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Abstract
Background: Biochemical investigations over the last decades have elucidated an increasingly
complete image of the cellular metabolism. To derive a systems view for the regulation of the
metabolism when cells adapt to environmental changes, whole genome gene expression profiles
can be analysed. Moreover, utilising a network topology based on gene relationships may facilitate
interpreting this vast amount of information, and extracting significant patterns within the
networks.

Results: Interpreting expression levels as pixels with grey value intensities and network topology
as relationships between pixels, allows for an image-like representation of cellular metabolism.
While the topology of a regular image is a lattice grid, biological networks demonstrate scale-free
architecture and thus advanced image processing methods such as wavelet transforms cannot
directly be applied. In the study reported here, one-dimensional enzyme-enzyme pairs were
tracked to reveal sub-graphs of a biological interaction network which showed significant
adaptations to a changing environment. As a case study, the response of the hetero-fermentative
bacterium E. coli to oxygen deprivation was investigated. With our novel method, we detected, as
expected, an up-regulation in the pathways of hexose nutrients up-take and metabolism and
formate fermentation. Furthermore, our approach revealed a down-regulation in iron processing
as well as the up-regulation of the histidine biosynthesis pathway. The latter may reflect an adaptive
response of E. coli against an increasingly acidic environment due to the excretion of acidic products
during anaerobic growth in a batch culture.

Conclusion: Based on microarray expression profiling data of prokaryotic cells exposed to
fundamental treatment changes, our novel technique proved to extract system changes for a rather
broad spectrum of the biochemical network.
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Background
Over the last decades our understanding of cellular
metabolism has increased considerably [1], in particular
for less complex organisms such as Escherichia coli [2-4].
The gained knowledge includes cellular adaptation pro-
grams that respond to changing environmental condi-
tions such as nutrient excess and starvation [5]. Current
microarray technology allows for the investigation of all
genes of an organism under various conditions, resulting
in the generation of a massive amount of expression data.
One of the greatest challenge we are faced with is to then
analyse the data as a whole and extract the meaningful
relationships among specific genes. Standard methods
such as SAM [6] or machine learning algorithms [7] are
able to detect patterns in gene expression data, distin-
guishing between different states of a cell. However, the
above methods for classification and pattern discovery do
not consider interactions between different genes and
their corresponding proteins. Functional relationships
between genes can be assembled by e.g. regulatory, signal
transduction and metabolic networks. Gardner and co-
workers used gene expression microarray data to infer a
regulatory network for E. coli [8]. They developed a linear
model and effectively reduced the number of parameters
by assuming a sparse regulatory network. Finally, they ver-
ified their inferred regulatory network on a smaller subset,
i.e. the regulation of the SOS pathway. In a recent study, a
large compendium of gene expression microarray data for
E. coli was analysed using an information theoretical
approach revealing new regulatory interactions [9]. When
analysing a metabolic network, every enzyme can be rep-
resented by its corresponding gene. For sets of genes, path-
way scores have been calculated improving the sensitivity
to detect crucial enzymatic pathways when taking network
distances for enzyme pairs into account [10]. Transcrip-
tion data and the topological information derived from
the metabolic network was connected by calculating Z-
scores of highly correlated sub-networks [11]. Genes with
common biological processes or functions were grouped
by their gene ontology terms [12] and gene set enrichment
tests performed on these groupings [13]. Additionally,
gene set enrichments were tested by their common path-
ways in the corresponding networks [14,15]. However,
these approaches do not take into account direct interac-
tions within the network. In contrast, a Potts-spin cluster-
ing algorithm on metabolic networks was developed
depending on direct nearest-neighbour relationships. It
was applied yielding sub-graphs stimulated by environ-
mental conditions [16]. Furthermore, common gene
expression levels of neighbouring nodes in a metabolic
network were calculated by averaging over all neighbours
of a gene and revealed several interesting regulated path-
ways for the human immune system [17]. Rapaport and
co-workers extracted gene expression patterns of neigh-
bouring genes in the network yielding good classification

of the profiled samples by calculating Fourier transforma-
tions and rejecting high frequency signals [18]. However,
these approaches did not consider switch like behaviours
of neighbouring genes. To detect common and contrasting
tendencies, an image-like representation of the cellular
metabolism can be used by interpreting expression levels
as pixel intensities with grey values and the network topol-
ogy as relationships between pixels. Image processing
methods may then be applied to extract crucial features
from such an image. Wavelet transforms are such an
image processing method and were applied for texture
classification [19], for feature generation to automatically
classify microscope images [20] and large-scale functional
genetic screens [21]. Without taking any network infor-
mation into account, wavelet transforms have been used
together with other image processing methods for analys-
ing microarray data [22,23], in particular the Haar wavelet
power spectrum for feature selection [24]. The application
potential of this powerful technology to analyse biologi-
cal networks is clear, yet challenging. While the underly-
ing topology of an ordinary image consists of a lattice
grid, biological networks have a rather scale-free architec-
ture [25]. We recently reported one approach that applied
image processing methods on the two-dimensional and
therefore image-like adjacency matrix of the network [26].
In the present study we expand upon this method using
the original architecture of the metabolic network. We
analysed gene expression changes for each pair of neigh-
bouring nodes combining their values additive (common
response) and subtractive (opposing response, switch like
behaviour). In a second step all combined nodes with a
common response were again combined to yield signifi-
cant clusters of co-expression. Such a simple approach
allowed the analysis of the cellular stress response, not
only for highly connected regions of the network but also
for linear chains as well as the identification of specific
switches. We analysed gene expression changes of E. coli
during oxygen deprivation. With this technique we were
able to detect the expected substantial regulatory adapta-
tion programs, including up-regulated formate fermenta-
tion, mixed acid fermentation, metabolisms of hexoses
and down regulation of the respiratory TCA cycle (see Fig-
ure 1). Furthermore, our technique revealed a down-regu-
lation of the iron processing metabolism due to reduced
oxidative stress during oxygen deprivation. The revealed
up-regulation of the histidine biosynthesis pathway may
constitute the adaptive response of E. coli to an acidic
environment due to the excretion of acidic products dur-
ing anaerobic growth in a batch culture.

Results and Discussion
Testing the method with simulated data
Setting up the network and calculating the simulated expression data
To test our method with simulated data on a simplified
model network, we constructed a regular grid of 30 × 40
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artificial reactions (workflow see Figure 2). On this simu-
lated image-like metabolic network we randomly selected
pathways of connected reactions with lengths 7, 10 and
24. These lengths corresponded to an expected length of a
biological pathway (7, 10) and to the most frequent path
length of the shortest paths between all pairs of nodes in
the regular grid, respectively. 100 runs were performed
generating 44 experiments of simulated expression data
with a ground level of 6, in rather good agreement with

our normalised gene expression data. To this, a Gaussian
noise of mean 0 and standard deviation 1 was added. Two
classes were formed with 22 experiments each. In one
class the reactions of the randomly chosen pathways were
up-regulated by adding a constant level ∆ to the random
expression levels.

Performing the method on random data
In each run the expression data of all 44 samples (22 class
1 and 22 class 2) were mapped on the nodes (reactions)
of the simulated metabolic network. Features were gener-
ated by applying the one dimensional Haar-wavelet trans-
form onto each pair of neighbouring nodes. This yielded
9320 features for every sample. A t-test was applied for
every feature to rank the features with respect to their dis-
criminating property while correcting p-values for multi-
ple testing (Bonferroni) [27]. Every feature for all
reaction-pairs was ranked according to its p-value. The p-
value cut-off was set to 0.01. Reactions were regarded as
up-regulated if the corresponding simulated genes were
significantly differentially expressed (p-value of a t-test ≤
0.05) and not significantly differentially expressed other-
wise. Not differentially expressed end-nodes were dis-
carded. We compared our technique to a standard
method.

Comparison to a standard method
A standard Students t-test was applied on the simulated
expression data without taking any network information
into account. For both methods true positives, false posi-
tives, false negatives and true negatives were calculated. To
investigate a broader spectrum for the precision and sen-
sitivity of our technique, the validation was performed
with a variety of added constants (∆ = 2, 4, 6). Our tech-

General workflow of the methodFigure 2
General workflow of the method. The metabolic network of E. coli was put up using the EcoCyc database. Gene expression 
data was mapped onto the reactions of the network resulting in an image like representation (red boxes). Features were gen-
erated by using the Haar wavelet transformation on every connected reaction pair. The most discriminative features were 
identified by a t-test. Sub-graphs were built by connecting significant reaction pairs. Regions with identical regulation of more 
than four reactions were extracted (clusters). Reaction pairs with opposite regulation were identified as switches and were 
also extracted. The resulting pathways were analysed by literature scanning in-depth. Assembling the found pathways yielded 
an overall picture of the metabolic processes.
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Overview of the found significantly regulated metabolic path-ways during oxygen deprivation (green: up-regulated, red: down-regulated, blue: metabolites)Figure 1
Overview of the found significantly regulated metabolic path-
ways during oxygen deprivation (green: up-regulated, red: 
down-regulated, blue: metabolites). For more details, see: 
Figure 4 (yellow cross-hatched), Figure 5 (blue hatched) and 
Figure 6 and 7 (red and light blue boxes, respectively). Note 
that in this Figure, the metabolic pathways of Figure 7 are 
represented by two boxes. This is due to the unspecific hub-
like nature of L-glutamine (see Conclusions).
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nique decreased the number of false positives significantly
(Figure 3). In a step further we investigated how our tech-
nique performed on a biological network, choosing the
metabolic network of E. coli, constructed as described in
Methods. Out of this network we selected randomly path-
ways of lengths 5, 7, 10 and performed the same method
as described above for different constants (∆ = 2, 4, 6). We
obtained a similar superior performance of our approach.
The number of false positives was reduced nearly three-
fold, while the detection power of true positives was iden-
tical (Results not shown).

The metabolism of E. coli under oxygen deprivation
The general workflow was briefly as follows:

- Establishing the metabolic network using the EcoCyc
database,

- Mapping gene expression data onto the nodes of the net-
work,

- Generating feature modules using the Haar wavelet
transformations,

- Statistical testing of the feature modules,

- Clustering of significant reaction pairs,

- Analysing found clusters and switches in depth, and

- Fusing of the results to receive an overall map of meta-
bolic changes.

The expression data of all 43 samples (21 aerobic and 22
anaerobic) from the study of Covert et al. [28] was
mapped onto the reactions of the metabolic network. Fea-
tures were generated as described above using the Haar-
wavelet transform yielding 6890 features for each sample.
Discriminating features were identified via ranking of p-
values from a t-test. Calculated p-values were corrected
with a multiple t-test correction for possible mutant influ-
ences (see Methods) and for multiple testing (Bonferroni)
[27]. The p-value cut-off was again set to 0.01 resulting in
660 significantly discriminating features. All significant
reaction-pairs were extracted and connected yielding sub-
graphs. In total, five such connected sub-graphs were
identified consisting of 165 reactions. Reactions were

Validation of the method on a regular grid consisting of 40 × 30 reactions (pixel)Figure 3
Validation of the method on a regular grid consisting of 40 × 30 reactions (pixel). Random gene expression data was generated 
and mapped onto the nodes of the grid. The 44 samples were divided into two classes differing only significantly in the reac-
tions of three randomly chosen pathways (red arrows). Up-regulation of these reactions in one class was achieved by adding a 
constant value ∆ to their expression levels. Our technique revealed significantly less false positives (FP) than the standard t-test 
for all chosen values of ∆. The last row shows the desired outcome after 100 runs (TP: true positives, FP: false positives, TN: 
true positives, FN: false negatives).
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regarded as up-regulated if the corresponding genes were
significantly over-expressed under anaerobic conditions
(p-value ≤ 0.05 of a mutant corrected t-test, see Methods),
as down-regulated if significantly under-expressed and
not significantly differentially expressed otherwise. Neigh-
bouring, connected nodes that showed identical regula-
tion (up or down) were grouped together to simplify
interpretation. We refer to these groups as "clusters" in the
following. Not differentially expressed end-nodes in a
cluster were discarded. The resulting 10 clusters contain-
ing at least five reactions were interpreted in more detail
and grouped according to their functional role (Table 1,
supplement 1 contains the corresponding EcoCyc reac-

tion-ids). Furthermore, pairs of reactions with signifi-
cantly opposing regulatory behaviour were defined as
switches. All significant switches were extracted (p-value ≤
0.01). 64 such switches were identified. The first 20
switches are discussed in detail (Table 2 shows the first 20
switches, supplement 2 provides all 64 switches). An over-
view of the extracted pathways is given in the next para-
graph.

Main functional findings
The metabolic network of E. coli underwent substantial
changes in regulation, when adapting to the environmen-
tal change from oxygen rich to deprived conditions (Fig-

Table 1: Extracted network clusters.

Pyruvate processing, formate fermentation, anaerobic respiration and anaerobic synthesis of deoxyribonucleosides

1st cluster 2nd cluster
argininosuccinate lyase, aspartate ammonia-lyase, dimethyl sulfoxide 
reductase, 3,4-dihydroxy-2-butanone 4-phosphate synthase, formate 
hydrogenlyase complex, formate dehydrogenase pyruvate formate-lyase, 
fumarate reductase, FocA formate FNT transporter

pyruvate formate-lyase activating enzyme, coproporphyrinogen III 
oxidase, anaerobic, anaerobic nucleoside-triphosphate reductase 
activating system, PFL-deactivase, ribonucleoside triphosphate reductase 
activase, lipoate synthase

Processing of hexoses

1st cluster 2nd cluster
1-phosphofructokinase, 6-phosphofructokinase, 6-phospho-β-
glucosidase, glucokinase, mannitol-1-phosphate 5-dehydrogenase, 
mannose-6-phosphate isomerase, phosphoglucose isomerase, EIIMan 
transporter

glyceraldehyde 3-phosphate dehydrogenase, 2-keto-3-deoxy-6-
phosphogluconate aldolase, phosphogluconate dehydratase, 
phosphoglycerate kinase, triose phosphate isomerase

Iron processing

1st cluster 2nd cluster
2,3-dihydroxybenzoate-AMP ligase, 2,3-dihydro-2,3-dihydroxybenzoate 
dehydrogenase, serine activating enzyme, aryl carrier protein, 
enterobactin synthase multienzyme complex, isochorismatase, 
isochorismate synthase, enterochelin esterase

cysteine desulfurase, selenocysteine lyase, thiamin (thiazole moiety) 
biosynthesis protein, YaaJ alanine AGSS transporter, valine-pyruvate 
aminotransferase

Acid response

aspartate-ammonia ligase, asparagine synthetase B, ATP phosphoribosyltransferase, CDP-diglyceride synthetase, CTP synthetase, imidazole glycerol 
phosphate synthase, histidinal dehydrogenase, histidinol-phosphate aminotransferase, phosphoribosyl-AMP cyclohydrolase, histidinol-phosphatase, 
histidinol dehydrogenase, phosphoribosyl-ATP pyrophosphatase, imidazoleglycerol-phosphate dehydratase, L-aspartate oxidase, 
phosphoribosylformimino-5-amino-1-phosphoribosyl-4-imidazole carboxamide isomerase, quinolinate synthase complex, protein-(glutamine-N5) 
methyltransferase, aspartate DAACS transporter

Nucleoside metabolism

1st cluster 2nd cluster
dGDP kinase, nucleoside diphosphate kinase ribonucleoside-
diphosphate reductase, deoxyguanylate kinase, GTP cyclohydrolase I, 
guanylate kinase, guanosine-3',5'-bis(diphosphate) 3'-diphosphatase, 
ribonucleoside-diphosphate reductase

dTDP-glucose pyrophosphorylase, dTDP kinase, UDP-glucose-hexose-
1-phosphate uridylyltransferase, UDP-galactopyranose mutase, 
nucleoside diphosphate kinase, galactose-1-phosphate uridylyltransferase

One carbon units

gcv system, glycine dehydrogenase (decarboxylating), 
aminomethyltransferase

glutathione synthetase, glycyl-tRNA synthetase, lipoyl-protein ligase A
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ure 1). Due to limited oxygen, glycolysis and the fructose/
mannose metabolism was up-regulated securing energy
production under anaerobic conditions (Figure 5). Fur-
thermore, pyruvate metabolism, formate fermentation
and mixed acid fermentation were also up-regulated fer-
menting the products of the glycolysis (Figure 4). In con-
trast, iron processing and oxidative stress responses were
down-regulated as oxidative stress was reduced (Figure 6).
As expected, the aerobic part of the TCA-cycle was down-
regulated. The need to generate essential compounds and
amino acids was indicated by an elevated level of the
aspartate metabolism (Figure 7). An indirect effect of the
oxygen rich to oxygen deprived conditions was the up-reg-
ulation of the histidine biosynthesis (Figure 7). Histidine
may function as a buffer for produced acids accumulating
in the batch culture. In the following, these findings are
described in detail.

Functional description of the extracted clusters
Pyruvate processing, formate fermentation, anaerobic respiration 
and anaerobic synthesis of deoxyribonucleosides
Two clusters belonged to this sub-group (Table 1). The
first cluster (Figure 4) consisted of nine reactions. Edges
were due to the metabolites formate, fumarate and
reduced menaquinone. Reactions connected via formate:
Pyruvate formate lyase was up-regulated under anaerobic

Fermentation of formate was up-regulated processing pyru-vate into formate via pyruvate lyaseFigure 4
Fermentation of formate was up-regulated processing pyru-
vate into formate via pyruvate lyase. Pyruvate is degraded to 
formic acid (formate), which then is either expelled (via 
transporters), or further degraded into H2 and CO2 by the 
formate hydrogenlyase complex (for more details see text). 
Reactions are symbolised by squares, metabolites by circles. 
Green (red) squares indicate significant up (down)-regulation 
(p-value ≤ 0.05) under anaerobic conditions.
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Table 2: Extracted switches in the network. Significantly differentially expressed pairs of reactions (p-value ≤ 0.01). The first 20 
switches are shown here and described in detail in the text.

Rank Up-regulated reactions Metabolites Down-regulated reactions P-value

1 formate hydrogenlyase complex formate formyltetrahydrofolate deformylase 4.67E-14
2 acetaldehyde dehydrogenase acetaldehyde ethanolamine ammonia-lyase 1.25E-12
3 FocA formate FNT transporter formate formyltetrahydrofolate deformylase 5.81E-12
4 formate hydrogenlyase complex formate GTP cyclohydrolase I 1.65E-11
5 3-methyl-2-oxobutanoate 

hydroxymethyltransferase
2-dehydropantoate 2-dehydropantoate reductase 2.33E-11

6 serine hydroxymethyltransferase tetrahydrofolate, 5,10-
methylene-THF, glycine

gcv system 6.69E-09

7 serine hydroxymethyltransferase glycine glycine dehydrogenase (decarboxylating) 2.07E-08
8 formate dehydrogenase formate formyltetrahydrofolate deformylase 1.30E-07
9 2-keto-4-hydroxyglutarate aldolase glyoxylate glyoxylate reductase B,glyoxylate reductase 1.74E-07
10 fumarate reductase fumarate 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-

aminoimidazole lyase
2.00E-07

11 fumarate reductase fumarate adenylosuccinate lyase 2.00E-07
12 CTP synthetase UTP galactose-1-phosphate uridylyltransferase 3.16E-07
13 gluconokinase gluconate 2-ketoaldonate reductase 1.36E-05
14 phosphoenolpyruvate carboxylase oxaloacetate aspartate transaminase 2.00E-05
15 FocA formate FNT transporter formate GTP cyclohydrolase I 3.35E-05
16 BrnQ branched chain amino acid 

LIVCS transporters
L-isoleucine branched chain amino acids ABC transporters 3.78E-05

17 BrnQ branched chain amino acid 
LIVCS transporters

L-leucine branched chain amino acids ABC transporters 3.78E-05

18 BrnQ branched chain amino acid 
LIVCS transporters

L-valine branched chain amino acids ABC transporters 3.78E-05

19 3-hydroxy acid dehydrogenase L-serine phosphoserine phosphatase 4.33E-05
20 phosphatidylglycerophosphate 

synthase
a CDP-diacylglycerol, CMP CDP-diacylglycerol pyrophosphatase 4.78E-05
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conditions to process pyruvate into formate (fermenta-
tion) [29]. Formate degradation into CO2 and H2 was sup-
ported by up-regulated formate hydrogen lyase [30,31]
and formate dehydrogenase. Formate release into the
periplasm was facilitated by up-regulation of the corre-
sponding transporter (EcoCyc-id: TRANS-RXN-1). Also
up-regulated was 3,4-dihydroxy-2-butanone 4-phosphate
synthase which functions as the first and rate limiting step
in flavin mononucleotide (FMN) biosynthesis. It is nota-
ble that FMN functions as an electron mediator during
anaerobic respiration [32]. Reactions connected by
reduced menaquinone: Dimethyl sulfoxide reductase was
up-regulated as it is needed in the anaerobic electron
transport chain [33]. Also up-regulated was fumarate
reductase which is used by E. coli during anaerobic growth
[34]. In this reaction menaquinol acts as an electron
acceptor, while fumarate can function as a terminal elec-
tron donor [35]. Further reactions in this cluster were con-
nected with fumarate reductase via fumarate. Aspartate
ammonia-lyase was up-regulated, to process aspartate

into fumarate during anaerobic growth on glucose
[36,37]. The second cluster contained six up-regulated
reactions which were connected by the metabolite S-ade-
nosyl-L-methionine. Pyruvate formate-lyase (PFL)-deacti-
vase was up-regulated. This enzyme is a catalyser for
quenching and inactivating pyruvate formate-lyase and is
expressed under anaerobic conditions to the same levels
as pyruvate formate-lyase [38]. Corresponding to this,
pyruvate formate-lyase activase was also up-regulated as it
activates pyruvate formate-lyase in an anaerobic environ-
ment [39]. Pyruvate dehydrogenase requires the lipoate
modification of complex subunits [40]. Lipoate synthase
is needed for the biosynthesis of lipoic acid and is neces-
sary for the anaerobic glycine cleavage system activity
[41]. Note that reactions belonging to the normal glycine
cleavage system were all down-regulated (see the cluster of
one carbon units). Furthermore, two reactions, i.e. for the

Iron processing in an anaerobic environmentFigure 6
Iron processing in an anaerobic environment. Iron is scav-
enged by E. coli using enterobactin, whose biosynthesis (blue 
bordered nodes) was down-regulated. For box colours see 
Figure 4.
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anaerobic nucleoside-triphosphate reductase activating
system and the component ribonucleoside triphosphate
reductase activase were up-regulated. These reactions
needed to synthesise deoxyribonucleotides under anaero-
bic conditions [42,43] are showing expression patterns
analogous to pyruvate formate-lyase activase [44]. Also
up-regulated was the anaerobic coproporphyrinogen III
oxidase. In an anaerobic environment this reaction is nec-
essary for the biosynthesis of hemes which are essential
co-factors of the electron transport chain [45].

Processing of hexoses
Two clusters represented the processing of hexose nutri-
ents during anaerobic growth (Table 1). The first cluster
was formed by eight up-regulated reactions (Figure 5).
Connections between reactions were due to metabolites
D-fructose-6-phosphate, fructose-1,6-bisphosphate and
β-D-glucose-6-phosphate. Two major pathways were
involved in the cluster: glycolysis, and fructose/mannose
metabolism. The Embden-Meyerhof pathway is used
when switching from aerobic respiration to fermentation
during growth under anaerobic conditions on minimal

medium with glucose [46], yielding in a strong increase of
glucose consumption [29,46]. All reactions processing
glucose down to fructose-1,6-biphosphate were up-regu-
lated: Glucokinase converting glucose to glucose-6-phos-
phate and phosphoglucose isomerase transforming
glucose-6-phosphate to fructose-6-phosphate/6-phos-
phofructokinase yielding fructose-1,6-bisphosphate. The
increased conversion of D-fructose-6-phosphate to man-
nitol-1-phosphate generating the electron acceptor NAD+
normally produced in the Krebs cycle [47] explains the
up-regulation of mannitol-1-phosphate 5-dehydrogenase.
The higher amount of 1-phosphofructokinase is in agree-
ment with previous findings [46]. The EIIMan transporter
was up-regulated to increase the up-take of glucose. The
second cluster of reactions processing hexose nutrients
contained five up-regulated reactions which were con-
nected due to the metabolites 2-keto-3-deoxy-6-phospho-
gluconate, D-glyceraldehyde-3-phosphate and 1,3-
diphosphateglycerate. Phosphoglycerate kinase, glyceral-
dehyde 3-phosphate dehydrogenase and triose phosphate
isomerase are induced by anaerobiosis [48,49]. Note that
they are part of the glycolytic pathway of E. coli. Finally,
phosphogluconate dehydratase and 2-keto-3-deoxy-6-
phosphogluconate aldolase which are key enzymes of the
Entner-Doudoroff pathway, were up-regulated, further
demonstrating anaerobic glucose metabolism [50].

Iron processing
Two clusters represented the processing of iron in an
anaerobic environment (Table 1). The first cluster con-
tained eight down-regulated reactions. From these, seven
belonged to the complete biosynthesis pathway of entero-
bactin which is used by E. coli to scavenge iron, starting
with isochorismate synthase and ending at the aryl carrier
protein [51] (see Figure 6). Enterobactin biosynthesis is
repressed under anaerobic conditions as it is used for aer-
obic iron transport [52]. Directly connected to the entero-
bactin pathway is enterochelin esterase. Enterochelin
esterase uses enterobactin as an educt [53]. As biosynthe-
sis of enterobactin was down-regulated, the down-regula-
tion of enterochelin esterase is explained by the lower
availability of its educts. The second cluster for iron
processing contained five down-regulated reactions.
Metabolites connecting the reactions were L-alanine and
L-cysteine. The majority of the reactions are involved in
Fe-S cluster biogenesis. The most connected node was
cysteine desulfurase. This reaction assembles Fe-S com-
plexes into Fe-S proteins to repair them when damaged
during oxidative stress [54]. Under anaerobic conditions
damage by oxidative stress is negligible explaining the
down-regulation of cysteine desulfurase [55], whereas up-
regulation as an oxidative stress response has been
reported under aerobic conditions [56]. Directly linked to
cysteine desulfurase was the thiamin (thiazole moiety)
biosynthesis protein, which is a catalyser transferring sul-

During anaerobic growth E. coli performed mixed acid fer-mentation, resulting in a more acidic environmentFigure 7
During anaerobic growth E. coli performed mixed acid fer-
mentation, resulting in a more acidic environment. The histi-
dine biosynthesis (blue bordered nodes and light blue box) 
was up-regulated for buffering (see text). For box colours 
see Figure 4. PPR: phosphoribosyl.
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fur from cysteine to the ThiS protein. It was down-regu-
lated because during anaerobic growth a lower level of
thiamin is needed compared to aerobic conditions [54].
Furthermore, selenocysteine lyase was connected to
cysteine desulfurase via alanine. Selenocysteine lyase
seems to be regulated by IscR and to form an alternate
pathway involved in Fe-S biogenesis under aerobic condi-
tions. In an anaerobic environment this reaction is known
to be down-regulated [55].

Acid response
One prominent cluster was formed by 18 up-regulated
reactions. Ten of these represent the complete histidine
biosynthesis pathway, beginning with ATP phosphoribo-
syltransferase and ending at histidinal dehydrogenase
(Figure 7). When growing anaerobically on glucose, E. coli
synthesises acids via mixed acid fermentation [46,57] and
histidine is used to buffer acidic milieu [58]. Another reac-
tion in the cluster was CTP synthetase which was also up-
regulated. Due to the down-regulation of NDP kinase the
elevated levels of CTP synthetase are in agreement with
previous findings [59] while the concrete functionality of
this remains unclear. Furthermore, the cluster consisted of
up-regulated reactions that needed or produced aspartate
under anaerobic conditions. In yeast it was shown that the
aspartate concentration is roughly 100 times higher in the
cells under anaerobic conditions [60]. Generating aspar-
tate may facilitate the biosynthesis of further amino acids
and other essential compounds. E. coli has two known
reactions catalysing the synthesis of asparagine, asparag-
ine synthetase and aspartate-ammonia ligase. Both reac-
tions were up-regulated during anaerobic growth, in
agreement with previous findings [61]. The role of aspar-
tate was further reinforced by the up-regulation of the
GltP glutamate/aspartate DAACS transporter. Finally the
cluster consisted of the starting points for the anaerobic de
novo biosynthesis of NAD which were also up-regulated.
This pathway uses L-aspartate to form NAD via L-aspartate
oxidase and Quinolinate synthase [62,63]. Although NAD
may be constitutively produced, the up-regulation of both
reactions makes sense, as it has been shown that Quinoli-
nate synthetase is inactive when exposed to oxygen [62].

Nucleosides metabolisms
Two clusters indicating a change in the processing of nucl-
eosides were found (Table 1). One cluster contained eight
down-regulated reactions processing GTP, GDP and
dGDP. GTP cyclohydrolase I was down-regulated to limit
the biosynthesis of cost intensive folate and highly abun-
dant formate under anaerobic conditions. Similarly, GDP
kinase, dGDP kinase, GDP reductase, deoxyguanylate
kinase and ribonucleoside-diphosphate reductase 2 were
down-regulated, which may be due to reducing the
metabolism of cost intensive purines. Similarly the down-
regulation of GDP diphosphokinase and deoxyguanylate

kinase can be explained. The second cluster consisted of
six down-regulated reactions. Edges between reactions
were due to metabolites UTP, UDP, UDP-galactose, α-D-
glucose 1-phosphate or dTTP. The highest connected
node was UDP kinase. Interestingly, this cluster compares
to the cluster above showing down-regulated processing
of cost intensive nucleosides.

One carbon units
Six down-regulated reactions formed a cluster showing
the processing of one carbon units under anaerobic con-
ditions. Metabolites connecting the reactions were gly-
cine, H-protein-S-(aminomethyldihydrolipoyl)lysine and
H-protein-(lipoyl)lysine. The central reaction was glycine
dehydrogenase (decarboxylating) which together with
aminomethyltransferase is part of the glycine cleavage sys-
tem. Although it is reported that the glycine cleavage sys-
tem is active under anaerobic conditions [41], the down-
regulation stems from the fact that the corresponding
reaction reduces NAD+ to NADH which is very costly due
to the low availability of NAD+ [64]. The production of
one-carbon units, for which the glycine cleavage system is
used [65], was taken over by glycine hydroxymethyltrans-
ferase (see switches). Furthermore, lipoyl-protein ligase A
was down-regulated to reduce pyruvate dehydrogenase
and to increase pyruvate formate lyase activity [66]. As a
response to oxidative stress the expression of glutathione
synthetase increases [67]. In an anaerobic environment
no oxidative stress is prevalent, explaining the down-reg-
ulation of glutathione synthetase. Glycine-tRNA syn-
thetase was down-regulated which may be due to reduced
growth under oxygen deprivation.

Functional description of significant switches
64 significant switches were found (p-value ≤ 0.01, Table
2, supplement 2). The first 20 are interpreted here.
Switches belonging to the same metabolic process are
described in common paragraphs.

Formate fermentation
Five switches (1, 3, 4, 8, 15) belonged to the fermentation
of formate. The following reaction-pairs were up-regu-
lated and down-regulated respectively: formate hydroge-
nase complex and formyltetrahydrofolate deformylase,
FocA formate FNT transporter and formyltetrahydrofolate
deformylase, formate hydrogenase complex and GTP
cyclohydrolase I, formate dehydrogenase and formyltet-
rahydrofolate deformylase, FocA formate FNT transporter
and GTP cyclohydrolase I. All switches formed an intersec-
tion between degradation and formation of formate. Due
to the high abundance of formate in the cell under anaer-
obic conditions, the formation of new formate was down-
regulated (see e.g. [68]), while the degradation of formate
into CO2 and H2 and the transport of formate to the peri-
plasm was up-regulated.
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Mixed acid fermentation and anaerobic respiration
Four switches (2, 10, 11, 14) belonged to mixed acid fer-
mentation and anaerobic respiration. The first of these
switches was formed by up-regulated acetaldehyde dehy-
drogenase and down-regulated ethanolamine ammonia-
lyase. The reactions were connected via the metabolite
acetaldehyde. E. coli ferments glucose via acetyl-CoA to
ethanol. The first step in this fermentation is catalysed by
acetaldehyde dehydrogenase converting acetyl-CoA to
acetaldehyde [69]. Ethanolamine ammonia-lyase cataly-
ses the cleavage of ethanolamine to acetaldehyde and
ammonia [70]. Ethanolamine can be used as a carbon and
energy source under aerobic conditions [71], resulting in
a down-regulation of the reaction under anaerobic condi-
tions. In two switches fumarate reductase was up-regu-
lated where 5'-phosphoribosyl-4-(N-
succinocarboxamide)-5-aminoimidazole lyase and ade-
nylosuccinate lyase were down-regulated. 5'-phosphori-
bosyl-4-(N-succinocarboxamide)-5-aminoimidazole
lyase and adenylosuccinate lyase form a bifunctional
enzyme. The metabolite connecting the differently regu-
lated reactions was fumarate in both cases. Fumarate
reductase was up-regulated as it is used by E. coli during
anaerobic growth [34] with menaquinol acting as an elec-
tron acceptor, while fumarate functions as a terminal elec-
tron donor [35]. 5'-phosphoribosyl-4-(N-
succinocarboxamide)-5-aminoimidazole lyase/adenylo-
succinate lyase was down-regulated to reduce the biosyn-
thesis of purines indicating the reduced growth under
oxygen deprivation. Another switch consisted of up-regu-
lated phosphoenolpyruvate carboxylase and down-regu-
lated aspartate transaminase, connected by the metabolite
oxaloacetate. Phosphoenolpyruvate carboxylase partici-
pates in mixed-acid fermentation of glucose [72] and is
therefore up-regulated during anaerobic growth. Under
anaerobic conditions the citrate cycle is shortened to a
reductive branch. CoA and oxaloacetate is then further
processed to succinyl-coenzyme A by two possible
branches, either using aspartate transaminase or malate
dehydrogenase [73]. With our finding it seems that the
second branch is favoured.

One carbon units
Two switches (6, 7) were part of the metabolism of one-
carbon units. The switches consisted of up-regulated ser-
ine hydroxymethyltransferase and down-regulated reac-
tions of the glycine cleavage system (gcv system and
glycine dehydrogenase (decarboxylating)). Both reactions
produce 5,10-methylene-THF and are therefore major
contributors of one-carbon units in E. coli [65,74,75]. The
switch found here indicates that under anaerobic condi-
tions one-carbon units are more produced by serine
hydroxymethyltransferase than in an aerobic environ-
ment. The glycine cleavage system reduces NAD+ to
NADH. This is a costly reaction as NAD+ is only available

in small quantities [64]. Therefore, the glycine cleavage
system is down-regulated resulting in an up-regulation of
serine hydroxymethyltransferase to compensate for the
loss in one-carbon units.

Processing of hexoses
Two switches (9, 13) belonged to the processing of gluco-
nate and glyoxylate. Both up-regulated nodes, 2-ketoaldo-
nate reductase and 2-keto-4-hydroxyglutarate aldolase,
participate in the intracellular regulation of glyoxylate lev-
els [76,77]. Gluconokinase converts gluconate to 6-phos-
phogluconate which then can enter the Entner-Doudoroff
or the pentose phosphate pathway [77] while 2-keto-4-
hydroxyglutarate aldolase forms a part of the Entner-Dou-
doroff pathway. Normally, the Entner-Doudoroff path-
way is used if E. coli grows on gluconate. It exhibits basal
levels of activity of this pathway if growing on glucose
[78]. This is explained by the steady production of gluco-
nate during glucose metabolism [78]. Under anaerobic
conditions on glucose, the glucose metabolism is up-reg-
ulated (see Figure 5), which is followed by increased pro-
duction of gluconate and an up-regulation of gluconate
processing reactions. The down-regulated reactions, gly-
oxylate reductase and 2-ketoaldonate reductase respec-
tively, use NADPH as the electron donor and cooperate
with gluconate reductase [76] that, under aerobic condi-
tions, brings glyoxylate into the tricarboxylic acid cycle
[76]. Under anaerobic conditions this cycle is limited,
resulting in the observed down-regulation.

Branched chain amino acids transporters
Three switches (16, 17, 18) were formed by branched
chain amino acid transporters. Up-regulated were the
BrnQ branched chain amino acid LIVCS transporters
(EcoCyc-ids: TRANS-RXN-126, -126B, -126A). In contrast,
branched chain amino acids ABC transporters (EcoCyc-
ids: ABC-15-RXN, ABC-35-RXN, ABC-36-RXN) were
down-regulated. The ABC transporters need costly ATP
[79] resulting in a down-regulation under anaerobic con-
ditions. To compensate for the loss of the high affinity
ATP using transporters the low affinity branched chain
amino acid LIVCS transporters were up-regulated [80].

Miscellaneous
An unexpected contrarily regulated reaction pair (switch
20) was formed by up-regulated phosphatidylglycero-
phosphate synthase and down-regulated CDP-diacylglyc-
erol pyrophosphatase. E. coli uses
phosphatidylglycerophosphate synthase to catalyse the
biosynthesis of acidic phospholipids [81] synthesising
phosphatidylglycerol. It plays a major role in transloca-
tion of e.g. trimethylamine N-oxide reductase [82], a reac-
tion used for anaerobic respiration [83]. Unfortunately,
not much functional knowledge exits about the down-reg-
ulated CDP-diacylglycerol pyrophosphatase. Switch 12
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consisted of up-regulated CTP synthetase and down-regu-
lated UDP-glucose-hexose-1-phosphate uridylyltrans-
ferase. The up-regulation of CTP-synthetase agrees to
previous findings [59] although the reason for this
remains to be investigated further. Two switches (5, 19)
were inexplicable to us (see Conclusions).

Comparison to a standard method
We compared the list of genes extracted with our tech-
nique to a standard t-test which did not take any network
information into account. A mutant-corrected t-test (see
Methods) was run on the gene expression levels for the
corresponding reactions. Table 3 shows the results for the
first 40 highest ranking features. All except six reactions
were also found by our technique. The top three reactions
(1, 2, 3 of Table 3) are involved in fermentation of for-
mate and were also found with our technique (Table 1,
Figure 4). Our technique was capable detecting whole
pathways that occurred in the list of our top ranking fea-
tures. However, the standard method did not detect such
pathways or sub-graphs (discussed in the text, see above)
supporting our concept for identifying functionally rele-
vant sub-graphs. The six reactions 10, 13, 15, 25, 29, 32
were not extracted by our technique. Five of these reac-
tions were not found due to the network construction:
Unspecific metabolites were deleted resulting in the dele-
tion of reactions that catalyse unspecific substrates, such
as pyruvate kinase, glutamate dehydrogenase (NADP+),
NAD kinase, NADH oxidoreductase and RhtB homoser-
ine Rht transporter. Putative reactions with undefined
metabolites like N-acetyl-anhydromuramyl-L-alanine-
amidase, were also not included into the studied meta-
bolic network and could therefore not be identified.

Conclusion
We applied simplified first- and second-order Haar-wave-
let-transformations to select combined transcription lev-
els of reaction-pairs. We chose the Haar wavelets as they
enable connecting two discrete data points (reaction pairs
in our case) in a straightforward way. Furthermore, we
searched for common and opposing responses between
combined gene expression data which matched well to
the shape of the Haar wavelet filters. Through using this
approach we gained substantial insight into the metabolic
regulation of E. coli upon the transition from oxygen-rich
to oxygen-deprived conditions. Such an approach com-
plements to the original idea of DeRisi and co-workers to
use microarray technology for discovering system
changes. For example, they revealed changes in yeast
metabolism during the diauxic shift [84]. In the study pre-
sented here, we discovered a broad spectrum of responses
including direct responses to limited oxygen and chang-
ing buffer conditions. As a response to limited oxygen, we
identified an up-regulation in glycolysis, other hexose
metabolisms, mixed acid fermentation, formate fermenta-

tion and the metabolism of aspartate. In summary, we see
two interesting implications for our study, (i) data analy-
sis: the implementation of the Haar-wavelet technique on
small pairs of nodes is well suited for revealing significant
patterns in a cellular network; and (ii) functional: many
pathways are regulated on a transcriptional level support-
ing the concept of hierarchical control analysis for micro-
organisms [85,86].

The formate fermentation showed an interesting switch
like behaviour: for oxygen deprived conditions the degra-
dation of formate was up-regulated while its cost-inten-
sive production was down-regulated. Note that this may
be more difficult to reveal when using smoothing tech-
niques (as e.g. [17,18]) and demonstrates the benefit of
using wavelets. Furthermore, a decrease in the metabo-
lism of iron was detected as a response to reduced oxygen
availability. Interestingly, this agrees with Faith et al. who
analysed a large compendium of 445 microarrays for E.
coli including a variety of different oxygen conditions [9].
They showed that PdHR which regulates the central
metabolism, is also involved in regulating the fec operon
which encodes genes for iron transport. We discovered
that the entire histidine biosynthesis pathway was up-reg-
ulated as a possible response to accumulation of acid
products in batch culture [58]. However, essential sub-
graphs were not only detected in an isolated form, but
also in relation to connected pathways which depended
on the same metabolites. E.g., the cluster containing the
histidine biosynthesis pathway (Figure 7) also contained
components for metabolism of aspartate and glutamine.
In addition, the cluster of formate fermentation (Figure 4)
included parts of the aspartate metabolism. This reflects
the unspecific hub-like nature of key metabolites such as
L-glutamine and aspartate connecting several pathways.
Significant switches supported the yielded adaptation
mechanisms of E. coli to changing oxygen abundance, as
e.g., switches pertaining to the fermentation of formate
and mixed acids.

In our previous study, we used the same microarray data-
set and extracted discriminate patterns of highly con-
nected regions in the network [26]. In comparison to the
present study here, we got a good consistency of the
extracted pathways (glycolysis, aspartate metabolism, for-
mate fermentation, pyruvate metabolism). In the study
presented here, we elucidated some new pathways, i.e. the
histidine biosynthesis, enterobactin biosynthesis (oxida-
tive stress response), the aerobic part of the TCA cycle, and
hexoses and one-carbon-units processing. It is of note that
histidine biosynthesis and the biosynthesis of enterobac-
tin are linear chains in the network. In contrast to the pre-
vious method, such linear chains can be well recognised
by the method we present here which couples pairs of
nodes. However, the previous method recognised two
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Table 3: Discriminative reactions from a t-test. .

Rank Reaction Regulation P-value Found also with our technique

1 formate hydrogenlyase complex 1 2.99E-19 Yes

2 FocA formate FNT transporter 1 3.18E-16 Yes

3 pyruvate formate-lyase 1 7.29E-15 Yes

4 aminomethyltransferase -1 3.33E-14 Yes

5 gcv system -1 1.67E-12 Yes

6 3-methyl-2-oxobutanoate hydroxymethyltransferase 1 3.92E-12 Yes

7 glycine dehydrogenase (decarboxylating) -1 5.52E-12 Yes

8 PFL-deactivase 1 2.01E-11 Yes

9 acetaldehyde dehydrogenase 1 2.01E-11 Yes

10 pyruvate kinase 1 2.55E-11 No

11 fumarate reductase 1 2.69E-11 Yes

12 enolase 1 2.87E-11 Yes

13 N-acetylmuramyl-L-alanine amidase 1 3.10E-11 No

14 formate dehydrogenase 1 3.30E-11 Yes

15 glutamate dehydrogenase (NADP+) 1 4.21E-11 No

16 mannonate dehydratase -1 7.97E-11 Yes

17 pyruvate formate-lyase activating enzyme 1 1.91E-10 Yes

18 pyruvate formate-lyase activating enzyme 1 1.91E-10 Yes

19 triose phosphate isomerase 1 2.25E-10 Yes

20 glutamyl-tRNA reductase 1 3.21E-10 Yes

21 histidine-phosphate aminotransferase 1 3.35E-10 Yes

22 2-keto-4-hydroxyglutarate aldolase 1 7.98E-10 Yes

23 2-keto-3-deoxy-6-phosphogluconate aldolase 1 7.98E-10 Yes

24 oxaloacetate decarboxylase 1 7.98E-10 Yes

25 putative NAD+ kinase 1 1.29E-09 No

26 6-phosphofructokinase-1 1 1.29E-09 Yes

27 mannose-6-phosphate isomerase 1 1.37E-09 Yes

28 Outer Membrane Ferrichrome Transport System -1 1.57E-09 Yes

29 NADH oxidoreductase 1 2.19E-09 No

30 isocitrate dehydrogenase kinase -1 4.61E-09 Yes

31 isocitrate dehydrogenase phosphatase -1 4.61E-09 Yes

32 RhtB homoserine Rht Transporter 1 5.70E-09 No

33 histidinol-phosphatase 1 7.39E-09 Yes

34 imidazoleglycerol-phosphate dehydratase 1 7.39E-09 Yes

35 Outer Membrane Ferric Enterobactin Transport System -1 1.49E-08 Yes

36 phosphoenolpyruvate carboxylase 1 2.38E-08 Yes

37 tetrahydrodipicolinate succinylase 1 2.90E-08 Yes

38 imidazole glycerol phosphate synthase 1 3.36E-08 Yes

39 3-hydroxy acid dehydrogenase 1 3.59E-08 Yes

40 branched chain amino acids ABC transporter -1 4.83E-08 Yes

The 40 first ranking reactions when applying a mutant and multiple testing corrected t-test directly without any network information. Shaded rows 
were found only by this standard method (see text)
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interesting, highly-connected regions which were not
indicated using our new method (the interface between
glycolysis and NAD biosynthesis, and the biosynthesis of
lysine, see [26]). Two observed switches remain explaina-
ble. One switch (switch 19) consisted of 3-hydroxy acid
dehydrogenase and phosphoserine phosphatase. In the
second case (switch 5) up-regulated 3-methyl-2-oxobu-
tanoate hydroxymethyltransferase and down-regulated 2-
dehydropantoate reductase directly followed the up-regu-
lated reaction in the biosynthesis of pantothenate. These
results may reveal an incomplete understanding of these
metabolic components and the need for further experi-
mental investigation.

On simulated data, the accuracy and precision was signif-
icantly better in comparison to the standard method. This
allowed us to use a p-value of 0.01 and to focus on more
significant changes. We compared our technique with a
standard method extracting lists of discriminative genes
from the expression data without taking gene relation-
ships into account. We were able to detect all relevant
reactions that could also be found by the standard
method. In contrast, the standard method failed to reveal
comprehensive functional pathways. However, for future
studies a general method to validate the functionality of
such a broad spectrum of newly revealed pathways
remains to be developed. Nevertheless, our technique
might be used for analysing signalling networks, e.g., to
identify discriminative regulations in cancers with differ-
ent prognosis, even though reaction and signalling levels
might be less related to gene expression levels for higher
organisms. Further methodological advances might also
include the addition of protein post-transcriptional regu-
lation and the application of more complex image
processing methods.

Methods
Establishing the metabolic network
All metabolic reactions were extracted from the EcoCyc
database (Version 10.0) [87]. A graph was established by
defining neighbours of reactions: Two reactions were
neighbours if a metabolite existed that was the product of
one reaction and the substrate for the other. In this repre-
sentation the nodes of the graph were the reactions while
edges were defined by the metabolites. Metabolites were
discarded that were highly connected and therefore path-
way unspecific, such as water, oxygen, major coenzymes
and prostethic groups. This approach resulted in a graph
with 1196 nodes and 3650 edges.

Mapping gene expression data onto nodes of the network
Raw intensity values of gene expression data were col-
lected from the work of Covert et al. in which mRNA lev-
els of all open reading frames of E. coli using Affymetrix
oligo microarrays were determined [28]. The data was

downloaded from the ASAP database [88] and normal-
ised with the variance normalisation method [89]. 43
hybridisations of the following samples were selected:
strain K-12 MG 1655, wild-type, ∆arcA, ∆appY, ∆fnr,
∆oxyR, ∆soxS single mutants and the ∆arcA∆fnr double
mutant. The mutated genes are key transcriptional regula-
tors of the oxygen response [28]. They effect a major por-
tion of all genes in E. coli. All gene expression experiments
were done in triplicate under aerobic and anaerobic con-
ditions, except for anaerobic wild-type which was
repeated four times. The gene expression data of each
data-set was mapped onto the corresponding reactions of
the transcribed proteins. If a reaction was catalysed by a
complex of proteins the minimal expression value of the
genes involved was taken as the value of the correspond-
ing complex. The expression data of all samples was
mapped onto each network, yielding 43 different patterns
for each graph.

Generating feature modules
To discover specific expression patterns and textures in the
network we calculated features with the Haar-wavelet
transformation consisting of gene expression combina-
tions of neighbouring reaction-pairs. Haar-wavelet trans-
formations add and subtract the values of neighbouring
pairs of nodes and multiply them with a constant factor:
Be r0, r1 the gene expression values of a pair of reactions,
respectively. Applying the transform yields the feature
modules f0, f1:

See also [90] for more details. The Haar wavelet transform
can be regarded as a low pass filter when performing the
summation and a high pass filter when calculating the dif-
ference between neighbouring value pairs. Both filters
were applied on all pairs of nodes connected by an edge
resulting in calculated feature modules.

Statistical testing of the feature modules
All Haar-wavelet generated features were tested by a mul-
tiple t-test between aerobic and anaerobic conditions. To
correct for potential influences coming from individual
mutants, t-tests were performed for every constellation of
samples excluding the sample of one particular mutant,
respectively. The wild type sample was never excluded.
From this outcome the worst (highest) p-value for each
feature was selected. All p-values were corrected for multi-
ple testing (Bonferroni, see [27]). Features were then
ranked according to their p-value.

Clustering of significant reaction pairs
All significant feature modules were extracted (p-value ≤
0.01). Sub-graphs were put up by connecting the found
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significant feature modules (reaction-pairs). This resulted
in five larger sub-graphs. To facilitate the interpretation of
the found sub-graphs, nodes with equal expression behav-
iour (up-, down-regulation) were grouped together. To
reduce random fluctuations we focused only on larger
patterns, i.e. clusters with a cluster size smaller than five
were discarded. In total 10 clusters were extracted. Reac-
tion-pairs having one up- and one down-regulated node
were regarded as switches. They were extracted if their p-
value was below 0.01.

Note, that our method yielding these clusters is based on
two steps: generating feature modules and combining
those with a common response yielding significant clus-
ters of co-expression. The first step compares to a low and
a high pass filter of the first order Haar-wavelet-transfor-
mation, respectively. The second step compares to a low
pass filter of the second order Haar-wavelet-transform.

Analysing the found clusters and switches in-depth
All extracted clusters and switches were functionally char-
acterised (see Results and Discussion). An in-depth analy-
sis was performed by scanning the literature. Finally, the
analysed clusters and switches were assembled yielding an
overall map of the metabolic changes.
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