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Abstract

As a diverse species, watermelon [Citrullus lanatus (Thunb.) Matsum. &Nakai var. lanatus]

has different kinds of fruit sizes, shapes, flesh colors and skin colors. Skin color is among

the major objectives for breeding. Yellow skin is an important trait in watermelon, but the

underlying genetic mechanism is unknown. In this study, we identified a locus for yellow skin

through BSA-seq and GWAS. A segregation analysis in F2 and BC1 populations derived

from a cross of two inbred lines ‘94E1’(yellow skin) and ‘Qingfeng’(green skin) suggested

that skin color is a qualitative trait. BSA-seq mapping confirmed the locus in the F2 popula-

tion, which was detected on chromosome 4 by GWAS among 330 varieties. Several major

markers, namely, 15 CAPS markers, 6 SSR markers and 2 SNP markers, were designed to

delimit the region to 59.8 kb region on chromosome 4. Utilizing the two populations consist-

ing of 10 yellow and 10 green skin watermelons, we found a tightly linked functional SNP

marker for the yellow skin phenotype. The application of this marker as a selection tool in

breeding programs will help to improve the breeder’s ability to make selections at early

stages of growth, thus accelerating the breeding program.

Introduction

Skin color is predominantly an extremely important characteristic for markets and breeders

point of view, displaying wide range of variations. In the past, Many QTLs (quantitative trait

locus) and genes related to fruit skin have been detected or cloned in different crops, such as

apple, bitter gourd, grapefruit, pear, and melon [1–5]. Coloring pigments imparts different

color or coloring schemes to the plant organs, one of them is anthocyanin. Anthocyanin syn-

thesis in apple flowers is controlled by two MYB genes, two UFGT genes, one bHLH3 gene and

one bHLH33, while the MdMYB1a, MdMYB1, MdbHLH3-1, MdbHLH33-1, MdUFGT2-1, and

MdUFGT4 genes were disclosed to synthesize anthocyanin in apple skin. However, they may

be involved in other plant functions at different fruit development stages in different cultivars

[4]. In tomato, the study demonstrated that the MYB12 transcription factor plays an important

role in regulating the flavonoid pathway in tomato fruit and suggested strongly that SlMYB12

PLOS ONE | https://doi.org/10.1371/journal.pone.0200617 September 28, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dou J, Lu X, Ali A, Zhao S, Zhang L, He N,

et al. (2018) Genetic mapping reveals a marker for

yellow skin in watermelon (Citrullus lanatus L.).

PLoS ONE 13(9): e0200617. https://doi.org/

10.1371/journal.pone.0200617

Editor: Yuan Huang, Huazhong Agriculture

University, CHINA

Received: January 22, 2018

Accepted: June 29, 2018

Published: September 28, 2018

Copyright: © 2018 Dou et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by Agricultural

Science and Technology Innovation Program

(ASTIP) (CAAS-ASTIP-2017-ZFRI), China

Agriculture Research System (CARS-25-03),

National Natural Science Foundation of China (No.

31471893 and 31672178), and Central Public-

interest Scientific Institution Basal Research Fund,

China (1610192016301 and 1610192016209). The

funders had no role in study design, data collection

https://doi.org/10.1371/journal.pone.0200617
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200617&domain=pdf&date_stamp=2018-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200617&domain=pdf&date_stamp=2018-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200617&domain=pdf&date_stamp=2018-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200617&domain=pdf&date_stamp=2018-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200617&domain=pdf&date_stamp=2018-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200617&domain=pdf&date_stamp=2018-09-28
https://doi.org/10.1371/journal.pone.0200617
https://doi.org/10.1371/journal.pone.0200617
http://creativecommons.org/licenses/by/4.0/


is a likely candidate gene for the yellow color [6]. Strong relation existed between expression of

these genes and skin color validated by transgenic approaches [7, 8]. Similarly, dominant and

additive effect was under the control of more than three genes in bitter gourd. In another

study, inheritance of skin color is hypothesized to be a duplicate dominant epistasis rather the

dark green dominance over light green. Recessive form of g-1 and g-2 genes control light green

skin. Genotype with dominant allele will result in the production of solid dark green skin. [5].

In another study, fruit shading enhances skin color, carotenes accumulation and chromoplast

differentiation in grapefruit, Transcript levels of most of the genes (PSY, PDS, ZDS1, βLCY1
and βCHX) enhanced during fruit ripening and were notably higher in light-grown fruits [3].

In Japanese pears, Inoue et al [9] screened 200 Random Amplified Polymorphic DNA (RAPD)

markers in two cross breeds and eventually identified a RAPD marker to distinguish the green

skin, which explained approximately 92% of the phenotypic variation in the green skin.

PyMYB10 plays an important role in the color formation of red pear skin, it is up-regulated in

both the light-colored pear ‘Zaobaimi’ and the well-colored red pear ‘Yunhong-1’ [1]. In

melon, research results demonstrate that the Kelch domain-containing F-box protein coding

gene (CmKFB), which plays a key role in controlling skin and leaf color, functions as a post-

transcriptional regulator, which diverts flavonoid metabolic flux. A metabolite analysis indi-

cated that downstream flavonoids accumulate together with naringenin chalcone, while

CmKFB expression diverts the biochemical flux towards coumarins and general phenylpropa-

noids [2].

Watermelon [Citrullus lanatus(Thunb.)Matsum.&Nakai], a member of cucurbitacea family,

is globally famous and liked because of its high nutrition, flavor and aroma accompanied with

divergent shapes and colors of flesh and skin. Haploid genome of watermelon has approximate

size of 425 Mb (2n = 2X = 22) with 11 chromosomes. The genome sequence and the gene

annotation of watermelon was released in 2013, following cucumber and melon [10–12]

(http://cucurbitgenomics.org/), making it worthwhile to apply next-generation sequencing

(NGS) to reveal the functions of genes by fine mapping. Similar to other cultivated cucurbits,

watermelon has substantial divergence in various fruit traits. Watermelon has gained integral

place in human diet because of its shelf life, skin color, nutritional value and they are its major

quality parameters that are presumably concerned in research. Until now, some of these have

been investigated at the molecular level, including seed color, seed size, fruit shape, flesh color,

and skin color [13–15].

Divergent skin color and patterns in watermelon are preference of consumers that makes it

commercially important and considerable importance has also been given to its esthetic value

[8]. Watermelon breeders always focused on improving the cultivars quality by introducing

novel traits in existing germplasm, one of the quality parameters is skin color that includes dis-

tinct skin patterns namely, solid, striped and intermittent [16, 17]. Previously, many studies

hypothesized the inheritance pattern of skin color in watermelon. In the model demonstrated

by Weetman [18] and Poole [19], it explains how striped and non-striped pattern are ascer-

tained by three alleles at a single locus. Moreover, Weetman [18] confirmed that two loci

account for the inheritance of striped patterns and skin color. This fact was further strength-

ened in another study by Kumar and Wehner [17] showing that two loci account for the solid

dark green skin color. Primarily, green color skin prevailed in watermelon [16]. During the

1900s, in Japan and the United States, watermelon breeders produced new hybrids with a char-

acteristic appearance of a distinct color and pattern. Unfortunately, they were not maintained,

leading to the unavailability of these cultivars at present. However, the p allele in ‘Japan 6’

imparted thin and fainted lines on the skin, and ‘China 23’ had striped skin coupled with a

medium green-colored network controlled by the P allele. ‘Long Iowa Belle’ and ‘Round Iowa

Belle’ are characterized by irregularly distributed and randomly shaped whitish to green spots
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on a solid dark green skin and are determined by the m gene [18]. Golden yellow skin color in

the ‘Royal Golden’ is attributed to inheritance of single recessive gene go [20]. Kumar and

Wehner [17] suggested that the solid dark green skin color is controlled by two loci. Inheri-

tance of solid dark green skin versus light (gray) skin showed duplicate dominant epistasis.

Duplicate dominant epistasis gives rise to a 15:1 ratio (solid dark green: light skin pattern) in

the F2 generation. When both the loci are homozygous recessive, we observe a light skin pat-

tern. The g-1 and g-2 genes control the light green skin when in the homozygous recessive form

[17]. Recent studies, enlightened the inheritance of foreground stripe patternD (depth of skin

color); and Dgo (background skin color) claiming to be governed by three independent loci

[21]. Golden yellow fruit is inherited as a single recessive gene go [20] derived from ‘Royal

Golden’ watermelon. The immature fruit have a dark green skin, which becomes more golden

yellow as the fruit matures. The stem and older leaves also become golden yellow [16].

Recently, yellow skin watermelon has gained more popularity among consumers, and the

market also appears to have a number of different yellow skin varieties, but information

regarding the inheritance of the yellow skin trait is elusive and candidate genes controlling yel-

low skin in watermelon are not reported yet. In this study, we investigated the inheritance the

pattern of the yellow skin trait in the F2 population of ‘94E1’ (yellow skin) ×‘Qingfeng’ (green

skin). We identified a locus and linkage marker on chromosome 4 that was associated with

watermelon yellow skin through genome wide association studies (GWAS) of 330 watermelon

accessions and bulked-segregant analysis (BSA) by genotyping a pair of bulked DNA samples

from two sets of individuals representing opposite extreme phenotypes (yellow individuals

and green individuals). To our knowledge, this is the first report about the mapping and inher-

itance mechanism controlling watermelon yellow skin. The current research will help to

shorten the breeding period for the yellow skin trait in watermelon. This study will not only

accelerate the breeding process, but also provide valuable research tools to unravel the inheri-

tance patterns of yellow skin in watermelon that will be helpful in the future.

Materials and methods

Plant materials

The F2 population was raised by crossing two inbred lines, namely, ‘94E1’ (P1), a yellow skin

cultivar having a characteristic appearance of yellow veins and petioles, and a green skin water-

melon inbred line ‘Qingfeng’ (P2), with the green skin cultivar having a characteristic appear-

ance of green leaves (Fig 1). A back cross population was obtained by hybridizing F1 with each

parent to create BC1P1 (F1×94E1) and BC1P2 (F1×Qingfeng).

For segregation analysis, the F2 population was grown in two experiments in three seasons,

Spring 2015, Autumn 2015 and Spring 2016, consisting of 897, 428 and 618 F2 individuals,

respectively. The BC1P1 population (50 plants) and the BC1P2 (245 plants) population were

investigated only in the Spring of 2016. In this study, there were only two types of fruit skin

color: yellow and green, which was easily distinguished. For each plant, the phenotype was

recorded (Table 1). All the materials were grown in the experimental area of the ‘Xinxiang’,

Zhengzhou fruit research institute (Zhengzhou, China).

Bulked-segregant DNA analysis

Genomic DNA was isolated using the CATB method [22] from fresh leaves of the F2 plants in

the Spring 2016 experiment, which were used for both the QTL-seq and CAPS markers analy-

ses. Two DNA pools, the yellow skin pool (Y-pool) and green skin pool (G-pool), were con-

structed by mixing an equal amount of DNA from 30 yellow skin watermelon plants and 30

green skin watermelon plants. Pair-end sequencing libraries (read length 100 bp), with insert

Citrullus lanatus L.
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Fig 1. Fruit and leaf sample with two watermelons with yellow and green skin color. a, the fruit of yellow skin watermelon ‘94E1’; b, the fruit

of green skin watermelon ‘Qingfeng’; c, the leaf of yellow skin watermelon ‘94E1’; d, the leaf of green skin watermelon ‘Qingfeng’.

https://doi.org/10.1371/journal.pone.0200617.g001
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sizes of approximately 500 bp, were prepared for sequencing with an Illumina Genome Ana-

lyzer IIx machine. The short reads from the Y-pool and G-pool were aligned to the ‘97103’ ref-

erence genome [12] with the BWA software [23]. First, alignment files were converted to

SAM/BAM files using SAM tools [24] and were then applied to the SNP-calling filter ‘Coval’,

which was previously developed [25] to increase SNP-calling accuracy. The SNP-index was

calculated for all the SNP positions. We excluded SNP positions with a SNP-index of<0.6 and

a read depth<6 from the two sequences, as these may represent spurious SNPs called due to

genomic repeat sequence, sequencing or alignment errors.

Two parameters, the SNP-index and Δ (SNP-index) [25, 26], were calculated to identify

candidate regions for the watermelon yellow skin QTL. An SNP-index is the proportion of

reads harboring the SNP that is different from the reference sequence. Δ (SNP-index) was

obtained by subtracting the SNP-index of the Y-pool from that of the G-pool. Thus, the SNP-

index = 0 if the entire short reads contained genomic fragments from a mutation line; and the

SNP-index = 1 if all the short reads were from the reference genome ‘97103’. An average of the

SNP-indexes of the SNPs located in a given genomic interval was calculated using a sliding

window analysis with a 1 Mb window size and a 10 kb increment. The SNP-index graphs for

the Y-pool and G-pool, as well as the corresponding Δ(SNP-index) graph, were plotted.

To generate confidence intervals of the SNP-index value under the null hypothesis of no

QTL, we carried out a computer simulation. We first made two pools of progeny with a given

number of individuals by random sampling. From each pool, a given number of alleles corre-

sponding to the read depth were sampled. We calculated SNP-index for each pool and derived

Δ(SNP-index). This process was repeated 10, 000 times for each read depth, and confidence

intervals were generated. These intervals were plotted for all the genomic regions that had vari-

able read depths.

GWAS

A total of 330 watermelon accessions, which contained different fruit skin colors were re-

sequenced, and 2.3T of data, which had an 85.42% average genome coverage and a 9.24×aver-

age sequence depth, were obtained. The watermelon accessions were genotyped using

4,661,625 evenly spaced SNPs. The association between fruit skin color and each SNP was

tested using a unified mixed model [27, 28]. This mixed linear model included principal com-

ponents [29] as fixed effects to account for the population structure and a kinship matrix [30]

to account for familial relatedness. Utilizing the Bayesian information criterion, a backward

elimination procedure was implemented to determine the optimal number of principal com-

ponents to include in the mixed model [31]. The false discovery rate was controlled at 5%

using the Benjamini and Hochberg [32] procedure. A likelihood ratio–based r2 statistic was

used to assess the goodness of fit of each SNP [33]. All the analyses were conducted using the

Genome Association and Prediction Integrated Tool software package [34].

Table 1. Segregation of the F2 and BC1 populations.

Populations Yellow skin Green skin Segregation ratio Chi-square P

Spring 2015 F2 676 221 3:1 0.063 0.80

Autumn 2015 F2 317 111 3:1 0.199 0.66

Spring 2016 F2 458 160 3:1 0.261 0.61

BC1P1 50 0

BC1P2 126 119 1:1 0.200 0.65

https://doi.org/10.1371/journal.pone.0200617.t001
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Fine mapping through the CAPS markers

The watermelon genome sequence was obtained from the watermelon database (http://www.

icugi.org), and the sequence was compared with the re-sequencing data to identify SNPs via a

filter pipeline [26]. To minimize the genetic interval for fine mapping and to verify the accu-

racy of the BSA-Seq, 15 cleaved amplified polymorphic sequences (CAPS) markers for the

SNPs generated from the BSA-seq, 6 SSR markers and 2 SNP markers were developed for gen-

otyping (Table 2).

Table 2. Information on the major markers in chromosome 4 used to analyze the polymorphisms.

Marker Number Primer Sequence position Digest(s)

CAPS01 F—AGTTCAATGACCAAAGGTGAACT
R—AATGTCACGTTGTCATGTCCA

Chr4:59846 BglII(a/gatct):445+206,651

CAPS02 F -TGCAACTACAGGTGTAAGGCA
R—CCAACAACCATTCACGCAGG

Chr4:67981 SalI(g/tcgac):445+317,762

CAPS03 F—ACCTTGGGAGCCCTTAGAGA
R—AGGTAGAACACTCAAACTTAGGGT

Chr4:137311 HapII(c/cgg):335+316,651

CAPS04 F—GAACGTCCCAAGGAACCACA
R—TCCAACTTCAAACCCTTCCTCT

Chr4:840557 TaqI(t/cga):372+352,724

CAPS05 F—CGTACGTATACCACCACCCG
R—TGGTCATCGTCATCGCTAAGG

Chr4:909302 EcoRI(g/aattc):405+353,758

CAPS06 F—TGACCTATTCTCGCTTGCCC
R—TCCCCTTGCATTTTCCCTCG

Chr4:999594 Eco32I(gat/atc):437+292,729

CAPS07 F—AATAGCTCTTCGTTCATGTACTCT
R—AGACATCACGTGGAAATTAGAAG

Chrr4:3362878 HapII(c/cgg):330+328,658

CAPS08 F—ACCCTACCATGTCTATTAACCATCC
R—AGGAAACAATTGTATAGCTATGGTTT

Chr4:3848297 HindIII(a/agctt):471+252,723

CAPS09 F—AGTGTTCAAATTAACCAAGGGGA
R—ACTCGCATGTCACCTACACG

Chr4:3874492 HindIII(a/agctt):458+252,710

CAPS10 F—TGACTACCAATCAGACAAATCTTGA
R—GGTGGTCAGTGGGAATTGCA

Chr4:4156897 TaqI(t/cga):366+312,678

CAPS11 F—ACATCATCTCTCCCGCTCCA
R—TGTTGCGTTTAGGGTTGGTT

Chr4:4994766 AluI(ag/ct):473+179,652

CAPS12 F—ACCGCTAAAAACTAAATGAGTGTT
R—AGCATGCAAAATAACGCCCG

Chr4:5533196 AsuII(tt/cgaa):714,357+357

CAPS13 F—ATCAATTATGCCTCAATAGGTTTCTT
R—TGGAGTATTGCATTGAGTAGCA

Chr4:6486343 BfaI(c/tag):494+186,680

CAPS14 F—TTCCTTGCAGCCAACTCACT
R—CAAGGGTGCTCGAGAAGGTT

Chr4:6838095 EcoRI(g/aattc):782,492+290

CAPS15 F—TCCTTCAACAGTTGGCGACT
R—CGCCTTGAGTGGGCTATAGG

Chr4:6862096 AluI(ag/ct):408+281,689

SNP02 F—TGCATGATGAGCCTTCTTTGAA
R—TAGACGGGGCTCACAAGTCA

Chr4:48456

SNP03 F—AGAATCAACATGAGAATGCAACA
R—ATCAAAGGACGAGCCCTCAC

Chr4:37932

SSR01 F—GCATATCTAATCTATGAGCACCTAC
R—ACAATATTTTGTTGTAGAGTAGAGGA

Chr4:74647–75150

SSR02 F—GGGTTTGTTTCCATTTCCCT
R—GGAAGGGTTCTGCATGTGTT

Chr4:328582–328860

SSR03 F—GGGCCTGTGATCCATAGAGTAAAA
R- GATGCATGCTTAAATTCTTATTTCTTCA

Chr4:1572774–1572919

SSR04 F—GGATGGAAAAATTGGAAAGAA
R—TGAGGCGACTGTGGTTCATA

Chr:3199559–3199824

SSR05 F—ATGCTTAGTAGGCGGGTTTC
R—TGCCGGAGATTTTAGACTGT

Chr4:3526134–3526604

SSR06 F—AATGGTTGCGTTGAAGTTCC
R—TTGGCATCCTCTTCTTCTTCA

Chr4:5959998–5960201

https://doi.org/10.1371/journal.pone.0200617.t002
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The PCR was carried out in a total volume of 10 μL containing 5 μL of 2× Power Taq PCR

Master Mix (BioTeke, China), 0.5 μL of 10μM per primer, 1μL of 200 ng of genomic DNA and

3μLof RNase-free water. All the amplifications were performed on an EasyCycler (Analytik

Jena, Germany) under the following conditions: 5 min at 95˚C; 28 cycles of 30 s at 94˚C; 30 s

at 56˚C; 50 s at 72˚C; and a final extension step at 72˚C for 10 min. The amplified PCR prod-

ucts were digested using suitable restriction endonucleases according to the manufacturer’s

instructions at 37˚C or 65˚C for 4–10 h. The digests were resolved by electrophoresis on a

1.0% agarose gel or PAGE gel and were visualized on a Versa Doc (Bio-Rad) after staining

with ethidium bromide (EB).

Real-time PCR analysis

The ovaries and fruit skin from different developmental stages were collected for RNA extrac-

tion to check the gene expression. Total RNA was extracted using the plant total RNA purifica-

tion kit (GeneMark, China) following the manufacturer’s instructions. The cDNA was

synthesized with reverse transcriptase M-MLV (RNase H-) following the manufacturer’s

instructions (Takara, Japan).

The primers for the genes and the reference gene Actin [35] used in quantitative reverse

transcription polymerase chain reaction (qRT-PCR) were designed based on Cucurbit Geno-

mics Database (http://www.icugi.org). The expression levels of the target genes were evaluated

by qRT-PCR using a LightCycler480 RT-PCR system (Roche, Swiss). All the reactions were

performed using the SYBR Green real-time PCR mix according to the manufacturer’s instruc-

tions. Each 20 μL RT-PCR reaction mixture containing 1 μL of cDNA, 1 μL of forward primer

(10μM), 1 μL of reverse primer (10μM), 10 μL of 2×SYBR Green real-time PCR mix, and

nuclease-free water to final volume of 20 μL, was preheated at 95 ˚C for 5 min, followed by 45

cycles of 95 ˚C, 60 ˚C and 72 ˚C for 30 sec. High Resolution Melting was performed under the

following conditions:1 min at 95 ˚C; 1 min at 40 ˚C; 1 s at 65 ˚C; and continuous at 95 ˚C. All

the experiments were performed in triplicate. The raw data from the qRT-PCR were analyzed

using LCS480 software 1.5.0.39 (Roche, Swiss) and the relative expression was determined

using the 2-ΔΔCT method [36].

Testing markers for linkage to the yellow skin of watermelon

All the CAPS markers, SSR markers and SNP markers that met the criteria for putative linkage

to yellow skin were selected for testing across 618 F2 individuals in Spring 2016. If linkage was

observed, the markers were tested in 20 germplasm resources, which contained 10 different

yellow skin watermelons and 10 different green skin watermelons.

Results

Inheritance of yellow skin in watermelon

The segregation ratio of yellow skin among the three F2 populations in 2 years is presented in

Table 1. The variation in the five segregating populations (F2—2015 Spring, F2—2015

Autumn, F2—2016 Spring, BC1P1-2016 Spring, BC1P2-2016 Spring) showed that the yellow

skin alleles were dominant over the green skin alleles. The segregation ratio computed by the

chi-square test for these three populations was in accordance with 3:1 (Table 1), suggesting

that watermelon yellow skin was a qualitatively inherited trait controlled by a single dominant

gene. Interestingly, the leaves, veins and petioles all showed a green color at the seedling stage.

However with the development of the fruit, the veins and petioles of the yellow skin

Citrullus lanatus L.
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watermelon individuals gradually turned yellow, which made it very easy to distinguish the

yellow watermelon from the green watermelon (Fig 1).

BSA-seq reveals that the watermelon yellow skin gene is located on

chromosome 4

A total of 30 yellow skin individuals (Y-pool) and 30 green skin individuals (G-pool) were

selected from the two populations planted in Autumn 2015. We sequenced the two pools

using the Illumina HiSeqTM PE150 platform. A total of 33.753 GB of raw data was generated

for both pools, with approximately 30× depth and more than 99% coverage for each. The data

was aligned to the ‘97103’ watermelon reference genome (http://www.icugi.org), and 247,012

SNPs were identified between the two pools. Each identified SNP was used to compute the

SNP-index. The graph for the Δ (SNP-index) was plotted and computed against the genome

positions by combining the information of the Y-pool and G-pool SNP-index (Fig 2a). The

regions on chromosome 4 from 1 bp to 7 Mb had an average higher than 0.6 Δ (SNP-index)

(Fig 2a and 2b) and significantly differed from 0 of the Δ (SNP-index) value at a 90% signifi-

cance level. The result showed that there was a candidate gene controlling the yellow skin trait

at this region (S1 Table).

GWAS identify watermelon yellow skin gene located on chromosome 4

A GWAS was performed for watermelon fruit skin color, which utilized a total 330 water-

melon accessions, including different skin colors to capture the maximum genetic diversity,

Fig 2. Fine mapping of the watermelon yellow skin trait. a: Δ (SNP-index) graph from the QTL-seq analysis; b: The

yellow skin was identified to an interval of 1–7 Mb on chromosome 4. c: The candidate gene was narrowed to a 59.8 kb

interval according to 4 recombine individuals in F2 population. YS: yellow skin; GS: green skin. Yellow skin was

dominant.

https://doi.org/10.1371/journal.pone.0200617.g002

Citrullus lanatus L.
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and was genotyped with a high-density, genome-wide coverage of 4,661,625 evenly spaced

SNPs. To reduce the incidence of false-positive signals, a unified mixed linear model that con-

trols the population structure, and familial relatedness was used (6PC+K [for 6 Principal Com-

ponents and Kinship]; [27]) to test the associations between fruit skin color, and 534,162 of the

4,661,625 SNPs showed minor allele frequency > 5%.

A difference of 10-fold was calculated through the analysis of the natural variation of water-

melon yellow skin across the diversity panel coupled with an 85% (broad-sense) heritability,

revealing that the observed natural variation was largely dictated by the genetic variation

across the population rather than environmental factors [37, 38]. The GWAS profiles among

the 330 varieties identified a major locus of 1 bp—5 Mb designated on watermelon chromo-

some 4, which may control watermelon yellow skin (Fig 3, S2 and S3 Tables).

Analyses of the markers narrowed down the watermelon yellow skin gene

to a 59.8 Kb interval

To confirm the yellow skin locus detected by the BSA-seq and GWAS, we conducted a poly-

morphic analysis of 428 F2 individuals from the Autumn 2015 experiment. We developed 15

CAPS markers, 6 SSR markers and 2 SNP markers from chromosome 4 (Table 2). Individuals

Fig 3. The locus for watermelon yellow skin was identified through GWAS. Manhattan plot of the genome-wide association for watermelon skin

color showed that the region of 1–5 Mb on watermelon chromosome 4 controlled yellow skin.

https://doi.org/10.1371/journal.pone.0200617.g003
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from F2 were subjected to the polymorphism analysis, and an interval was identified to control

watermelon yellow skin, which was physically located in the region of 1 bp– 59.8 kb on chro-

mosome 4 (Fig 2c). In this region of reference genome ‘97103’, there are many gaps, only one

gene (Cla002755) was found, and it has no functional annotation. We blasted this region to the

reference genome ‘Charleston Gray’ (http://www.icugi.org) and also found many gaps. The

same sequence of the Cla002755 gene existed in this region.

Sequence and expression analysis of Cla002755
The DNA sequence of Cla002755 has a total length of 237 bp, without introns, and starts from

the 7th base on the forefront of chromosome 4. The DNA sequences of Cla002755 were

obtained from the yellow skin watermelon ‘94E1’ and green skin watermelon ‘Qingfeng’

parents. While no sequence changes were found between the two parents. The expression pat-

tern of Cla002755 was investigated using RT-PCR in the fruit skin at different developmental

stages in the yellow and green skin parents. During fruit development, the expression of

Cla002755 was not significantly different between the two parents. Thus, this further suggested

that Cla002755 may not be the candidate gene controlling the yellow skin trait.

A SNP marker is linked to watermelon yellow skin

We developed 15 CAPS markers, 6 SSR markers and 2 SNP markers to analyze the linkage to

yellow skin. Fortunately, we found the SNP02 marker for marker-assisted selection of yellow

skin in watermelon, which was identified in 618 F2 population individuals from Spring 2016

(Fig 4). Using this maker, we screened a population, consisting of 10 yellow skin and 10 green

skin watermelons. As expected, the genotypes perfectly matched the phenotype of the yellow

and green skin watermelon. These results indicated that the SNP02 marker was tightly associ-

ated with the watermelon yellow skin trait.

Discussion

With the advancement in sequencing technology, the NGS along with recently drafted refer-

ence genome will expand our skills and will provide us new directions to unveil facts of linkage

map. However, population size is limited and it is high priced technology for gene mapping,

because cost of production increased when every individual plant has to be genotyped. NGS-

assisted BSA is less laborious, much cheaper and has no population size limitation for genotyp-

ing work because it provides an effective and simple method to identify molecular markers

linked to target genes/QTLs controlling traits by genotyping only a pair of bulked DNA sam-

ples from two sets of individuals with distinct or opposite extreme phenotypes [26, 39]. Some-

times, determination of some complex quantitative trait accurately during genotyping is

problem some. Yellow skin is a qualitative trait and is easy to distinguish from normal traits in

watermelon. We determined the locus for yellow skin on chromosomes 4 by taking advantage

of NGS-assisted BSA approach together with GWAS in watermelon.

Watermelon is an important crop and varies greatly in skin color, including black, dark

green, light green, yellow and others [12]. Skin color has always been concerned trait from the

consumer point of view in many fruits and vegetables; yellow skin watermelon has become

preference for consumers because of its delightful appearance and high carotenoids contents.

However, studies at genetic level are few or failed to explain the inheritance mechanism of yel-

low skin in watermelon. Previously, some researchers claimed that yellow skin in watermelon

is controlled by a single recessive gene [20]. While in another study, they were contradictory

results explaining that it is controlled by a single dominant gene [21]. In our two year study,

we defined that a single dominant gene controls the yellow skin, resulting in yellow (AA and
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Aa) and green (aa) fruit. In the F2 population, all the yellow skin watermelons had yellow veins

and petioles, suggesting that the yellow skin, veins and petioles may be controlled by the same

gene, which is responsible for same type of pigment in the skin, veins and petioles.

No reports have been published until now about candidate gene controlling yellow skin in

watermelon but some literature are available focusing the inheritance pattern of yellow skin.

In this study, watermelon skin color was divided into yellow and green categories among the

F2 population. The gene for yellow skin was localized to a single locus on chromosome 4. To

identify the candidate gene, we performed a combinatorial approach integrating BSA-seq in a

F2 population and GWAS in 330 watermelon accessions. The same locus on chromosomes 4

in the watermelon genome was mapped using the GWAS and NGS-assisted BSA approach

(Figs 2 and 3). The BSA-seq was utilized for the genome-wide identification of SNPs between

two bulked pools, which are used to develop molecular markers in gene mapping [40, 41]. The

candidate gene was delimited in the region of 1 bp—59.8 kb on chromosome 4 using 15 CAPS

markers, 6 SSR markers and 2 SNP markers (Fig 2c; Table 2). The sequence annotation analy-

sis showed that there was a putative gene (Cla002755) in this region based on the watermelon

reference genome ‘97103’ (http://www.icugi.org). The DNA sequence of Cla002755 has a total

length of 237 bp, without introns and starts from the 7th base on the forefront of chromosome

4. A large number of gaps in the 59.8 kb interval were found in the reference genome ‘97103’,

and we blasted the interval to the reference genome ‘Charleston Gray’ and found many gaps,

Fig 4. Co-segregation of the yellow skin phenotype and the marker SNP02 in the F2 population. Genotyping by

PCR revealed that 148 yellow skin individuals were dominant homozygous and the 310 yellow skin individuals were

heterozygous, whereas 160 green skin individuals were recessive homozygous.

https://doi.org/10.1371/journal.pone.0200617.g004
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which presents only one gene homologous with Cla002755. Sequence alignments between the

yellow skin plant and green skin plant revealed no sequence changes in Cla002755 between the

two parents. The predicted gene was not differentially expressed during fruit development and

ripening. The results identified that Cla002755 may not be the candidate gene for yellow skin

watermelon.

Functional markers, where the genotypic sequence used for the selection is the cause of the

phenotype, are the preferred marker types because there is no recombination between the

marker and the trait gene [42]. Based on the 59.8 kb interval, an SNP marker (SNP02) was

developed to assess the polymorphisms among 618 F2 population individuals in Spring 2016

and 20 watermelon accessions, including 10 yellow skin plants, which possess yellow veins and

yellow petioles and 10 green skin plants. The results showed that the marker SNP02 was closely

linked to yellow skin watermelon and could be used to distinguish yellow and green skin.

Selection, migration, and genetic drift are responsible for genetic variants and gene muta-

tions that started as rare ones with a very low frequency and that occur in one or few individu-

als in a given population, and these rare variants turned into common ones with the passage of

time. There is remarkable development in various crops and model plants in developing com-

prehensive maps of genome changes [43–46]. It has been reported that the watermelon

genome speciation event occurred 15–23 million years ago [12]. Predominantly. germplasm of

wild watermelon is comprised of green skin. Different skin colors resulted because of the prog-

ress of evolution, artificial selection and gene mutations. The mutation of the yellow skin gene

may occur at the forefront region of chromosome 4 in watermelon genome. In this interval,

there may be two or three closely linked genes that control the phenotype of yellow skin, yellow

veins and yellow petioles. The mutation in this region not only causes the skin color variation

of the fruit, but also is the reason for the variation of the phenotype in the veins and petioles.

Leaf color mutations could affect plant photosynthesis and growth and development. In gen-

eral, we consider that the yellowing of leaves may reduce plant photosynthesis and growth [47,

48]. However, in this experiment, the yellow veins and petioles did not show any affect. There-

fore, we infer that this candidate region plays a very important role in controlling plant photo-

synthesis. This region was poorly assembled with a large number of gaps in the ‘97103’ and

‘Charleston Gray’ reference genomes at the present time (http://www.icugi.org). In the current

study, we were unable to locate the candidate gene for yellow skin at the forefront region (59.8

kb) of chromosome 4. If there a better watermelon genome was assembled, perhaps we would

have easily detected the candidate gene(s) for yellow skin, yellow vein and petioles in this

region.

This study provides a good entry point to explain the genetic mechanisms of fruit develop-

ment as well as provides fundamental insights into the domestication and selection history of

watermelon. Though this study does not demonstrate the candidate gene of yellow skin, a

tightly linked SNP marker was developed which can be used to identify the yellow skin water-

melon at the seedling stage. Additionally, the current results will be useful in marker assisted

breeding, and they will also be helpful in laying the foundation for watermelon breeding with

high photosynthesis efficiency.
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