Ouzounoglou et al. BMC Systems Biology (2016) 10:23

DOI 10.1186/512918-016-0264-5 BMC SyStemS BIOlogy

Differentiation resistance through altered ® e
retinoblastoma protein function in acute
lymphoblastic leukemia: in silico modeling

of the deregulations in the G1/S restriction

point pathway

Eleftherios Ouzounoglou, Dimitra Dionysiou and Georgios S. Stamatakos

Abstract

Background: As in many cancer types, the G1/S restriction point (RP) is deregulated in Acute Lymphoblastic
Leukemia (ALL). Hyper-phosphorylated retinoblastoma protein (hyper-pRb) is found in high levels in ALL cells.
Nevertheless, the ALL lymphocyte proliferation rate for the average patient is surprisingly low compared to its
normal counterpart of the same maturation level. Additionally, as stated in literature, ALL cells possibly reside at or
beyond the RP which is located in the late-G1 phase. This state may favor their differentiation resistant phenotype.
A major phenomenon contributing to this fact is thought to be the observed limited redundancy in the
phosphorylation of retinoblastoma protein (pRb) by the various Cyclin Dependent Kinases (Cdks). The latter may
result in partial loss of pRb functions despite hyper-phosphorylation.

Results: To test this hypothesis, an in silico model aiming at simulating the biochemical regulation of the RP in ALL
is introduced. By exploiting experimental findings derived from leukemic cells and following a semi-quantitative
calibration procedure, the model has been shown to satisfactorily reproduce such a behavior for the RP pathway.
At the same time, the calibrated model has been proved to be in agreement with the observed variation in the
ALL cell cycle duration.

Conclusions: The proposed model aims to contribute to a better understanding of the complex phenomena
governing the leukemic cell cycle. At the same time it constitutes a significant first step in the creation of a
personalized proliferation rate predictor that can be used in the context of multiscale cancer modeling. Such an
approach is expected to play an important role in the refinement and the advancement of mechanistic modeling
of ALL in the context of the emergent and promising scientific domains of In Silico Oncology and more generally In
Silico Medicine.
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Background

Multiscale cancer modeling is a rapidly growing field
that gradually attracts interest from many researchers in
computational and life sciences. The central objective
and vision of this discipline could be distilled into the
creation of models supporting our understanding of the
natural phenomenon of cancer. The latter is also paving
the way for the newly emerged scientific fields of In
Silico Oncology and In Silico Medicine [1, 2].

Cancer is a multiscale biological phenomenon mani-
fested in the molecular, cellular, tissue, organ or even
whole organism levels. Therefore, In Silico cancer
models should be developed in a way to reflect this di-
versity of bio-complexity scales. In this context, the de-
velopment of a proper methodology and technology
infrastructure that will allow the effective combination
of different cancer related (sub-) models into multiscale
hyper-models is the central objective of the European
Commission (EC) funded Project “Computational Hori-
zons In Cancer (CHIC)” (FP7-ICT-2011-9, Grant agree-
ment no: 600841). Additionally, the high heterogeneity
among different cancer types (or even sub-types) should
be incorporated into models. Thus, (sub-) models that
refer to the same type of cancer should be created, if
not already available. This can be done either from
scratch or by modifying already existing models, e.g. by
introducing experimental findings for the specific bio-
logical phenomenon of interest.

In this setting, a model that is capable of simulating the
sub-cellular biochemical dynamics regulating the cell cycle
in Acute Lymphoblastic Leukemia (ALL) is proposed. The
mid-term purpose of the model development is to be
coupled with the ALL Oncosimulator [3-5], developed in
the framework of the European Commission (EC) funded
project p-medicine (FP7-ICT-2009.5.3 -270089) by the In
Silico Oncology and In Silico Medicine Group (ISO&-
ISM_G), Institute of Communication and Computer Sys-
tems (ICCS), National Technical University of Athens
(NTUA). The Oncosimulator [1, 6-9] as a modeling con-
cept and system focuses on the simulation of cancer growth
and response to treatment in the patient individualized
context. Many other versions of the ISO&ISM_G
Oncosimulator have been defined and implemented
during the last years in the framework of the EC
funded projects ACGT (FP6-2005-1ST-026996), Con-
tra Cancrum (FP7-ICT-2007-2-223979) and TUMOR
(FP7-ICT-2009.5.4-247754) and have dealt with vari-
ous types of human tumors. In the development and
clinical adaptation of the Oncosimulators, clinically
available data are used extensively.

One of the most significant input parameters of the
ISO&ISM_G ALL Oncosimulator is the cell cycle dur-
ation of tumor cells 7, [10-12]. The latter highlights the
need for a detailed study of the leukemic cell cycle.
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ALL is the most common neoplastic malignancy in chil-
dren, the acuteness of which results from the resistance of
ALL cells to differentiation stimuli [13]. This non-solid
hematological cancer is characterized by a huge immuno-
logical and genomic heterogeneity of the transformed cells
(diverse lineages of malignant cells, either B-cells or T-
cells, and specific chromosomal and genetic abnormalities
[14, 15]). In the context of the present study we have fo-
cused, to the extent possible, on the precursor B Acute
Lymphoblastic Leukemia (BCP-ALL) subtype. This choice
has been made not only due to the high incidence rate of
this subtype [16, 17], but also because of the substantial
amount of related knowledge accumulated in literature.

BCP-ALL cells show some remarkable cell cycle char-
acteristics in various levels of bio-complexity. The can-
cer stem cell hypothesis [18-20] has been recently
questioned for the case of ALL [21, 22]. At the same
time BCP-ALL subpopulations with very different cell
cycle kinetics have been found in bone marrow samples
[23]. Specifically, CD19+ cells (expressing the B-cell
antigen CD19) are the dominant and most proliferative
cells in BCP-ALL samples, constituting more than 90 %
of the entire population [23]. It is stressed that in order
to formulate the proposed model, the assumption that
all the information extracted from literature mainly re-
fers to CD19+ cells has been made.

Focusing on the cellular level, leukemic cells from
BCP-ALL patients show a mean (+standard deviation) 7,
value of 112.5 (+46.8) hours (#) compared to the 65.5
(£3.5) h value of their normal counterparts (non-neo-
plastic precursor B cells) [24]. Concerning the distribu-
tion of BCP-ALL cells in the cell cycle phases, it has
been shown that the majority of cells reside in the G1
phase (more than 80 %) and only a minor proportion
can be found in S (~7-10 %) and G2/M phases [25-27].
Moreover, the percentage of quiescent cells (found in
true GO) is really low (~2 %) [28, 29]. Finally, another
characteristic of BCP-ALL cells that could explain their
almost complete dominance in patients’ bone marrow,
despite their low proliferation rate, is the significantly re-
duced incidence of apoptosis. This route of cell death
typically reduces the leukemic cell mass by 4 % per day,
while cell birth results in an average of 10-11 % daily
expansion [30].

Moving deeper into processes at the molecular level
and focusing on the metabolism of cells, the switch to
aerobic glycolysis (known as Warburg effect), which is
commonly observed in cancers, has also been shown to
be manifested in ALL [31]. Focusing on processes dir-
ectly regulating the cell cycle, a finding of great import-
ance is the almost exclusively hyper-phosphorylated
status of retinoblastoma protein (pRb) in BCP-ALL pa-
tients’ cell extracts [25, 26, 29, 32]. The value of the find-
ing stems from the widely accepted and central role that
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the sequential phosphorylation of pRb, or its family
member proteins p107 and p130, has on the initiation of
the G1/S transition [25, 26, 29, 32—-39]. The aforemen-
tioned transition is regulated by the restriction point
(RP) pathway [34]. However, several approaches about
the details of this regulatory mechanism have been
testified.

As presented in [40], two central theories on the bio-
chemical regulation of the RP have been proposed. The
first one constitutes the “current paradigm”, primarily
trying to explain serum deprivation/re-stimulation ex-
periments [34]. The second one is a newly proposed the-
ory [40] (referred here as “new RP theory”) which is
based on experimental data derived from cells being
continuously exposed to growth factors.

In detail, according to the “current paradigm”, the
stimulation of resting cells by growth factors leads to the
progressive emergence of active Cyclin D:Cdk4,6 com-
plexes. However, the “new RP theory” argues that Cyclin
D:Cdk4,6 complexes are constitutively expressed and ac-
tive throughout the cell cycle. Regarding the effects of
these species on the RP execution, the “current para-
digm” maintains that those effects lead to the partial in-
activation of pRb, by hypo-phosphorylating it. This
supported inactivation favors the expression of Cyclin E
and the formulation of active Cyclin E:Cdk2 complexes
as a result of the gradual liberation of the E2F transcrip-
tion factors, which are crucial for the initiation of DNA
replication, and Cyclin Dependent Kinase Inhibitor
(CdkI) p27 sequestration, respectively. The emergence of
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active Cyclin E:Cdk2 complexes, finally, results in the
terminal inactivation of pRb by hyper-phosphorylation.
However, the hypo-phosphorylated form of pRb is in-
creasingly reported to have growth suppression capabil-
ities, primarily by suppressing E2F transcription factors
[29, 37, 41]. Therefore, in the “new RP theory”, this find-
ing is adopted and the “current paradigm’s” feedback
loop is rejected. Regarding the activation of Cyclin
E:Cdk2 complexes, the new theory involves a yet un-
known activating modifier which activates Cdk2 by
monitoring the metabolic input. This machinery is be-
lieved to function in a way similar to the yeast G1-phase
activator Bck2. Moreover, according to this theory, Cyc-
lin E:Cdk2 complexes are continuously expressed, but
appear to be inactive during the early G1 and active in
late G1 sub-phases. This activation pattern is shown to
be in correlation with the oscillation of the active (hypo-
phosphorylated) and the inactive (hyper-phosphorylated)
forms of pRb respectively.

In order to validate the new RP theory, the authors of
[40] have also developed a mathematical model in which
the interference of metabolism in Cdk2 activation has
been implemented by introducing a time-dependent
switch machinery (activating modifier). This switch
modifies the rates of Cdk2 activation-related reactions
(switches them to non-zero value) after a predefined
time interval related to cell growth rate. The basic prin-
ciples of this theory (omitting details such as the inhib-
ition of Cyclin:Cdk complexes by Cdkls for reasons of
simplicity) are depicted in Fig. 1.
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Fig. 1 Main parts of the biochemical regulation of the G1/S restriction point in normal (non-leukemic) cell cycle. The presence of growth factors leads to
the constitutive activation of Cyclin D:Cdk4,6 complexes, which in turn favors the hypo-phosphorylation of retinoblastoma protein (pRb) in early G1 phase.
The hypo-phosphorylated pRb maintains the ability to inhibit E2F transcription factors. Growth factors also stimulate the metabolic machinery of the cell,
leading its mass to gradually grow. When cell growth reaches a critical threshold, the Cyclin ECdk2 and Cyclin A.Cdk1,2 complexes are activated resulting
in hyper-phosphorylation of pRb in late G1 phase (where the differentiation potential is lost), liberation of E2F transcription factors and increased Cyclin A
(and Cyclin E, E2F) expression, whose levels are indicative of the passage to the S-phase
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Based on what has been presented in previous para-
graphs, the behavior of the cell cycle regulatory bio-
chemical species in ALL cells seems to contradict the
key principles of all the above theories about the RP.
The hyper-phosphorylated status of pRb dictates an irre-
versible and rapid transition to the S phase. However,
the transition rate is unexpectedly low and only a small
percentage of leukemic cells is found in the S phase
compared to their normal counterparts [24-26, 30, 32].
For example, in stimulated with cytokines CD34+ cells
(i.e. cells expressing the hematopoietic progenitor cell
antigen CD34), the hyper-phosphorylated form of pRb
prevails and the percentages of cells in the S and G2/M
phases are high (48.4 %).On the contrary, unstimulated
CD34+ cells, in which only the un- and hypo-
phosphorylated forms of the protein could be identified,
mainly reside in GO/early-G1 phases [29]. This hyper-
phosphorylated status of pRb may dictate that the vast
majority of BCP-ALL cells are found specifically in the
late-G1 phase of the cell cycle, at or beyond the restric-
tion point. This state may explain their differentiation
resistant phenotype [26]. Therefore, a deregulation in
the G1 phase and the G1/S transition must have been
caused in BCP-ALL cells due to their cancerous
transformation.

In the process of identifying the molecular compo-
nents that may be altered, it should be mentioned first
that as far as the production and the activation of the
Cyclin A are concerned, the G1/S transition is undis-
turbed [32]. This is unexpected, taking into account that
the Cyclin A coding gene (CCNAI) is one of the known
targets of E2F and the levels of the produced protein
have been correlated with the passage of cells, including
BCP-ALL cells, to the S-phase [32, 40]. Therefore, a de-
regulation that directly and uniquely refers to Cyclin A
is excluded.

Looking at regulatory nodes upstream of the Cyclin A
position in the cell cycle pathway, it has been shown that
the sequential phosphorylation of pRb may be deregu-
lated in BCP-ALL and that there is a limited redundancy
between Cdk2 and Cdk4 in this phenomenon [26]. In
more detail, it has been observed, both in NALM-6 and
in ALL patient malignant cells, that the substrate speci-
ficities of Cdk4,6 are deregulated. This is evidenced by
the finding that these kinases could also phosphorylate
the serine 612 (ser612) phosphorylation site of pRb,
which is generally believed to be Cdk2-preferred [26,
42-45]. Moreover, the hyper-phosphorylated version of
the protein partially maintains its nuclear tethering and
continues inhibiting E2F transcription factors (at least
E2F-1) [25, 26, 32]. Notably, these phenomena occur to
different extents among the sampled ALL patients, ren-
dering them candidates to contribute to the observed
inter-patient diversity in cell kinetics. A hypothesis
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formulated in [26] regarding the possible consequences
of such a deregulation, refers to the possibility that the
intervention of Cdk4,6 in Cdk2-preferred sites may lead
to the creation of large phospho-groups in pRb before
the involvement of Cdk2 (which is indicative of the pas-
sage to the late-G1 phase in normal cell cycle execu-
tion). Additionally, it has been reported [29] that in
Western blot analysis experiments with ALL samples,
multiple forms of pRb, between two and five, could be
identified. Three of these forms, which show differential
mobility on SDS-PAGE (Sodium Dodecyl Sulfate - Poly-
Acrylamide Gel Electrophoresis) depending on their
phosphorylation level, may represent the un-, hypo- and
hyper-phosphorylated statuses of the protein. However,
one can speculate that at least one of the remaining re-
ported forms might be the result of such a peculiar
phosphorylation by Cdk4. This conjecture is in line with
a hypothesis reported in literature [32], describing pos-
sible partial inactivation of pRb functions in ALL. This
may lead to the loss of differentiation potential of BCP-
ALL cells without, however, a commitment to complete
the mitotic cycle and a traversal of the restriction point.
A name is given to this alleged status of pRb as pseudo-
hyper-phosphorylated pRb (pseudo-hyper-pRb). The
identification of the possible consequences of deregulated
sequential phosphorylation in the functionality of pRb
could be characterized as a difficult task. Notwithstanding
the extremely significant steps that have been taken to-
wards unraveling the role of every phosphorylation site of
pRb on the regulation of its function [41, 46—48], the en-
tire picture is not yet fully uncovered. However, support-
ing our hypothesis, it has been shown in heterogeneous
experiments that the phosphorylation of ser612 enhances
or at least does not inhibit the aforementioned properties
of pRb regarding E2F inhibition [49, 50].

During the preparation of the present study a new the-
ory regarding the sequential phosphorylation of pRb by
Cdk4 and Cdk2 [51] appeared. The authors present bio-
chemical analyses of pRb protein in diverse cell lines.
They show that Cdk4 in early G1 phase, instead of pro-
gressively phosphorylating multiple preferred sites and
therefore leading pRb to the hypo-phosphorylation sta-
tus, it mono-phosphorylates one and only one of four-
teen different sites (including those believed to be Cdk2-
preferred) in each instance of the protein. During the
passage to late-G1 phase, Cdk2 completely hyper-
phosphorylates the mono-phosphorylated pRb isoforms
in a quantum switch-like step (>12 phosphates). How-
ever, such a theory seems to contradict the finding in
non-malignant stimulated CD34+ cells in which ser612
is not found to be phosphorylated by Cdk4 [26]. More-
over, the plurality of pRb forms reported in western blot
experiments from ALL patient samples [29] cannot be
explained by this theory.
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Taking into account all the aforementioned findings,
the central deregulations thought to be important in the
execution of the restriction point in leukemic cells are
presented in Fig. 2.

The main differences (highlighted in red) between what
is presented in Fig. 1 and the altered situation presented
in Fig. 2, concerns the ability of Cyclin D:Cdk4,6 com-
plexes to also autonomously pseudo-hyper-phosphorylate
pRb. Based on the “new RP theory”, these complexes are
believed to be always active during the whole G1 phase (in
contrast with Cyclin E:Cdk2). Therefore they may contrib-
ute to the creation of higher phosphorylated forms of the
protein from the very first hours of the execution of the
cell cycle. The latter could explain the almost completely
dominant hyper-phosphorylated status of pRb in ALL pa-
tients’ cells. However, the complete liberation of E2F from
pRb is not allowed until pRb is terminally hyper-
phosphorylated. This could be done either after its
pseudo-hyper-phosphorylation or directly from the hypo-
phosphorylated state by Cdk2. As shown in [25], Cdk2 is
also active and able to phosphorylate ser612 [26] in BCP-
ALL cells.

Finally, significant differences in the glucose metabolism
rates have been reported between Prednisone Sensitive
and Prednisone Resistant ALL patients [27] (Prednisone is
a glucocorticoid drug that is included in the main core of
the ALL treatment [52, 53]). Therefore, the varying rate of
metabolism, through the action of the activating modifier,
that may lead to differential regulation of Cyclin E:Cdk2

Page 5 of 22

complexes activation (delayed or accelerated), is thought
to be crucial in order for the observed diversity in the
leukemic cell cycle kinetics to be explained.

The aforementioned description of the biochemical
regulation of the cell cycle in BCP-ALL opposes even
the generally accepted biochemical dynamic trends for
the G1 phase restriction point. Thus, its direct simula-
tion by existing models [35, 40, 54-60] (e.g. by simply
altering the parameter values for a number of kinetic
rate constants) is thought not to be feasible. For this rea-
son, the necessity for the creation of a new model has
arisen. However, the possibility to use one of these
models as the basis for the development of the newly
proposed model has been investigated by formulating
concrete criteria as presented in the Results and discus-
sion and in Methods sections.

In this context, the central target of the present study
has been primarily to investigate if the introduction of the
above presented deregulations into an already established
cell cycle model by modifying its structure and recalibrat-
ing its parameters is capable to alter its behavior so as to
simulate the sub-cellular dynamics and cell cycle kinetics
observed in BCP-ALL cells. Additionally, a successful
adaptation of the model may render it an essential compo-
nent of a personalized predictor for the T, value. The latter
could take place following pertinent input perturbation
based on experimental and clinical findings about ALL.
The steps followed in order for the newly proposed model
to be defined are given in detail in the following sections.
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Fig. 2 G1/S restriction point alterations and deregulations in BCP-ALL. In contrast with the normal cell cycle pathway (Fig. 1), Cyclin D.Cdk4,6 complexes
except for hypo-phosphorylating pRb may also lead the protein to an intermediate phosphorylation status (termed “pseudo-hyper-phosphorylated”)
which retains the ability to inhibit E2F transcription factors, although its phosphorus content is increased. This version of the protein is believed to have
lost differentiation related functions [32], therefore its accumulation implies that the cell resides at or beyond the restriction point. Only when Cyclin
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hyper-phosphorylated and consequently liberate E2F transcription factors. The metabolism-mediated activation of these complexes is believed to exhibit
differential time-course among patients due to differences in metabolism rates
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Results and discussion

Reference model selection and simulation

Based on specific criteria, presented in detail in the
Methods section, the model chosen to form the basis for
the newly proposed model has been the one described in
[40], hereafter referred to as the “reference model”.

In Fig. 3 the simulation results of this model in its ori-
ginal version [40] are presented in order to be easily and
directly compared with the results acquired after the
BCP-ALL-related modifications.

As can be seen in Fig. 3a the hypo-phosphorylated
form of pRb clearly dominates the levels of this protein
for about the first 300 min (min) of the simulation.
Moreover, for the same time range, the levels of E2F
transcription factors and Cyclin A (Fig. 3b and c respect-
ively), are not showing any increasing trends due to the
inhibition by pRb (Fig. 3b). However, when the levels of
hyper-pRb start to rise, which is a consequence of the
activation of the modifier switch (at 240 min), E2F and
Cyclin A levels rapidly start to elevate. This is a more or
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less typical behavior of a model simulating the dynamics
of the restriction point of the cell cycle which is not en-
countered in BCP-ALL cells. The steps taken in order to
construct a model able to simulate the altered dynamics
are described in the following sections.

Modifications leading to the proposed model

Based on the previously presented deregulations in BCP-
ALL cell cycle sub-cellular biochemical dynamics, specific
additions and modifications have been made in the refer-
ence model, concerning both its structure (biochemical
reactions) and its parameters values (reaction rates). The
complete set of molecular species and reactions of the ref-
erence model, together with their newly introduced coun-
terparts are given in Additional file 1: Table S1. A detailed
description of every new reaction and biochemical species
is given in the following paragraphs. Moreover, they are
presented in Systems Biology Graphical Notation (SBGN)
format [61], together with the parts of the reference model
that are directly related to them, in Fig. 4.
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In total, 10 new molecular entities and 29 new reac-
tions have been added to the 49 species and 138 reac-
tions of the reference model. As shown in Fig. 4, the
retinoblastoma protein can be found in four distinct
phosphorylation states, namely the un-phosphorylated
(pRb), the hypo-phosphorylated (hypo-pRb), the hyper-
phosphorylated (hyper-pRb) and the pseudo-hyper-
phosphorylated (pseudo-pRb-PP) states. Similarly to the
reference model, the un-phosphorylated form plays also
the role of p130 and pl07. The first three states are
inherited from the reference model, whereas the last one
is defined de novo in the present study. In order for the
transitions among them to be realized, intermediate
complexes are formed between pRb, hypo-pRb or

pseudo-hyper-pRb and Cyclin D:Cdk4,6, Cyclin E:Cdk2,
Cyclin A:Cdk2 or Cyclin A:Cdkl complexes (Reactions:
r1,r3,r5,r23,r27,r31). However, the transitions to the next
state (Reactions: r2, r4, r6, r36, 128, r32) are partially re-
alized and a percentage of complexes disassociate by
leaving the pRb, hypo-pRb or pseudo-hyper-pRb to their
previous state (reverse parts of reactions: rl, r3, r5, r35,
r27, r31). Similarly and in parallel, the transition among
the different phosphorylation states can also be done
when E2F is bound to the different forms of pRb protein
(Reactions: 19, 13, rl17, r25, r29, r33 and rl10, rl4, rl8§,
126, 130, r34).

In the model part adopted from the reference model,
the pRb and hypo-pRb forms can bind to the E2F
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transcription factors by a simple reaction (r8, rll),
forming the pRb:E2F and hypo-pRb:E2F complexes. On
the contrary, the hyper-pRb form cannot bind de novo
to the E2F, and any E2F species already bound to
hyper-pRb (hyper-pRb:E2F complexes) before the
hyper-phosphorylation step can only be liberated (r16).
This liberation step could also be realized for pRb and
hypo-pRb (reverse part of r8, r11). However, as previ-
ously mentioned, these forms of the protein could re-
bind E2F. For the case of pseudo-hyper-pRb, this ver-
sion of the protein can de novo inhibit free E2F form-
ing the pseudo-hyper:pRb:E2F complexes (r21). Finally,
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E2F bound to any form of pRb can be directly degraded
(Reactions: r7, r12, r15, r22).

Regarding the mathematical definition of the newly in-
troduced parts of the model, mass action kinetic laws
have been adopted in a way similar to the original study.
Additionally, these new reactions are in general modified
versions of existing ones in the reference model. To that
end a linear relationship between their reaction rates
and those of their corresponding reactions has been as-
sumed and implemented by the addition of a propor-
tionality constant. These relationships are presented in
Table 1.

Table 1 Mathematical definition of the reaction rate parameters of the newly introduced reactions

Relevant original reaction number in

Newly introduced reaction number in

Parameter name in original New parameter definition®

Fig. 4 Fig. 4 reaction®

r5 122 Kaear Kd£aF e = PIrdear * Kdeor

r1 r5 Kopapro Kopaproleuk = Propa * Kopapro
9 17 " !

r1 (reverse) r5 (reverse) Kupapre Kupaproleuk = Prupa * Kupapre
19 (reverse) r17 (reverse) " "

r2 16 Kuppapre KupapRbleuk = Prupa * Kupapo
0 18 " !

124 r23 krprDephos k tpRbDephosi.x = PltpRbDephos * krprDephos
19 120 " !

16 r21 Kue2epRo Kuearprb_teuk = Pruear * Kuearore
1 r21 (reverse) Koearpab KoearpRb_teuk = Proear * Kogorprb
r3 135 Koeapre KoeopRbes = Proeaaar * Koeoprb
3 125 " !

n.s. 127 Kpa2pmb KoaopRbey = Procomal * Koaopre
ns. 129 " !

ns. r31 Kpa1 pr> KbAlpRby = Proe2aaat * KoatpRb
ns. r33 " !

r3 (reverse) r35 (reverse) Kueaprs KuEapRby = Prug2a241 * Kueapro
r13 (reverse) 125 (reverse) " "

ns. r27 (reverse) Kuazpro KuaopRbey = Prucomar * Kuaopre
ns. 129 (reverse) " "

ns. r31 (reverse) Kuatpab KuapRbey: = Plue2soa1 * Kuaipro
n.s. 133 (reverse) " "

r4 r36 Kupe2pro KupEopRbes = PlupE242A1 * KupEopRb
4 126 " !

ns. 128 Kupapmo KupA2pRbes = Plupk24241 * KupAzpre
ns. 130 " !

ns. r32 Kupatpro KupA1pRby, = Pupe2aoat * Kupaipre
ns. 134 " !

n.s.: not shown in Fig. 4

The parameter names for the already defined reaction rates are kept as introduced in [40]. "The respective newly introduced parameters are similarly named but
denoted by the leuk subscript. The proportionality constants are named using the symbol pr and a subscript influenced by their relevant reaction rate name
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Having introduced the new reactions and species into
the model by using the SBML [62] compatible tool
COPASI [63] in a way explained in detail in Methods,
the next steps of the analysis refer to the estimation of
the kinetic parameters of the augmented model.

Model calibration objectives

Before calibrating the model, the objectives for this pro-
cedure have to be set concerning the dynamics of the
system. These are mainly defined in terms of semi-
quantitative/qualitative criteria for the dynamic levels of
species due to the lack of time course and quantitative
data for the levels of molecular entities modeled. The cri-
teria are illustrated in Fig. 5 and a detailed listing, together
with the related quantitative information and the reference
sources for them are given in Table 2. A thorough descrip-
tion of the criteria derivation process is given in Additional
file 2. However, a brief discussion is provided in the follow-
ing paragraphs. Finally, the formulated criteria are trans-
lated into objective function components and optimization
constraints as presented in the subsequent sections.

In general, the model should at the same time predict a
behavior of Cyclin A and E2F similar to the one of the ref-
erence model, yet widened in time due to delayed G1/S
transition. On the contrary, for the hypo- and the hyper-
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phosphorylated forms of pRb the behavior should be re-
versed in the first hours of the G1 phase execution where
the early G1 phase would be normally present.

In this context, there are 5 categories of criteria to be
met. Starting from the pRb phosphorylation status (Fig. 5a
and properties set 1 in Table 2), the hyper-phosphorylated
forms of pRb (pseudo-hyper-pRb and hyper-pRb) should
generally dominate the total levels of this protein. How-
ever, its hypo-phosphorylated counterpart could also be
detected in BCP-ALL cells (Fig. 5b and 1.b in Table 2).
The existence of hypo-pRb is indicative of the presence of
cells in early G1-phase. Therefore, one can speculate that
leukemic cells also exhibit an early-G1-like phase during
the first hours of their cell cycle. In this context, during
the calibration of the model, specific constraints have been
set in order for hypo-pRb to be at least higher than a de-
tection threshold (1.c in Table 2) for a pre-specified time
span (hypo-pRb detection time span shown in Fig. 5b and
3.f in Table 2). This has been done under the assumption
that hypo-pRb becomes undetectable when cells are leav-
ing the early-G1 phase.

It should be especially mentioned that although the
detection level thresholds defined in Table 2 have been
formulated based on experiments conducted on a differ-
ent cell type (colon carcinoma cell line) [40], it is

A PRb phosphorylation
status
PRb + hypo-pRb < hyper-pRb (all forms)
Activation of  hypo-pRb G1/S S-phase Time (min)
modifier detection Transition mid
switch time-span Time
objective
B L Initial - Instant
Cyclin D levels
23000
hypo-pRb levels
3000 -
saro R
2300
dCyclinA/dt
$ <3000
8
< 470 -
£
300 1
150
0 r >
Activation of  hypo-pRb G1/S S-phase Time (min)
<o modifier detection Transition mid
=V switch time-span Time
objective
Fig. 5 Semi-quantitative/qualitative criteria used for the calibration of the newly proposed model by optimization. The criteria are defined for (a)
the phosphorylation status of the different pRb forms and (b) the levels of central model species
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Table 2 (Semi-) Quantitative information extracted from literature used for the calibration of the model

Property Value Source
1.pRb phosphorylation levels
1.2  hyper-pRb domination in BCP-ALL cells qualitative ALL-specific:[29]

1 hypo-pRb positive BCP-ALL cells
1.c hypo-pRb detection threshold

2.Cell Kinetics
2a  Cycling cells
2b  Quiescent cells
2.c  Apoptotic cells
2d  Cycling cells in S/G2/M phases
2e Cycling cells in G1 phase
2f  Cycling cells in early-G1
3.Cell cycle Timings
3a  Mean Cell cycle duration of BCP-ALL cells (7,)
3b  S-phase duration in BCP-ALL cells (Ty)
3¢ G2-phase duration
3d  M-phase duration
3e  Mean Gl-phase duration in BCP-ALL cells

Estimated realistic time-range for G1/S transition in
BCP-ALL

3f.  early-G1 phase duration in BCP-ALL cells
39. S-phase midpoint
4.Cyclin A levels

4a  S-phase passage levels
4b  Levels (rate) before activating modifier activation

4.c  Levels after activating modifier activation
4d  Levels at the midpoint of S-phase
5.Cyclin D levels

Maximum difference between the initial and the
instant levels

16 % (+13.2 %)
3000 (molecules/cell)

94 %
2%
4 %
10 %
84 %
13.7 %

1125 h (+46.8 h)°
18h

6h

1h

87.5h (£46.8 h)
~2400 - ~8000 min

~800 min
9 h after G1/S transition

300 (molecules/cell)

<150 (molecules/cell)
(<=0 ((molecules/cell)/min))

<300 (molecules/cell)

470 (molecules/cell)

500 (molecules/cell)

"

Generic: derived by reference model simulation ([40] and
Additional file 2)

ALL-specific:[29]
ALL-specific:[28, 29]
ALL-specific:[30]
ALL-specific:[25-27]
ALL-specific:Derived from 2.a-d (see Additional file 2)
ALL-specific:Derived from 1.b. and 2.a. (see Additional file 2)

ALL-specific:[24]

"

Generic:[74]

"

Derived from 3.a-d (see Additional file 2)

"

Derived from 2.f and 3.e (see Additional file 2)
ALL-specific (see Additional file 2)

Generic: derived by reference model simulation ([40] and
Additional file 2)

Generic: derived by reference model simulation [40]

#Mean (+standard deviation)

believed that these thresholds constitute a realistic ap-
proximation for the detectable levels of the in focus pro-
teins in any similar experiment.

The BCP-ALL cell kinetics (properties set 2 of Table 2)
has been extracted from the related literature in order to
assist on the estimation of any missing Cell Cycle tim-
ings (properties set 3 in Table 2) that the model should
reproduce after its calibration. Among these timings,
those of special interest are the Mean G1-phase duration
(3.e in Table 2), a realistic range for the duration of this
phase and the early-G1 phase duration (3.f in Table 2).
The last property is used as a temporal threshold for the
existence of detectable hypo-pRb levels while the first
and second properties determine the time point in

which the S-phase transition is realized. Therefore these
properties play a central role in the calibration of the
model. Given that Cyclin A levels are correlated with the
percentage of BCP-ALL cells in S-Phase [32], the criter-
ion for the G1/S transition has been set to the increase
of Cyclin A to specific levels (4a in Table 2). Therefore,
in order to accept that a given parameterization of the
model predicts a specific duration of the cell cycle, the
levels of Cyclin A should reach this predefined threshold
within the expected G1/S transition time (G1/S Transi-
tion Time objective in Fig. 5b). Moreover, by knowing
that the G1/S transition is found undisturbed regarding
the Cyclin A-related phenomena [32], specific criteria
have to be set in order to ensure that the trends of
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Cyclin A dynamics remain unchanged compared to
those in the reference model (properties set 4 in Table 2
and Additional file 2).

The last objective set for the calibration of the model
concerns the levels of Cyclin D. Their low fluctuation
trends are shown to be a central characteristic of the ana-
lysis done during the development of the reference model
[40]. Therefore, a criterion has been set for the maximum
difference between the initial and the instant levels of
Cyclin D not to exceed the 500 (molecules/cell) threshold.
The choice of this value has been influenced by the dynam-
ical behavior of the protein in the reference model (Fig. 3).

The introduction of all the above criteria into the
model in terms of implementation is presented in detail
in Methods.

Calibration of the model

The calibration of the model has been performed using
the optimization functionality in COPASI. For the
assessment of the fulfillment of the calibration criteria,
an objective function has been defined following the
linear scalarization method for the multi-objective
optimization. A detailed description of the definition
and implementation of the objective function is given in
Methods. Briefly, for every time point in which a criter-
ion is not fulfilled, a unitary penalty point is added to
the overall sum of penalties for a simulation time course
concerning a specific parameterization of the model.
The Particle Swarm optimization algorithm [64], avail-
able in COPASI, has been used in order for the objective
function to be minimized. This has been done by tuning
a number of model parameters, as presented in the fol-
lowing paragraphs.

First, the majority of the newly introduced proportion-
ality constants in Table 1 have been chosen to be tuned.
An exemption has been made for pr,gzor since there is
no evidence, to the extent of our knowledge, for an al-
tered E2F degradation in BCP-ALL. Therefore its value
has been fixed at 1. Similarly pr,ps and pr,gra241 values

Table 3 Model calibration results
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have also been fixed at a unitary value since k,p4,rs» and
kue2prp have also been set to be constant in the reference
model. The value ranges of the parameters to be tuned
during the parameter estimation procedure are given in
Table 3. In general, partial existence of the aberrant phe-
nomena should be acquired. Therefore, the proportional-
ity constants have been allowed to vary in the range [0,1].
Moreover, for the case of prymr and pry,rppepnoss only
values lower than one (or at least equal to) may explain
the continuum inhibition of E2F by pRb even in pseudo-
hyper-phosphorylated state and take into account the hy-
pothesis for possibly deregulated de-phosphorylation of
pRb in BCP-ALL [25]. However, it cannot be excluded
that the significant inhibition of Cyclin A expression (as
dictated by the delayed G1/S transition) is a consequence
of the not only existing but enhanced ability of pseudo-
hyper-phosphorylated pRb to de novo bind E2F. There-
fore, an exception has been made for pryp,5 which has
ranged in [0,2].

Regarding the ModifierTime parameter, in the original
version of the model the activation of this switch takes
place at the end of early G1. The specific time point has
been estimated based on experimental data. However, in
the case of BCP-ALL, normal early-G1 is omitted/short-
ened, the duration of the G1 phase is prolonged and gly-
cose metabolism is altered and varying among patients.
Subsequently, we hypothesize that the point of this acti-
vation may be different from the value adopted in the
reference model. Therefore, this parameter has been
considered a candidate for changes during the calibra-
tion of the model. Moreover, by inspecting the reference
and the newly proposed model, the ModifierTime par-
ameter has been found to primarily determine the time
point after which hypo-pRb becomes undetectable. Thus,
it is believed that the value of the parameter should be
smaller than the estimated early-G1-like phase duration.
In this context, the range for this parameter has been set
to [120, hypo-pRb detection time span) min, which for the
mean case could be translated to [120,800) min, as

Parameter name

Range in parameter space

Estimated value

Plopa [0-1]

Pluppa [0-1]
Pl'iprbDephos [0-1]

Plugr [0-1]

Ploear (0-2]
Plogas2at [0-1]
Plupe2a241 [0-1]
ModifierTime 120-780 min
Kscyelinp

Cyclin D Initial Levels

100-2000 ((molecules/cell)/min)
10000-20000 (molecules/cell)

0.841699

0484118

1

0612768

1.88407

0.130145

0428204

675.993 min

1761.08 ((molecules/cell)/min)
19264 (molecules/cell)
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previously described. For the needs of the optimization
procedure the range has been slightly changed as pre-
sented in Table 3, since the ModifierTime parameter
should be smaller than 800 min. Additionally, the omis-
sion/shortening of early-G1 phase in ALL may dictate the
activation of the activating modifier even earlier than in
the reference model case. This explains the choice of a
relatively low lower limit which is considered necessary in
order to search an adequately large area in the parameter
space.

In order to render the model able to fulfil the Cyclin
D related criterion, the rate of Cyclin D production
(kscyetinp) together with the initial levels of this protein
have been re-estimated. Another justification for choos-
ing these parameters could be given by the observation
that among BCP-ALL patients Cyclin D is differentially
expressed [25].

Finally, regarding the initial levels of the different
forms of pRb, it has been decided - in contrast with the
reference model (where a synchronization of cells in
early-G1 was followed) - to initiate the model with the
existence of only un-phosphorylated forms of pRb. By
taking into account that pRb is dephosphorylated after
mitosis [65, 66] this may enable the model to simulate
the whole time span of G1-phase. Therefore, the avail-
able pool of pRb and pRb:E2F species has been distrib-
uted exclusively in un-phosphorylated species (Table 2
of Additional file 1). The initial levels of the other spe-
cies have remained unchanged.

Calibration results and model testing

By executing the global stochastic optimization procedure
(see Methods), a set of estimations for the tunable model
parameters has been acquired as shown in Table 3.

The simulation results, for 6000 min (several hours be-
yond the G1/S Transition Time objective for the mean
case) using this parameter set are shown in Fig. 6.

As can be observed in Figs. 6a and b, the hyper-
phosphorylated forms clearly dominate the levels of the
pRb protein in contrast with the original version of the
model (Fig. 3). Moreover, hypo-pRb (Fig. 6a) levels are sig-
nificant only for a limited period of time in agreement
with the criterion set for the duration of the early-G1-like
phase. An interesting result is derived from the levels of
pseudo-hyper-pRb and hyper-pRb species (Fig. 6¢). When
these levels are compared to those of hypo-pRb and
hyper-pRb in Fig. 3, an analogous picture is encountered,
but hypo-pRb is now substituted by pseudo-hyper-pRb.
However, due to the preservation of the ability of pseudo-
hyper-pRb to inhibit E2F (Fig. 6d) and although hyper-
pRb is immediately and abundantly expressed after the ac-
tivation of the activating modifier switch, the expression
of Cyclin A (Fig. 6e) exhibits significantly lower rate, at
least for the first 4000 min (~65h). Only when
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significant levels of E2F are liberated does Cyclin A
show noticeably increasing trends that indicate and
favor passage to S-Phase.

Thus, the model predictions are believed to be consist-
ent with the observed cell cycle dynamics in BCP-ALL,
and with the mean temporal dynamics for the passage to
the S-phase. Importantly, a conclusion that could be ex-
tracted is the following. The restriction point machinery is
recalibrated in such a way that the inhibition of E2F tran-
scription factors is now mediated by a more phosphory-
lated form of pRb. Nevertheless, this inhibition takes place
for a significant amount of time in a way similar to the
one observed in the normal execution of the restriction
point. Most importantly, the role of un- and hypo-
phosphorylated versions of the protein that may favor the
maturational progress of the cell is almost omitted.

Hypothesis testing

The final step of the model analysis has been to test it for a
number of additional scenarios and hypotheses aiming at
investigating its conformity with additional findings and
demonstrating its potential applicability as a predictive tool.

As a first step, a parameter scan procedure has been
followed using the corresponding functionality in COPASI.
The objectives for this procedure have been to identify
whether the model is able to predict that for BCP-ALL the
G1/S transition will happen inside a realistic time range
after perturbing a set of its parameters (Table 2) and to ex-
plain the observed significantly larger standard deviation of
T. in BCP-ALL. The parameters chosen to be perturbed
have been the pr;,p, proportionality constant and the Modi-
fierTime. As mentioned in Background, these parameters
are related to two phenomena which according to literature
vary among ALL patients. The first one refers to the extent
to which Cdk4 contributes to the pseudo-hyper-
phosphorylation of pRb, whereas the second one refers to
the metabolic rate of the cell. 500 random sampling steps
have been executed using two normal distributions, one for
each aforementioned parameter. Their mean values have
been set to the estimated parameter values during the cali-
bration step (Table 3) and their standard deviations to the
10 % of the mean values respectively. For every sampling
step the model has been simulated for 9000 min (150 h),
that means several hours beyond the maximum G1-phase
duration in the estimated range (Table 2). The results of
this procedure are shown in Fig. 7.

As can be observed in Fig. 7a, by randomly sampling
the parameter values the transition to S-phase is predicted
to take place in a wide range of time points which suffi-
ciently meets the value range presented in Table 2. The
samples taken from the two-dimensional parameter space
are given in Fig. 7b. For a number of simulations, however,
a failure to proceed to the S-phase, at least before the
9000 min threshold, is predicted. The latter is indicated by
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Fig. 6 Simulation results of the newly proposed model after estimating its parameters for the mean case. (a) Hypo-phosphorylated retinoblastoma
protein (hypo-pRb, purple) although rapidly formatted at the start of the G1-phase, maintains significant levels only for a limited period of time.
(b) Hyper-phosphorylated forms of retinoblastoma protein (hyper-pRb all forms, dark yellow) rapidly dominate the total levels of the protein in contrast
with the un-phosphorylated form (pRb, grey) which is quickly consumed. (c) Pseudo-hyper-phosphorylated retinoblastoma protein (pseudo-hyper-pRb,
dark green) is directly formulated from the very first hours of the G1-phase and exclusively represents the hyper-phosphorylated forms of the
retinoblastoma protein until the Modifier Activation time point, after which hyper-phosphorylated retinoblastoma (hyper-pRb, light purple) prevails. (d)
Significant free E2F levels (E2F, green) are appointed only after the Modifier Activation. However, adequate levels of E2F are bound to E2F inhibiting
pRb forms (orange) for a substantial time interval. (€) Cyclin A levels behavior (red) is consistent with the criteria set, showing decreasing or steady
trends for the first hours of the simulation and increasing ones till its end, reaching the G1/S Transition threshold in 5200 min. (f) Cyclin D (light blue)
shows insignificant variation in its levels for the entire time course of the simulation

a zero G1/S Transition Time value. This is a consequence
of high pr,ps values as it is evident by observing Fig. 7c
produced by the same in silico experiment.

In order to investigate the independent influence of the
two parameters in the system, a set of two additional par-
ameter scans have been executed, keeping the other
model parameters unchanged. In Fig. 7d, a set of 100

simulations are shown with different values for prjp,, in-
side the range given in Table 3. The relationship between
the parameter value and the G1/S Transition Time has
been found to exhibit a progressively saturated ascending
dynamic trend.

Regarding the relationship between ModifierTime and
G1/S Transition Time or hypo-pRb detection time span
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Fig. 7 Random sampling and parameter scan result for pryps and Modifier Time parameters. (a) By randomly sampling the two parameters, the model
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clearly linear relationship can be observed in Figs. 7e and f
as expected. These figures have been produced by a par-
ameter scan (100 simulations) for Modifier Time parameter
in the range [120, 1400] min. The aforementioned range
has been produced bearing in mind the respective range
of hypo-pRb positive cells (16 % +13.2 %) in an ALL pa-
tients’ population. This range starts from an almost
complete disappearance and ends to a doubling in the
number of cells compared to the mean case, for which
the model has been calibrated with Modifier Time with a
value equal to ~675min. Once again, a uniform

distribution of cells inside the cell cycle phases or sub-
phases is assumed. It is remarked that, although the
ModifierTime can significantly alter the time point at
which the G1/S transition takes place, this parameter is
not adequate to reproduce the observed variance of T,
in BCP-ALL, at least inside the range tested. Moreover,
it should be mentioned that this range cannot be signifi-
cantly widened, bearing in mind the percentage of hypo-
pRb positive cells as explained above. In contrast, for the
perturbation of pr,ps, a non-linear relationship between
this parameter value and G1/S Transition Time exists.
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This results in a great variation of the model simulation
endpoint, covering once again the estimated range for the
G1 duration (Table 2). Therefore, although the combined
perturbation of the parameters can explain the great vari-
ability of T, this is primarily due to the influence of pr;,p4
and the downstream effects of pseudo-hyper-pRb forma-
tion. As already mentioned, the phenomenon of Cdk4,6
substrate specificities deregulation (in which the pseudo-
hyper-phosphorylation of pRb is based on), occurs among
ALL patients to different extents. Hence, it can be inferred
that the adoption of the proposed modifications of the
system, not only allows the simulation of altered RP path-
way dynamics, but also explains the increased variance of
T, in BCP-ALL.

The previous results imply that the model might be
capable of predicting the cell cycle duration if some of
its parameters, most probably the two ones tested above,
are correlated with clinically or experimentally available
data. This appears to be a particularly encouraging
observation.

The second scenario that has been implemented refers
to the possible consequences of the administration of an
anti-proliferative drug to the system dynamics. A widely
used group of this type of drugs in ALL are the Gluco-
corticoids, mainly Prednisone and Dexamethasone,
whose administration results in G1 cell cycle arrest and
apoptotic death of leukemic cells [52]. It is noted that
the potential relationship between these phenomena has
not yet been fully elucidated. However, significant find-
ings could be extracted from literature regarding the ac-
tion mechanistic details of these drugs. Especially for the
cell cycle arrest phenomenon, it has been shown that
glucocorticoid drugs cytostatic properties are mediated
by Cyclin D repression and retinoblastoma protein de-
phosphorylation [67-71]. In order to render the model
able to simulate such an intervention in the simplest
possible way two new reactions and two new species
have been introduced into the model presented in detail
in Table 1 of Additional file 1 (reactions 139 and 140).
The first reaction introduces the drug molecules into the
system with a rate r,,,,, and the second one refers to the
inhibition of free Cyclin D species by irreversible binding
to the drug with a rate rg.gginging. Due to the lack of ex-
perimental data on one hand and the need to set the
YdrugBinding Parameter value within a realistic scale the
value of the latter has been chosen to be similar to the
rate at which Cdk4 binds to Cyclin D (Kpcyeiimpcara in
Table 1 of Additional file 1). Subsequently, a parameter
scan procedure has been performed for the r,,,, param-
eter in the range [0,4000 ((molecules/cell)/min). The
values of the remaining model parameters remained
unchanged. For each parameter scan step, the model
has been simulated for 15000 min (250 k), in order to
be able to identify any potential significantly delayed
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S-phase transition. The corresponding results are given
in Fig. 8.

In Fig. 8a, the relationship between the Cyclin D levels
at the end of the simulation and the r,,,, parameter
value is depicted. As can be observed, when rg,,, ap-
proaches values greater than the half of the range tested,
the free Cyclin D species are driven to very low or al-
most zero levels. A similar, though inversed, relationship
with this parameter is also appointed for the ratio be-
tween un-phosphorylated pRb (pRb) and hyper-
phosphorylated forms of pRb (hyper-pRb all forms)
shown in Fig. 8b. From this figure it can be extracted
that when free Cyclin D tends to reach values that ren-
der it almost fully inhibited, the un-phosphorylated form
of retinoblastoma protein dominates the total levels of
the protein. This is in agreement with what the literature
dictates for these specific type of drugs administration
results [70, 71]. An indicative simulation result of the
model setting the r,,,,, parameter to 2000 ((molecules/
cell)/min) is given in Fig. 8c, d and e. For this in silico
experiment, it should be mentioned that the initiation of
drug administration is assumed to be synchronized with
the initiation of the cell cycle.

Finally, a result of exceptional interest is given in
Fig. 8f. In this figure, the relationship between G1/S
Transition Time and 7, parameter, for the same par-
ameter scan experiment, is shown. This relationship is
found to exhibit a tri-phasic dynamic trend. In more de-
tail, for values of rg,, in the range (0,1000] ((rmolecules/
cell)/min), the G1/S Transition is predicted to happen
earlier compared to the case where no drug is adminis-
tered. Consequently, by further increasing the 74,
value, the G1/S Transition Time tends to recover until a
sudden complete inhibition of cell cycle execution. This
happens when the parameter reaches approximately the
1300 ((molecules/cell)/min) threshold. Taking into ac-
count the mechanistic details of the model, this behavior
could be explained by a progressive shortage of available
Cyclin D species in order for Cyclin D:Cdk4,6 complexes
to be formulated, which in turn favor the creation of
hypo-phosphorylated and pseudo-hyper-phosphorylated
pRb species. These two pRb versions are able to delay
the execution of the G1 phase, by inhibiting E2F tran-
scription factors. However, an almost complete shortage
in these species leads to an inability for hyper-
phosphorylated forms of pRb to be created and a conse-
quent cell cycle arrest. Interestingly, this in silico experi-
mental finding is in agreement, at least in a qualitative
context, with in vitro experimental findings where Pred-
nisolone (the active metabolite of Prednisone) was found
to exert mitogenic effects for low doses of the drug [72].
Although the aforementioned conclusion is not based on
a mature analysis using experimental data and formulat-
ing a detailed model for the drug action, in our opinion,
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it definitely constitutes a first good indication of the
soundness of the newly proposed model.

Conclusions

In the framework of the present study the mechanistic
details of the restriction point pathway, which predom-
inantly regulate the execution of the G1-phase of the cell
cycle and its possible deregulations in Acute Lympho-
blastic Leukemia (focusing on BCP-ALL) have been
thoroughly explored. An in depth review of the relevant

literature has revealed the centrality of the almost
complete domination of hyper-phosphorylated forms of
retinoblastoma protein, compared to un-phosphorylated
and hypo-phosphorylated versions. This appears to
contradict the low proliferation rate of the leukemic cells
which is lower than their normal counterparts, and the
small percentage of lymphoblasts found in S-phase. A
plausible hypothesis documented in literature suggests
that this cell cycle related behavior could be the conse-
quence of a partial inactivation of retinoblastoma protein
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Model Detailed pRb Cyclin A Regulation of Whole cell Referring to continuous ~ p16/p27  Availability in
Phosphorylation levels metabolism on cycle growth factors exposure  levels machine
steps modeling modeling the cell cycle machinery experiments modeling  readable format

execution modeling modeling

Yao et al. [60] X X X X X X/X v

Tyson and Novak  x v v v X X v

[54] and Conradie

et al. [55]

Habericther etal. v v v X v X v

[40]

Swat et al. [59] v X X X X X/X v

lwamoto et al. v v X X - I X

(2008) [56]

lwamoto et al. v v X v - IV X

(2011) [57]

Pfeuty [58] v X X X X X/ X

Aguda and Tang X X X X - I v

[73]

- : not defined

functions, especially those concerning the differentiation
program of the cell. Subsequently, based on this hypoth-
esis, the hyper-phosphorylated forms of this biochemical
entity may maintain their ability to inhibit the S-phase
passage related transcription process. In that way, the
leukemic cell population could become differentiation
resistant while avoiding an excessive replication rate.
The observed in ALL limited redundancy in retinoblast-
oma protein phosphorylation by the major Cyclin:Cdk
complexes is believed to play a pivotal role in this re-
striction point reprogramming event.

In order to study in silico the aforementioned phe-
nomena and hypotheses, specific modifications have
been performed in an already published model for the
biochemical regulation of the G1 phase of the cell cycle
[40]. An additional objective has been to ensure the nu-
merical agreement of the predicted time for the transi-
tion to S-phase with the one observed in ALL patients.
A calibration procedure has been followed, in order to
render the augmented model able to simulate the re-
striction point related deregulations in ALL and to be in
numerical agreement with the reported mean cell kinet-
ics and cell cycle dynamics in BCP-ALL. More specific-
ally, a novel top-down and semi-quantitative/qualitative

Table 5 Definition of calibration flags

calibration procedure has been designed, incorporating
global stochastic optimization methods, due to the lack
of time course and quantitative protein level data. More-
over, after perturbing a set of its parameters, the model
has been shown able to predict that the S-phase transi-
tion takes place within a realistic time range in agree-
ment with the literature pertaining to the case of BCP-
ALL. Finally, after in silico testing the interference in the
cell cycle of a specific type of anti-leukemic drug (Gluco-
corticoids), the behavior of the system has been shown
to be in line with the reported anti-proliferative conse-
quences of the drug action.

These results provide a particularly good indication for
the validity of the proposed model. A possible next step
in the analysis will be a more precise calibration of the
system using time course experimental data at the pro-
tein level sampled from leukemic cell populations. An
additional future step will include the correlation of
the model parameters with clinically available variables
in order to enhance its capabilities in predicting per-
sonalized cell cycle duration values. This is crucial for
the efficient parameterization of mechanistic multi-
scale cancer models, such as the (ALL) ISO&ISM_G
Oncosimulator.

Time Interval Flags

Preyodier ~ POStuoaiier  Flage — Flag; — Flag, — Flags — Flagy
(Time 2 0) & (Time < ModifierTime) 1 0 1 0 0 0 0
(Time = ModifierTime) & (Time < hypo-pRb detection time span) 0 1 0 1 0 0 0
(Time = hypo-pRb detection time span) & (Time < G1/S Transition Time Objective) 0 1 0 0 1 0 0
(Time 2 G1/S Transition Time Objective) & (Time < S-phase-midpoint) 0 1 0 0 0 1 0
Time 2 S-phase-midpoint 0 1 0 0 0 0 1
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Methods
Reference model selection criteria
In order to select the cell cycle model that constituted the
base for the development of the newly proposed model,
specific criteria have been set. In Table 4 these criteria and
their fulfillment by candidate models [40, 54—60, 73] are
listed. Firstly, the detailed modeling of the restriction point
machinery including the distinct pRb phosphorylation steps
(in some models the hypo and hyper- phosphorylation
steps are merged) has been set as a basic requirement. As
presented in Background section, major deregulations of
cell cycle in BCP-ALL are known to affect these mecha-
nisms. Moreover, taking into account that the levels of Cyc-
lin A were correlated with the percentage of leukemic cells
entering the S-phase [32], models that simulate the expres-
sion of Cyclin A and its interference with the other cell
cycle related biochemical entities, have been preferred. As
far as the contribution of metabolism in cell cycle regula-
tion is concerned, as discussed in Background, glycolysis
rate is found to vary between two main groups of patients
(good vs poor Prednisone responders) and to be correlated
with cell growth and proliferation rate. Thus, a model that
incorporates such a regulatory mechanism would allow the
study of the influence of metabolism on the cell cycle dy-
namics of leukemic cells. Subsequently, the availability of
the chosen model in a machine readable format (e.g.
SBML), is thought to be crucial for the correct rebuilding
of the model and the reproduction of its original results. In
addition to the fulfillment of the above criteria, the creation
of this model based on experiments where cells were ex-
posed continuously to growth factors is thought to be
closer to the in vivo setting.

G1 phase is believed to be the most tunable phase of the
cell cycle, as far as its duration is concerned [74]. As pre-
sented in Results & Discussion sections, there is concrete
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evidence that this holds true also for the case of BCP-ALL.
Moreover, the major findings for the deregulations of cell
cycle in ALL concern this phase. Therefore, although there
are numerous models that describe the molecular regula-
tion of the whole cell cycle machinery (not only of specific
phases) this feature was not considered as absolutely neces-
sary. Finally, pl6 inactivation is significantly frequent in
ALL (either by gene deletion or by methylation) [75]. Thus,
regarding the modeling of p16 and p27 CdkI-related inhibi-
tory phenomena on Cyclin D:Cdk4,6 and Cyclin E:Cdk2
complexes, a possible absence of this part of the pathway is
not considered as important enough to affect the analysis
performed in the present study, in contrast with p27.

Based on these criteria, the model chosen to be the
base for the newly proposed model has been the one de-
scribed in [40], since it fulfills the majority of the criteria
set as significant.

Model implementation and simulation

The reference model was acquired by accessing the
BIOMDO0000000109 entry in BIOMODELS database [76]
and was verified using the relevant Ordinary Differential
Equations provided in [40] by the SBML compatible
modeling and simulation tool COPASI [63] (Versions
4.12, 4.13 and 4.14). The additions in order for the newly
proposed model to be derived have been also done in
COPASI. The SBML version of the model was created
using the same tool (given in Additional file 2). Finally the
reference and the newly proposed models have been simu-
lated by the same tool using the Deterministic (LSODA)
simulation algorithm, choosing an interval size of 10 min.

Graphs and figures creation
The illustrations shown in Figs. 1, 2 and 5 were created
using Microsoft Visio 2013. Additionally, the graph in Fig. 4

Table 6 Definition of calibration penalties related to Cyclin A and Cyclin D levels

Cyclin A Levels
Time=SimulationTime
Cy CApena/ry, = Cy CAmstampena/ry,
Time=0

i=0,1,2,3,4

CyCA/ﬂSfﬂﬂr penai U/Z
CyCAmsmnr penai fy3

CyCAmsranr penalty, =

CyCAenaty,,,

= ZCyCApenalry,a = 07 ]727 374
Cyclin A Rate l

Time=Simulation Time
Cy cA Ra Z'epena/ry = Cy cA Rate instant penalty,
. Time=0

Cyclin D Levels
Time=Simulation Time
CycD Var, penalty = CyeD Var instant penalty

Time=0

Cy CAmstanr penalty, =

CyCAmsmm penai [y‘

CycA Rateinsiant penalty, = { dt

CyeD Varinstant penay = {

CyclinA > 150 (molecules/cell), Flag,
0

CyclinA > 300 (molecules/cell), Flag,
0

{ CyclinA > 300 (molecules/cell), Flag,
0

CyclinA < 300 (molecules/cell), Flags
0

CyclinA < 300 (molecules/cell), Flag,
0

d CyclinA

> 0 ((molecules/cell) /min), Flag,
0

CyCD/‘nit/a/ levels _CyCD/nsram levels > SOO(FTIO/ECU/ES/CE//), 1
0




Table 7 Definition of calibration penalties related to pRb Levels

hypo-pRb Levels
Time=SimulationTime
hypo_prpena/ry, = Z hypo—pr

Time=0 instantpenalty;

i=0,1,23,4

hypo*prpena/rym,,, = Zhypofp/?bpena/ry,: i=0,1,2,3,4
(PRb + hypo-pRb) vs. hyp;er—pr (all forms) levels

Time=>SimulationTime

(PRb 4 hypo—pRb) vs. hyper—pRbpenay, = Z (PRb 4 hypo—pRb) vs. hyper—pRbinsiantpenaty,

Time=0

hYPO~PRbstant penalty, = { hypo—pRb < hypo—pR% detection levels, Flag,
hyPO—PRbnstant penaly, = {hypo—prZhypo—prOdetection levels, Flag,
hypO—DRbinstant penaly, = {hyDO*prZhypoprbOdetecﬁon levels, Flag,
hypO—PRbinstant penaty, = {hyPO*prZhypoprbOdetecﬁon levels, Flags
hYPO-PRbinstant penaly, = {hypoprbZhypoprbOdetect/on levels, Flag,

(DRb + hyPO*PRb)VS- hyper—pRbinstant penalty, = {

(pr + hypO*pr)VS. hyper—pRbinsiant penalty, = {

hyper—pRb (all forms) > pRb + hypo—pRb , 0
Pr EModifier

hyper—pRb (all forms) > pRb + hypo—pRb , 0
P OSTModifier
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was produced using the SBGN capabilities of Cell Designer
tool [77, 78] (Versions 4.3 and 4.4). Finally the graphical
representations of model simulation results in Figs. 3, 6, 7
and 8 were produced by Microsoft Excel 2013.

Semi-quantitative/qualitative criteria, objective function
definition, calibration method and results

In order for the semi-quantitative/qualitative criteria to
be evaluated, the Events system in COPASI has been
used. More specifically, four distinct events that, by
monitoring the Time of the simulation, change the
values of seven distinct flags have been introduced.
These flags refer to the distinct time intervals as given in
Fig. 5. Finally, their values for every time interval are
given in Table 5.

Using the flags defined above, the penalties given in
Tables 6 and 7 could be calculated for the species in-
volved in the semi-quantitative/qualitative criteria.

Having defined the above penalties, the following ob-
jective function has been formulated in order to be
minimized:

Objective Function (x,) = CycApemltyW (x,)
+ CycA Ratepenairy (x,)
+ hypo-pRbyenaty,,,, (%))
+ CycD Varpenairy (xj

Constrained by:
0<(pRb + hypo-pRb)vs. hyper—pRb penaity, <300
0<(pRb + hypo-pRb)vs. hyper—pRb penairy, <100

where x; is a specific parameterization of the model.

A precise measurement of the form of pRb protein that
prevails in the various G1 sub-phases was not found in lit-
erature. Therefore, the upper bounds in the above defined
constraints were empirically chosen in order to represent
our estimation of the maximum time points for which
hyper-phosphorylated pRb levels are outweighed by the
levels of the un- and hypo-phosphorylated forms.

The objective function has been introduced into
COPASI optimization task, and the Particle Swarm glo-
bal optimization algorithm, as provided in the tool and
with the default parameters, has been used for its
minimization. This was realized by perturbing a set of
model parameters as described in Calibration of the
model sub-section of Results and discussion. The initial
values of the parameters have been randomly chosen by
the tool, within their range in the parameter space. By
executing the optimization procedure, the algorithm
concluded to a value for the objective function equal to
28.07651751 and the results of this procedure are given
in Table 3 of the same sub-section.
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Availability of supporting data

The semi-quantitative and the qualitative data supporting
the results of this article are included and cited within the
article and its additional files. The model used as the base
for the development of the proposed model (reference
model) is taken from [40] and can be retrieved from the
BioModels Database at https://www.ebi.ac.uk/biomodels-
main/ where it is stored as BIOMDO0000000109. The
model developed in this study is available as a supplemen-
tal SBML file (Additional file 3).

Additional files

Additional file 1: Table S1. List of model reactions and kinetic
parameters. Table S2. Initial levels of the model species. (PDF 477 kb)

Additional file 2: Detailed description of the model calibration
criteria derivation process. (PDF 458 kb)

Additional file 3: SBML description of the model. (XML 573 kb)
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