogroups, with 19 as putative homologs only
with other MAKER six HMMs predictions, and 32 were
orthologous to genes from at least one of the other grass
species. Interestingly, 23 novel high GC genes repre-
sented the only rice predictions in their orthogroups,
and 11 novel high GC genes were single copy orthologs
with the other grasses. Of the novel low GC predictions,
92 genes were placed into orthogroups, with 34 as puta-
tive homologs only to other MAKER six HMMs gene
predictions, and 58 orthologous to the other grass
species. Twelve novel low GC predictions were the only
rice representatives in their orthogroups.

Translating ribosome affinity purification (TRAP)
sequencing and RNA-seq provide additional support for
novel high and low GC gene predictions
In an effort to demonstrate additional support for the
new GC specific gene models outside of the transcript
data provided during the MAKER annotation process,
TRAP-seq sequencing data isolated from callus, panicle
and seedling tissues of an O. sativa line with a modified
RPL18 transgene [33, 34] were analyzed in the same

Table 2 Distribution across the genome of rice of novel genes
predicted by SNAP and AUGUSTUS HMMs trained genes with
high and low GC content

Novel Low GC HMM Predictions Novel High
GC HMM Predictions

Chr1 28 33

Chr2 39 23

Chr3 32 26

Chr4 42 35

Chr5 35 20

Chr6 31 30

Chr7 29 18

Chr8 26 22

Chr9 20 23

Chr10 29 21

Chr11 31 20

Chr12 31 26

a

b

Fig. 5 AED scores of high and low GC novel genes in Oryza sativa.
AED scores for the novel (a) high and (b) low GC gene predictions
generated through the MAKER sixHMM annotation method
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manner. TRAP-seq reads aligned to 200 (71%) of the
novel high GC HMM predictions, and 236 (64%) of the
novel low GC HMM predictions. Translatome enrich-
ment indices (TEI) were calculated for each of the novel
genes predicted by the high and low GC HMMs. The
TEI is the ratio of the transcripts per million (TPM) of
TRAP-seq to the TPM of mRNA-seq (mRNA sequen-
cing) for a specific locus. High TEIs may indicate prefer-
ential translation of a transcript, while very low TEIs can
be indicative of limited translation [33]. The calculated
TEI of each of the novel genes predicted by the high and
low GC HMMs that had TRAP-seq pseudoalignments
indicates tissue specificity (Fig. 6). Additionally, RNA-
sequencing data from a variety of rice tissues, abiotic
and biotic stresses were pseudoaligned to the MAKER
six HMMs annotation [35, 36]. RNA-seq reads were
aligned to 262 (93%) of the 282 novel high GC HMM
predictions and 329 (89%) of 369 of the novel low GC
HMM predictions (Additional files 8 and 9). In combin-
ation, the TRAP-seq and RNA-seq data indicated that in
addition to the transcript data already aligned to these
predictions during annotation, a majority of these novel
predictions are in fact being actively transcribed in
various tissues from O. sativa with both tissue and
treatment specificity.

Discussion
Ab initio gene prediction programs employ HMMs
trained on gene sets that should be representative of the
variation in gene nucleotide content. We hypothesized
that in grass genomes, where genes have a wide variation
in GC content and where that distribution is bimodal
(Fig. 1a), gene prediction programs trained on random
sets of training data would be overly generalized and
that this could result in poorly predicted gene models
with high or low GC contents. To address this, we
developed a GC-specific MAKER gene annotation
protocol that trains gene prediction programs SNAP and
AUGUSTUS using training data with both high and low
GC content. The resulting high-GC and low-GC SNAP
and AUGUSTUS HMMs were used in addition to the
regularly trained SNAP and AUGUSTUS HMMs to pre-
dict genes within MAKER (Fig. 3).
We tested the six HMMs protocol by reannotating the

O. sativa genome, and we identified 29,942 genes with
transcript, protein or Pfam protein domain support. As
expected, when MAKER predicted genes in the O. sativa
genome using either the high-GC or low-GC SNAP and
AUGUSTUS HMMs, the GC content of the resulting
gene predictions were shifted higher or lower, respect-
ively, compared to the GC content of genes predicted by
the standard MAKER protocol (Fig. 2). Furthermore, the
GC content distribution of genes predicted by the
MAKER six HMMs protocol also showed a shift of the

bimodal peaks to higher and lower GC values (Fig. 2). Im-
portantly, most gene predictions made by the MAKER six
HMMs annotation overlapped with loci predicted by the
standard MAKER protocol, but in 3740 of these cases, the
predictions made by the MAKER six HMMs protocol
were improved over the standard MAKER predictions as
shown by the better evidence support (i.e. lower AED
scores) (Fig. 4e, f ). This indicates that the high and low
GC HMMs were often able to improve upon gene predic-
tions made by the more generally trained gene prediction
programs.

a

b

Fig. 6 Translatome Enrichment Index (TEI) analysis of novel high and
low GC genes. Heatmap of Translatome Enrichment Index (TEI) of
the (a) novel genes predicted by low GC HMMs and (b) novel genes
predicted by high GC HMMs gene predictions, which measures the
ratio of TRAP-seq to mRNA seq for a specific transcript. Values are
scaled by row to a sum of one for visualization purposes
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In addition to improving the annotation of many
genes, we also identified novel genes using this protocol.
We found 651 genes that had been identified by high-
GC or low-GC SNAP or AUGUSTUS HMMs but that
had not been predicted using the standard MAKER
pipeline. Of these newly identified genes, 372 were also
not found in the most recent MSU-RGAP Release 7
structural annotation [20]. The 279 novel genes pre-
dicted by the high-GC or low-GC HMMs that were pre-
viously found in the MSU-RGAP Release 7 were likely
predicted by MSU-RGAP due to the use of Fgenesh for
gene identification, which may have its own biases re-
lated to GC content [20, 37], or due to the use of differ-
ent transcript and protein evidence (Additional file 1).
Additionally, the MSU-RGAP annotation was improved
by PASA, which improves de novo gene predictions with
transcript alignment evidence, and therefore, PASA is
likely not biased by GC content in the same way that
HMM-based gene prediction programs can be affected
[38]. Furthermore, 90 of the novel genes identified by
the high-GC and low-GC HMMs were found to be
orthologous to genes from other grass species or to
other MAKER six HMMs gene predictions within O.
sativa (Additional file 7). Additional support for the
novel gene predictions comes from examining a TRAP
sequencing data set that indicates that 67% of these new
predictions are being actively transcribed in three different
tissues from O. sativa [33] (Fig. 6). RNA-sequencing data
from rice tissues and from abiotic and biotic stress experi-
ments show high levels of tissue and treatment specific ex-
pression and lend further support to the validity of the
novel high and low GC gene predictions (Additional files 8
and 9). Nonetheless, as with all computational gene predic-
tion methods, the novel gene models identified by the GC-
specific MAKER protocol should be further vetted through
additional laboratory analysis.
There are 7004 genes in the MSU-RGAP Release 7

data set that were not predicted by the six HMMs anno-
tation. Of these genes, 4635 are characterized as
“expressed” meaning that they only have transcript sup-
port. An additional 1324 MSU-RGAP genes missing
from the six HMMs annotation are described as “hypo-
thetical”, which indicates that they have no transcript or
protein support, but they may contain a conserved pro-
tein domain (Additional file 1). The hypothetical MSU-
RGAP genes are the genes with the weakest support
from that annotation project. Some of the MSU-RGAP
hypothetical genes may not pass the stringent evidence
test that was applied to the MAKER six HMMs gene
predictions which all had transcript or protein support
or contained a Pfam domain. The MSU-RGAP genes
that are missing from the six HMMs predictions are also
rather short overall (Additional file 10). The mean length
of the CDSes from these missed MSU-RGAP genes is

564 bp, and the mode is 243 bp, which is similar to the
lengths of the novel six HMMs genes (Additional file 5).
Another small portion of the missing genes from the six
HMMs annotation are either chloroplast or mitochon-
dria related. Additionally, the MAKER six HMMs anno-
tation only used transcript evidence derived from
StringTie assemblies of a small set of RNA-seq reads,
but the MSU-RGAP annotation made use of EST
(expressed sequence tags) and FL-cDNA (full length
complimentary DNA) sequences that were not used to
aid annotation in this report. We purposefully did not
use an overly extensive collection of transcript evidence
in this report as we had wanted to test our new protocol
with transcript evidence that is similar to that which is
typically available for new genome annotation projects.
This limited transcript evidence set necessarily reduced
the predictive power of our gene finder programs that can
be heavily influenced by external evidence [11, 14, 18].
Finally, the MAKER six HMMs annotation was filtered to
remove any predictions that had homology to known
transposable elements (TE) and Pfam domains. The
MSU-RGAP genes were also filtered to flag any genes with
matches to a library of TE sequences, but these two
methods were necessarily different and could have
resulted in the removal of different subsets of TE-related
gene predictions. Nonetheless, after discounting the
“hypothetical” and “expressed” genes, there are 1045 high-
quality genes from the MSU-RGAP annotation that were
not present in the six HMMs annotation. This set of
missed genes may contain the BUSCO gene models that
were found to be missing in the six HMMs annotation. A
full list of all MSU-RGAP genes missing from the six
HMMs annotation can be found in Additional file 10.
Interestingly, there may be additional unrecognized param-

eters that could be used to improve gene prediction besides
our strategy of training gene prediction HMMs in a GC-
specific fashion. In the six HMMs annotation, some low GC
predictions were generated by the high GC HMMs, and
some high GC predictions came from the low GC HMMs
(Fig. 4a, b). While these could be cases of identical gene
models being created by two or more HMMs at a particular
locus with MAKER randomly retaining only one prediction
as the final model for the locus, we also observed novel low
GC predictions created by high GC HMMs as well as novel
high GC predictions arising from low GC HMMs (Figs. 3
and 4c, d). This suggests that some unrecognized gene fea-
tures besides simple GC content were present in the high
and low GC HMMs that allowed the prediction of novel low
and high GC genes, respectively.
It has been known that the GC content of genes used

to train gene prediction HMMs can affect the accuracy
of gene predictions [1, 6]. The AUGUSTUS gene finder
has an isochore-sensitive protocol that was developed in
order to more accurately predict mammalian genes.
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Despite the fact that isochores do not exist in plants (Fig. 1;
[12, 13]), we used the isochore-sensitive AUGUSTUS proto-
col to predict genes in O. sativa, but we did not see a sub-
stantial difference in the number or quality of predicted gene
models or a change in overall GC content distribution of
those gene predictions (Additional file 3: Figures S1 and S2).
This result was expected as gene GC content is not well cor-
related with the GC content of the surrounding genomic
region, and therefore, partitioning the training data before
training the gene prediction programs was found to be more
effective at improving gene annotations in O. sativa.
Given the importance of accurate gene prediction to

downstream genomics applications, the GC-specific MAKER
protocol described here will be of use to those working on
the structural annotation of any species with a bimodal dis-
tribution of GC content. MAKER is a powerful tool that en-
ables research groups of any size to pursue structural
annotation of sequenced genomes and, with the addition of
this protocol, will aid in more accurate gene prediction.

Conclusions
In this paper we presented a new GC-specific MAKER
annotation protocol that was used to successfully iden-
tify new evidence supported gene models in Oryza
sativa with high and low GC content. This new method
also improved 13% of gene models produced by the
standard MAKER protocol. Comparisons of this method
to the standard training protocols for the SNAP and
AUGUSTUS ab initio gene prediction programs as well
as the isochore-sensitive AUGUSTUS gene prediction
method showed that by training gene prediction HMMs
with data representing multiple ranges of GC content
and allowing MAKER to pick the best ab initio gene pre-
diction generated by multiple gene prediction HMMs, it
is possible to create a final gene annotation set that in-
cludes large numbers of both improved and novel gene
predictions. The novel gene predictions are supported
by various forms of evidence including transcript and
protein alignments and membership in ortholog groups
with genes from other grass species. Additionally,
TRAP-sequencing has shown that a majority of these
new predictions are being actively transcribed in O.
sativa. MAKER is a widely used structural annotation
program that allows researchers to produce quality gen-
ome annotations. This new method will be an important
addition to those interested in the prediction of genes in
regions of extreme GC content in Poaceae genomes but
will probably be generally applicable for species with
narrow, unimodal gene GC distributions as well.

Methods
Processing, quality assessment and assembly of evidence
Thirty-one paired end RNA-seq datasets for O. sativa
grown from different stress environments and tissues

were downloaded from the National Center for Biotech-
nology Information Sequence Read Archive (NCBI-SRA)
(Additional file 2: Table S3) using SRAToolkit v. 2.3.4-2
[39]. Raw read quality was assessed with FastQC v.
0.10.1 and Illumina adapters were trimmed using Trim-
momatic v. 0.32. Transcripts were assembled using
StringTie v. 1.3.0, and these transcript assemblies were
subsequently used as EST evidence for all MAKER runs.
The SwissProt plant protein dataset was downloaded
(ftp://ftp.uniprot.org/pub/databases/uniprot/current_re-
lease/knowledgebase/taxonomic_divisions/uniprot_spro
t_plants.dat.gz), and all O. sativa protein sequences
were removed. The remaining protein sequences not
from O. sativa were used as protein evidence during
the MAKER annotation.

MAKER standard de novo structural annotation of O. sativa
The MAKER-P (r1128) genome annotation pipeline was
used to annotate the Os-Nipponbare-Reference-IGRSP-
1.0 v7 genome assembly. A custom repeat library was
created for O. sativa using a method described previ-
ously [18]; (http://weatherby.genetics.utah.edu/MAKER/
wiki/index.php/Repeat_Library_Construction-Advanced),
and the custom repeat library was used by RepeatMasker
within the MAKER pipeline to mask repetitive elements.
Transcript assemblies and protein sequences described
above were used as evidence to aid gene predictions.
A complete description for running MAKER has been

provided previously [19, 40] and that protocol provides
details about ancillary scripts and example command
calls. An abbreviated description of the standard
MAKER pipeline is given here, and details about the
extended GC-specific MAKER pipeline are given below.
As MAKER is run iteratively, repeat masking and evi-
dence alignment was performed during an initial
MAKER run, and the resulting GFF3 (general feature
format) file containing masked regions and protein and
transcript alignments was used during all subsequent
MAKER runs. The initial MAKER run generates data
that aids in the training of the gene predictions pro-
grams SNAP (version 2013-11-29) [1] and AUGUSTUS
(version 2.6.1) [6] (Fig. 3). During the initial MAKER
run, the parameter est2genome was used to cause
MAKER to promote transcript alignments to gene
models. High-quality transcript-derived gene models
(AED < = 0.2) were used to train SNAP and AUGUS-
TUS. Instructions for training SNAP can be found else-
where [1, 19, 36]. We use a custom shell script,
train_augustus.sh, which trains the AUGUSTUS HMM
in only a few hours for most species.train_augustu
s.sh <path to working directory for train-
ing> <path to MAKER gff3 output from ini-
tial MAKER run> <species name for AUGUSTUS
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HMM directory> <path to single fasta file
with all transcript assemblies>
The train_augustus.sh shell script prepares training

and testing data sets and makes use of the autoAug.pl
training script from AUGUSTUS to create the appropri-
ate HMM files. This training script is relatively fast, as it
only requires the transcript evidence to be aligned to the
genomic regions that contain training and testing gene
models instead of aligning those sequences to the entire
genome. The working directory is used for writing a
number of intermediate files and directories during the
AUGUSTUS training process. All transcript sequences
that were used as evidence during the initial MAKER
run must be placed into a single transcript fasta file and
provided here as those sequences will be used during the
AUGUSTUS HMM training. The species name provided
for the HMM training will be used to name the directory
that holds all of the files for the new HMM and is also
used to specify the AUGUSTUS HMM in the maker_-
opts.ctl file. It is necessary to have write permissions in
the /config/species directory within AUGUSTUS instal-
lation directory in order for this script to work as that is
where the AUGUSTUS writes the species-specific HMM
directory. On a shared compute system, it may be neces-
sary to make a local installation of AUGUSTUS and to
then point MAKER to that installation by updating the
path in the maker_exe.ctl file. After training SNAP and
AUGUSTUS HMMs, MAKER was then run one last
time using only the SNAP and AUGUSTUS HMMs to
predict genes. During the final MAKER run, the parame-
ters keep_preds was set to 1.
To identify the high-quality gene set, the MAKER

accessory scripts gff_merge and fasta_merge, which are
included in the MAKER installation, were used to gener-
ate a GFF3 file with all gene predictions and evidence
data and the transcript and protein fasta files for those
predictions. Pfam domains were identified within the
predicted proteins using hmmscan [41].hmmscan –do
mE 1e-5 -E 1e-5 –tblout <MAKER max predic-
tions hmmscan output file> <path to Pfam-
A.hmm> <path to predicted protein fasta
file>
The annotation GFF3 file, the transcript and protein

fasta files and the hmmscan results file were used to
generate a quality MAKER standard gene set.genera-
te_maker_standard_gene_list.pl –input_gf
f <output of gff3_merge> –pfam_results <hm
mscan output> –pfam_cutoff 1e-10 –output
_file <path to MAKER standard gene list>-
get_subset_of_fastas.pl -l <path to MAKER
standard gene list> -f <fasta_merge output
transcript/protein fasta> -o <path MAKER s
tandard transcript/protein fasta>create_-
maker_standard_gff.pl –input_gff <output

of gff3_merge> –output_gff <path to MAKER
standard GFF3> –maker_standard_gene_list
<path to MAKER standard gene list>
Despite our use of a custom repeat library that was used

for masking repeat elements in the genome, some TE-
related genes remain unmasked, and we performed
additional analyses to identify and remove any TE-related
predictions from our MAKER standard gene set. Predicted
proteins were compared to a database of Gypsy transpos-
able elements (3.1.b2) [42]. Predicted proteins were also
aligned with blastp to a database of transposases [43, 44]
(http://weatherby.genetics.utah.edu/MAKER/wiki/index
.php/Repeat_Library_Construction-Advanced). A GFF3
file of TE-related genes was derived from the MSU-
RGAP gene annotation GFF3 file (http://rice.plantbio-
logy.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/an
notation_dbs/pseudomolecules/version_7.0/all.dir/all.gff
3) and was compared to the MAKER standard GFF3
file using gffcompare [45].hmmscan –tblout <Gyps
y HMM analysis output> -E 1e-5 –domE 1e-5
<path to gypsy_db_3.1b2.hmm> <path to mak
er standard proteins fasta>blastp -db <Tp
ases020812 database> -query <path to MAKE
R standard protein fasta> -out <path to T
pases blast output> -evalue 1e-10 -outfmt
6gffcompare -o <TE comparison output file
> -r <MSU RGAP TE GFF3> <MAKER standard GFF3>
The create_no_TE_genelist.py script use the data de-

rived above, the Pfam hmmscan results file and a list of
TE-related Pfam domains (TE_Pfam_domains.txt; avail-
able on Childs Lab GitHub repository) to create a list of
MAKER standard genes with no TE-related prediction-
s.create_no_TE_genelist.py –input_file_TE
pfam <TE_Pfam_domains.txt> –input_file_-
maxPfam <MAKER max predictions hmmscan
output file> –input_file_geneList_toKeep
<path to MAKER standard gene list> –input_-
file_TEhmm <Gypsy HMM analysis output>
–input_file_TEblast <path to Tpases blast
output> –input_file_TErefmap <TE compari-
son output refmap file> –output_file <path
to TE filtered MAKER standard gene list>-
create_maker_standard_gff.pl –input_gff
<MAKER standard GFF3> –output_gff <TE fil-
tered MAKER standard GFF3> –maker_stan-
dard_gene_list <path to TE filtered MAKER s
tandard gene list>get_subset_of_fastas.pl
-l <path to TE filtered MAKER standard gene
list> -f <fasta_merge output transcript/
protein fasta> -o <TE filtered MAKER stand
ard transcript/protein fasta>
This high-quality gene set without TE-related genes

was used for all analyses presented in the Results sec-
tion. In addition to this standard MAKER annotation,
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two additional annotations were created using either the
SNAP HMM alone or the AUGUSTUS HMM alone,
and high-quality gene sets without TE-related genes
were identified for each of these annotations, which were
used for comparisons to the final GC-specific six HMMs
annotation described below.

Training GC-specific HMMs with high-GC and low-GC
gene sequences
In order to train high and low GC-specific HMMs for
SNAP and AUGUSTUS, it was necessary to use training
data that consisted of gene models with CDS (coding
DNA sequence) GC content within specific ranges. The
transcript-based gene predictions from the initial
MAKER run (when the est2genome parameter was
used) served as the starting point for GC-specific HMM
training (Fig. 3). After generating the GFF3 file describ-
ing the transcript-based gene models, the genome
FASTA file was processed by the Perl script
MAKER_GC_cutoff_determination.pl.MAKER_GC_cu-
toff_determination.pl –fasta <full path to
file with genome FASTA sequences> –gff
<full path to MAKER created GFF3 of est2-
genome> –name <BASE_NAME for output files>
–peak <peak determination window, odd in-
teger, default is 5> –smooth <smoothing
window, odd integer, default is 7>
The MAKER_GC_cutoff_determination.pl script helps

to identify the GC values of the peaks in a bimodal grass
gene GC content distribution. The script pulls out the
CDS FASTA sequences for the transcript-based gene
predictions from the GFF3 and calculates the GC con-
tent for each gene prediction. The script assigns the
gene GC values to integer bins based on the –smooth
parameter, which helps to smooth the calculation of the
distribution by using a moving window average and
writes the results to a file. This output file can be used
in R to plot the distribution of gene GC content. A
FASTA file of the CDS sequences and a GC content file
(showing nucleotide composition and GC content of
each prediction) are also produced. In addition, a text
file is created with the high and low peak values of the
bimodal gene GC distribution that were used here as set
points in creating the high and low GC HMM training
sets. These peaks are determined by taking each GC bin
and looking at a set number of bins on either side (set
by –peak). A peak is identified when the ((peak - 1) /
2) bins on each side of a GC bin have lower calculated
GC values than the middle GC bin. However, users may
pick their own high-GC and low-GC cutoff values, and
the gene GC content distribution graph may aid in pick-
ing those cutoff values. The MAKER_GC_training_set_-
create.py script relies on two files produced from the
MAKER_GC_cutoff_determination.pl script: BASE_NA

ME_gc_content.txt and BASE_NAME_cutoff.txt. The
MAKER_GC_training_set_create.py script will create hig
h-GC and low-GC GFF3 files that can be used for train-
ing SNAP and AUGUSTUS.MAKER_GC_training_se
t_create.py –input_file_gff <path to MAKER
GFF file> –input_file_GC_content <BASE_NA
ME_gc_content.txt file> –input_file_GC_-
cutoff <BASE_NAME_cutoff.txt file> –out-
put_file_low <path to the low GC GFF file>
–output_file_high <path to the high GC GFF
file> –genome_fasta <path to the genome
fasta file>
As detailed in Fig. 3, this script is run after est2gen-

ome transcript alignment to create new GC-specific
HMM training sets. All subsequent steps should only
use the high or low GC output files.

MAKER six HMMs annotation
After the creation of high and low GC SNAP and AU-
GUSTUS HMMs, a final MAKER run is performed
using the standard, high and low GC HMMs at the same
time. When using multiple SNAP and AUGUSTUS
HMMs for this six HMMs annotation, predictions from
the different HMMs can be identified by providing the
path to a specific HMM, a colon, and an HMM-specific
identifier (see below). Providing a comma-separated list
to the snaphmm and augustus_species parameters
allows the designation of multiple HMMs. To create this
new six HMMs structural annotation, the following pa-
rameters are set in the MAKER maker_opts.ctl file:#———
Re-annotation Using MAKER Derived GFF3ma-
ker_gff = path to MAKER alignment GFF3est_-
pass=1protein_pass=1rm_pass=1#———Gene Pr
edictionsnaphmm= path to standard SNAP
HMM:orig_snap, path to high GC HMM:high_s-
nap, path to low GC HMM:low_snapAUGUSTUS_-
species= path to standard AUGUSTUS dire
ctory:orig_aug, path to high GC AUGUSTUS
directory:high_aug, path to low GC AUGUS-
TUS directory:low_augkeep_preds=1
Once the six HMMs MAKER annotation is finished, a

final high-quality MAKER gene set composed of gene
models with transcript, protein or Pfam domain support
was created using the same protocol that was used above
for the standard annotation.

Creation of SNAP and AUGUSTUS HMMs trained with
transcripts of randomized GC content
To assess the impact of GC specific HMM training on
the structural annotation of O. sativa, three MAKER an-
notations were created using HMMs trained with tran-
scripts with randomized GC content from the standard
annotation. The following Perl scripts were used, which
create the training GFF3 files based on a random seed

Bowman et al. BMC Bioinformatics  (2017) 18:522 Page 11 of 15



instead of percentage GC content. The random_data-
set_generate.pl script takes as input the MAKER
standard transcript FASTA and outputs three tran-
script FASTAs to be used for downstream GFF3 cre-
ation and HMM training.random_dataset_gener
ate.pl –transcript < name of transcript
FASTA file > –random1 <name of output
random file1> –random2 <name of output
random file2> –random3 <name of output
random file3>
The seq_name.pl script was run for each of the three

random output FASTA files, and generates a list of
MAKER standard transcript names from each transcript
FASTA.seq_name.pl–fastafile <path to an
output file from random_dataset_genera-
te.pl>–output <name of text file with ID
names for each FASTA sequence>
Finally, the random_gff3_create.pl script re-

quires as inputs the MAKER standard GFF3 with the
genome FASTA included and the gene IDs from each of
the random FASTAs, and the script generates the final
randomized GFF3s that were used for SNAP and AU-
GUSTUS HMM training.random_gff3_create.pl–
align_gff <path to MAKER GFF3 with FASTA
included>–rand_1 <path to random 1 IDs>–
rand_2 <path to random 2 IDs>–rand_3 <path
to random 3 IDs>
The outputs of these steps are three GFF3 files

containing the coordinates of randomly selected gene
predictions. Each of the GFF3 files created by ran-
dom_gff3_create.pl was then used for SNAP and AU-
GUSTUS training.

Isochore-specific AUGUSTUS training in O. sativa
To compare the MAKER GC specific HMM training
protocol to the isochore-specific AUGUSTUS method,
we trained AUGUSTUS in its isochore-sensitive mode
as detailed below [6]. After isochore-specific AUGUS-
TUS training, the resulting HMM was used in a MAKER
run with all other parameters as had been used for the
standard annotation to create a MAKER structural an-
notation based only on isochore-specific AUGUSTUS
gene predictions. An additional annotation was also cre-
ated with the isochore-specific AUGUSTUS HMM and
the standard SNAP HMM for comparison to the six
HMMs annotation method.
After one round of traditional AUGUSTUS training [6]

which creates the augustus.gb.train and augustus.gb.test
genbank formatted gene files, change the gc_range_min
value to 0.32, gc_range_max value to 0.73 and the decom-
p_num_steps value to 7 in the parameters.cfg file in the
newly created AUGUSTUS species HMM directory. The
following three commands will then complete the isochore-
specific training of AUGUSTUS.[AUGUSTUS_installa

tion_dir]/scripts/optimize_augustus.pl –s
pecies=<species_name> augustus.gb.traine-
training –species=<species_name> augustus
.gb.trainaugustus –species=<species_name>
augustus.gb.test

Identification of novel high or low GC content gene
predictions
The BEDtools v 2.23.0 [46] intersect command was used
to compare two GFF3 files containing MAKER gene
coordinates to identify novel gene models that were
unique to the gene predictions created with high or low
GC HMMs. Those predictions that were only created by
high GC HMMs but not standard or low GC HMMs
were considered novel high GC HMM predictions, while
predictions created only by the low GC HMMs were
deemed novel low GC HMM predictions.

Identification of orthologs of novel O. sativa gene
predictions in other grass species
Paralogs of novel high or low GC gene predictions in O.
sativa and orthologs in other grass species were identi-
fied using OrthoMCL (v1.4) [32] using default parame-
ters with the predicted proteins of the high or low GC
unique genes. Predicted proteins of Brachypodium
distachyon (v 3.1; https://phytozome.jgi.doe.gov/pz/por-
tal.html#!info?alias=Org_Bdistachyon) Zea mays (v5b+,
Phytozome 11: http://phytozome.jgi.doe.gov/pz/portal.ht
ml#!info?alias=Org_Zmays), Oryza sativa ssp. Nippon-
bare (v7.0, http://rice.plantbiology.msu.edu/) and Sorghum
bicolor (v3.1, https://phytozome.jgi.doe.gov/pz/portal.htm-
l#!info?alias=Org_Sbicolor) were used for comparison.

Assessing genome assembly and annotation
completeness
BUSCO (Benchmarking Universal Single-Copy Orthologs)
(v2.0) was used to assess completeness for the six HMMs
protocol compared to the MSU-RGAP annotation. BUSCO
was run in protein mode using the plant reference dataset
(embryophyta_odb9) containing 1440 protein sequences
and orthologous group annotations for major clades. Pre-
dicted proteins from the six HMMs annotation and repre-
sentative proteins from the MSU-RGAP annotation were
separately used as input to BUSCO.

Evaluation of codon usage compared to equal usage of
non-synonymous codons
The effective number of codons (Nc) was determined
and plotted against the GC content of synonymous sites
(GC3s) for coding regions of the novel genes predicted
by the six HMMs protocol and the MSU-RGAP annota-
tion. CodonW was used to determine the effective num-
ber of codons and the GC content of the synonymous
sites (http://codonw.sourceforge.net). The data was then
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plotted alongside a curve showing the relationship be-
tween the effective number of codons and GC3s under
the hypothesis of no selection.

Translating ribosome affinity purification (TRAP)
sequencing and RNA-seq analysis
Paired end TRAP-seq and mRNA-seq reads were
trimmed using Cutadapt v1.8.1 using default parameters.
RNA quantification was conducted with the kallisto v
0.42.5 [47] pseudoalignment method using the six
HMMs MAKER predicted transcripts with a bootstrap
value of 100. Transcripts per million (TPM) were calcu-
lated for both the TRAP-seq and mRNA-seq reads for
each tissue, and the translatome enrichment index (TEI)
was calculated as the ratio of transcripts per million of
TRAP-seq to mRNA-seq for each high-quality six
HMMs MAKER transcript. TRAP-seq and mRNA-seq
data are available in NCBI BioProject PRJNA298638.
NCBI-SRA accession numbers for additional RNA-
sequencing data can be found in Additional file 9.

Figure creation
Figures were created in R (v. 3.1.1) [48] using the follow-
ing packages: ggplot2 [49], reshape2 [50], NMF [51] and
ggridges (https://github.com/clauswilke/ggridges).
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