
RESEARCH ARTICLE

A background correction method to

compensate illumination variation in

hyperspectral imaging

Jonghee Yoon1,2*, Alexandru Grigoroiu1,2, Sarah E. BohndiekID
1,2*

1 Department of Physics, University of Cambridge, Cambridge, England, United Kingdom, 2 Li Ka Shing Centre,

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom

* jonghee.yoon@cruk.cam.ac.uk (JY); seb53@cam.ac.uk (SEB)

Abstract

Hyperspectral imaging (HSI) can measure both spatial (morphological) and spectral (bio-

chemical) information from biological tissues. While HSI appears promising for biomedical

applications, interpretation of hyperspectral images can be challenging when data is

acquired in complex biological environments. Variations in surface topology or optical power

distribution at the sample, encountered for example during endoscopy, can lead to errors in

post-processing of the HSI data, compromising disease diagnostic capabilities. Here, we

propose a background correction method to compensate for such variations, which esti-

mates the optical properties of illumination at the target based on the normalised spectral

profile of the light source and the measured HSI intensity values at a fixed wavelength

where the absorption characteristics of the sample are relatively low (in this case, 800 nm).

We demonstrate the feasibility of the proposed method by imaging blood samples, tissue-

mimicking phantoms, and ex vivo chicken tissue. Moreover, using synthetic HSI data com-

posed from experimentally measured spectra, we show the proposed method would

improve statistical analysis of HSI data. The proposed method could help the implementa-

tion of HSI techniques in practical clinical applications, where controlling the illumination pat-

tern and power is difficult.

Introduction

Hyperspectral imaging, originating from remote sensing applications[1], enables a combined

simultaneous measurement of both spatial and spectral information from biological tissues.

Analysis of the resulting 3D data set, or ‘hypercube’, enables spatial discrimination of healthy

and abnormal tissues based on the rich morphological and biochemical information contained

within the spatial and spectral features[2,3]. HSI has shown potential in a range of biomedical

applications, from label-free tumour diagnoses[4–6] and detection of tumour margins during

surgical operations[7–9], to quantification of blood oxygenation levels[10–12], and multi-col-

our fluorescent imaging[12,13]. HSI methods have thus been developed for the fast and accu-

rate analysis of biological samples ex vivo[14–17] as well as for diagnostic and intraoperative

applications in vivo[16,18].
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The high complexity of handling the 3D hypercube requires careful consideration of appro-

priate analysis methods[3,19–21]. HSI data are commonly subjected to a normalisation proce-

dure to calculate reflectance and/or absorbance of the sample using the following Eq[3]:

R x; y; lð Þ ¼
Iðx; y; lÞ � Idark
I0ðx; y; lÞ � Idark

ð1Þ

A x; y; lð Þ ¼ � log10

Iðx; y; lÞ � Idark
I0ðx; y; lÞ � Idark

� �

ð2Þ

,where R(x,y,λ) and A(x,y,λ) are the reflectance and absorbance at a given spatial position (x, y)
and wavelength (λ), respectively. I, I0, and Idark are the intensities of the spectral signals mea-

sured from the sample, the background spectral signals recorded without the sample in place

(also referred to as the “white” signals) and the dark signals recorded without any illumination,

respectively. Reflectance and absorbance metrics thus indicate the true spectral features of a

sample as these calculations correct for variations in illumination conditions and errors intro-

duced by the optical components. These processed reflectance or absorbance signals can then

be further subjected to statistical analyses such as principal component analysis (PCA)[22,23],

spectral angle mapping (SAM)[24], or machine learning methods[5,25–27], to extract signifi-

cant spectral features that can discriminate or classify the samples of interest.

A key limitation of these reflectance and absorbance calculations is the assumption of uni-

form sample illumination. Several methods are used in hardware to ensure that this assump-

tion remains valid, including: uniform illumination instrumentation[28,29]; 3D shape

measurement[30]; reference intrinsic / fluorescence imaging[31–34]; and ratiometric mea-

surements[35–37]. Uniform illumination instrumentation can be achieved with specialised

devices such as ring illuminators or diffuse domes, however, there are difficulties in applying

these for in vivo imaging, such as during endoscopy, due to the need for bulky illuminating

units. In addition, uniform illumination instrumentation does not guarantee intensity homo-

geneity along the axial direction, which means illumination issues can still occur ex vivo when

measuring most biological tissues due to their uneven surfaces. Estimating optical illumination

power is possible using 3D shape measurement techniques and optical model-based analysis

but predicting illumination conditions within shadowed regions is challenging. Intrinsic

image or reference fluorescence signals measured by multimodal imaging systems have been

used to provide a reference background (BG) that enables estimation of the optical power dis-

tribution of the light source and correction of sample signals but again, a complex optical sys-

tem is required to measure reference BGs and additional errors are introduced by variations in

tissue absorption or the concentration of fluorescence agents. Ratiometric measurements,

such as narrow-band imaging, record spectral information from only a few spectral bands, dis-

playing physiological information based on a (weighted) sum of the images. Although ratio-

metric imaging is usually insensitive to illumination conditions and sample morphology, only

limited spectral information is recorded.

Here, we introduce a BG correction method that estimates the optical power of illumination

at a sample by exploiting the normalised spectral profile of the light source and the hyperspec-

tral signal of the sample. We experimentally demonstrate the proof-of-concept of the method

using HSI data acquired via a hyperspectral endoscopy system from blood samples, tissue-

mimicking phantoms, and ex vivo chicken tissue. Moreover, the importance and applicability

of the proposed method to hyperspectral image analysis (PCA and SAM) and machine learn-

ing classification of hyperspectral data were tested using synthetic reflection and absorption

hypercubes based on these experimentally measured spectra. The proposed BG correction
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method, referred to as retrieved background (RB), enables the estimation of optical character-

istics of illumination at the sample, avoiding the need for additional complex hardware, and

results in accurate hyperspectral data analysis and classification.

Materials and methods

Hyperspectral imaging system

The hyperspectral imaging endoscopy system, reported previously[18], exploits a flexible CE-

marked endoscope (Polyscope, PolyDiagnostics) and a line-scanning (pushbroom) method.

Briefly, the endoscope consists of a reusable imaging fibre bundle with 10,000 individual fibre-

lets and a disposable sterile catheter that contains an imaging channel, an illumination fibre

and an accessory channel. The proximal end of the imaging fibre bundle was imaged and mag-

nified using an infinity corrected objective lens (40×, 0.6NA, Nikon) and a tube lens (L1, f = 75

mm), with the image being measured by an electron multiplying CCD camera (sCam, ProEM

512, Princeton Instruments) combined with a spectrograph (IsoPlane 160, Princeton Instru-

ment) to obtain hyperspectral information. The spectrograph consisted of a mechanical

entrance slit of manually adjustable width (10 μm– 3 mm) and a grating (150 lines/mm with

500 nm blaze, Princeton Instruments); thus a spectral image with a spectral bandwidth of 250

nm can be measured in a single image acquisition. The spectrograph and camera were con-

trolled by LightField software v6.7 (Princeton Instrument). In order to obtain a wide-area

hyperspectral image, the line-scanning was performed using a motorized translational stage

(MTS50/M-Z8, Thorlabs). All equipment was synchronously controlled in Labview 2017

(National Instruments) environment.

A broadband light source (OSL2, Thorlabs) with a Halogen light bulb (OSL2bIR, Thorlabs)

whose emission spectrum spanned across the visible to NIR (1050 nm) region was used to illu-

minate a sample either internally or externally, depending on experimental purposes. For

internal illumination, the light source was directly coupled to the illumination fibre of the

endoscope by using a collimating lens (L2, f = 150 mm) and an objective lens (60×, NA 0.9,

Olympus). For external illumination, the light source was coupled to a large core fibre and the

distal end of the fibre was placed 2 cm away from the sample at a tilted angle.

Image acquisition

Spectral image acquisition was performed after allowing 15 minutes for temperature stabilisa-

tion of the equipment. The image acquisition process consisted of three steps: (1) dark imag-

ing; (2) white reflectance imaging; and (3) sample measurement. Dark imaging was performed

under closed camera shutter conditions. White reflectance imaging was performed using a

standard white reflectance target (Spectralon diffuse reflectance target, Labsphere) to obtain

information of the spectral profile and intensity of the light source. All image acquisition pro-

cesses were performed under the same experimental conditions, including exposure time, gain

and light source power.

Hypercube reconstruction

The recorded 2D line-scan image contains one spatial coordinate and the spectral coordinate,

because the grating inside the spectrograph disperses the image horizontally; hypercube recon-

struction is required to retrieve the other spatial coordinate, obtained during the motorized

translation. Before commencing hypercube reconstruction, the dark image was subtracted

from the white reflectance and sample images. A single column of the corrected image, which

contains information from a single wavelength, was selected and duplicated horizontally to
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match its image size to the physical slit width. For example, in hyperspectral imaging of the

chicken tissue, line-scan hyperspectral images of the sample and white-reflectance target were

measured with a step scanning size of 250 μm, which corresponds to 5 pixels. Thus, each pro-

cessed image was placed 5 pixels apart from the previous image. By repeating this process for

all column images, a slice of the hypercube at a single wavelength was created. The 3D hyper-

cube was then reconstructed by repeating the process to create a wide-area spatial image at all

wavelengths. Hypercubes of the sample and white-reflectance target were reconstructed sepa-

rately, enabling the calculation of normalised reflectance and absorbance values by dividing

the sample and white-reflectance hypercubes.

Generation of a synthetic RGB image from the hypercube

For visualization purposes, the hypercube can be converted to a synthetic RGB (colour) image

using an artificially generated RGB filter based on a previously published method[18]. The

spectrum of the RGB filter employed Rayleigh probability density functions (raylpdf function

in Matlab R2018b), with centre wavelengths of each colour being set to 442, 518, and 579 nm,

respectively. Amplitudes of each filter were determined such that saturation of the synthetic

RGB image was avoided. The hyperspectral signal from the hypercube was multiplied by the

artificially generated RGB filters, with the R, G and B values of the synthetic RGB image being

determined by calculating the area-under-curve values of the filtered signals. Synthesized RGB

images were displayed using imshow function in Matlab R2018b.

Preparation of chicken tissue

A food-grade chicken drumstick purchased from a local grocery market was horizontally

dissected using a knife. Local handling of the tissue was approved by our Biological Safety

Committee. The test sample was then placed on a petri dish and measured by using the hyper-

spectral endoscope. To obtain background signals, a white-diffuse-reflectance target was mea-

sured under the same experimental conditions as the sample measurement. The hyperspectral

imaging was performed at a working distance of 7 cm with a step size of 250 μm on the motor-

ized stage. A total of 150 spectral images were measured, resulting in a total scanning area of

31.56 mm × 37.50 mm, with an exposure time of 1s. The experiments were conducted within a

3 hour timeframe to ensure sample freshness.

Preparation of tissue-mimicking phantom and blood samples

For blood oxygenation measurements, fresh heparinized mouse blood was collected from

deceased mice provided by the Biological Resources Unit of the Cancer Research UK Cam-

bridge Institute (mice were not sacrificed for the purpose of this study). 1 mL of mouse blood

was divided between two 1 mL Eppendorf tubes. To make a fully oxygenated blood sample,

1 μL of 30% hydrogen peroxide (Sigma-Aldrich) was added and the sample was gently mixed

by inversion. 1.5 mg of sodium hydrosulphite (Sigma-Aldrich) was added to the other tube to

make a completely deoxygenated blood sample, again mixing by inversion. The tubes were

kept at room temperature for 10 mins and 20 μL of the oxygenated and deoxygenated blood

samples were transferred to a petri dish and covered by a cover slip. As a reference target,

20 μL of distilled water was put on the petri dish and covered by the cover slip.

To test the effects of scattering, absorption and fluorescence on the suggested method, tis-

sue mimicking phantoms with defined optical properties that closely mimic biological tissue

were fabricated using agar, intralipid, nigrosin and methylene blue[38]. All chemicals were

purchased from Sigma-Aldrich. Before fabricating the tissue phantoms, two different concen-

trations of absorbance and fluorescence dyes were prepared. Nigrosin (0.1 and 0.05 g/mL) and
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methylene blue (0.1 and 0.05%) were prepared by diluting dyes using distilled water. 0.75 g of

agarose was dissolved in 48.5 mL of distilled water and then heated to the boiling point using a

microwave oven. The solution was left to cool to ~40˚C, with 1 mL of 20% intralipid being

added to the solution and gently mixed to induce optical scattering. 500 μL of the solution was

transferred to 6 wells of an 8 well dish (μ-Slide 8 Well, ibidi GmbH) using a pipette and then

100 μL of the four prepared dyes were added to 4 of the cells. The dish was covered by plastic

wrap and kept inside a refrigerator to set.

Creation of synthetic absorption and reflection hypercubes

In order to test machine-learning methods, synthetic hypercubes that mimic experimental

conditions were used, composed of spectral signals from experimentally measured BG and

samples (pork muscle tissue, oxygenated blood, methylene blue and nigrosin dyes). All sam-

ples were measured four times under different experimental conditions to include noise gener-

ated by the optical systems and environment to synthetic hypercubes. To generate

uncorrelated training and test hypercubes, three of the four measured data sets were used for

training data and the other data set was used for test data.

Synthetic reflection and absorption hypercubes were created by following four steps: (1)

generation of a random illumination pattern; (2) creation of a GT reflectance hypercube based

on four experimentally measured signals with an uncorrelated noise; (3) creation of SB and RB

reflectance hypercubes by combining the GT hypercube with the random illumination pattern;

and (4) applying a log-transformation of the produced reflectance hypercubes to generate

absorbance hypercubes

Step (1): 2D random Gaussian distributions, M, were used as ground-truth optical power dis-

tributions, with values were ranging between 0 and 1. Gaussian distribution was created

using ‘mvnpdf’ function in Matlab, and its central location was randomly assigned using

‘rand’ function in Matlab. Optical characteristics of the illumination conditions were

decided by the following equation:

BGðx; y; lÞ ¼ Mðx; yÞ � SlightðlÞ

where BG(x,y,λ) is light intensity at the wavelength of λ at the point x,y in the image, M(x,y) is

the optical power at the point x,y, and Slight(λ) is the experimentally measured spectral intensity

of the light source at the wavelength of λ, respectively.

Step (2): The GT reflectance hypercube was created by assigning experimentally measured

hyperspectral signals of samples (pork muscle tissue, oxygenated blood, methylene blue,

and nigrosin dye) with an uncorrelated noise obtained from independent experimental

measurements of spectral signals from a colour chart (ColorChecker Classic Mini, x-rite) to

each of the corresponding clusters in the spatial regions of the image (either target or back-

ground regions).

GTðx; y; lÞ ¼ SsampleðlÞ þ a� NðlÞ

where Ssample(λ) is the experimentally measured spectral intensity among the samples at the

wavelength of λ, α is randomly generated weighting factor between 0 to 0.1 (‘rand’ function in

Matlab), and N(λ) is an experimentally measured spectral intensity of the colour chart at the

wavelength of λ, respectively. The noise, α×N(λ) has a scale less than 10% of sample signals,
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Ssample(λ), and the range of the weighting factor, α, was determined to make the noise scale

consistent with the scale of average experimental noise. The uncorrelated noise makes the

training process more robust and reduces generalization error.

Step (3): SB and RB reflectance hypercubes were created based on the GT hypercube from Step

(2) and single and retrieved illumination conditions by following equations, respectively:

SB x; y; lð Þ ¼
BGðx; y; lÞ � GTðx; y; lÞ

SlightðlÞ

RB x; y; lð Þ ¼
BGðx; y; lÞ � GTðx; y; lÞ

RMðx; y; lÞ

where RM(x,y,λ) is retrieved optical power at the wavelength of λ at the point x,y obtained via

the BG retrieval method.

Step (4): Absorbance hypercubes were calculated by performing logarithmic transformation of

the GT, SB and RB reflectance hypercubes.

Principal component analysis

A pixel-wise approach and singular value decomposition (SVD) were exploited to perform

PCA of the hypercube[39]. Three pre-processing steps were required before calculating the

SVD of the hypercube. First, the 3D hypercube was vectorised into a 2D matrix, consisting of

pixels (vertical axis) and hyperspectral signals (horizontal axis). Then, hyperspectral data was

centred by subtracting mean values of the hyperspectral signal of each pixel from its corre-

sponding signal. Finally, the covariance matrix of the pre-processed hyperspectral data was cal-

culated, which was used as an input of SVD. SVD was performed using svd function in Matlab

R2018b. An NVIDA GeForce GTX 1080 graphical processing unit was exploited for fast SVD

calculation.

Specular angle mapping

For SAM analysis, the average hyperspectral signal of cluster i of each hypercube was used as a

reference hyperspectral signal. Then, the spectral angles, α, between the hyperspectral signal of

each pixel of a hypercube and the reference spectral signal were calculated using the following

equation[24]:

a ¼ cos� 1ð

Pn
l¼1

tlrl
ð
Pn

l¼1
tl2Þ

0:5
ð
Pn

l¼1
rl2Þ

0:5
Þ ð3Þ

, where tλ and rλ are values of the target and reference spectral profiles at wavelength λ, respec-

tively and n indicates the total number of spectral channels.

Machine-learning based classification of emulated hypercube

Learning algorithms were implemented in Python, with K-means clustering and SVM algo-

rithms being implemented via the sklearn library and CNNs being implemented via Lasagne, a

Theano supplementary library. Learning was performed on a machine with access to 16 GB

RAM and a NVDIA GeForce GTX 1050Ti graphical processing unit. To validate the lack of

overfitting of the classifiers, the synthetic data was split into training and testing datasets, with
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base spectral measurements for the simulations being independent of one-another. All results

presented are based on the performance of the classifiers on the test data.

A pixel-wise approach was used for learning and classification processes. A 3D hypercube,

consisting of 256 × 512 spatial points and 300 spectral channels, was converted to a 2D image

with sizes of 131072 × 300. Each row of the converted image with 300 spectral channels was

then used as an input to the learning and classification processes. We found that twenty-five

training datasets were sufficient to achieve 100% classification accuracy in the ground-truth

data. For a better supervised learning process, fifty hypercubes were exploited to train super-

vised learning models (SVMs and CNNs). Due to the large data sizes and memory limitations,

learning was performed incrementally in batches of one hypercube (131072 × 300). Thus, for

the K-mean algorithm, the MiniBatchKMeans function was employed, with a 21 epochs early

stopping decision and a target of 4 clusters. An incremental SVM algorithm has been imple-

mented by employing the SGDClassifier function with a hinge loss function and l2 regulari-

sers. For the CNN a six layered network was implemented with three convolutional layers, two

fully connected layers and an output layer. Unlike in the previous two methods (K-means and

SVM algorithms), a subset of a hypercube (200 × 300) was used as a batch size of CNN to facili-

tate a more effective learning process. 5-fold cross-validation was performed to test the accu-

racy of CNNs.

Software

Matlab R2017b and Python were used for image processing. Lightfield v6.7 (Princeton Instru-

ment) was used to control the spectrograph and EMCCD. Labview 2017 (National Instru-

ments) was used for synchronized control of the wide-field camera, spectrograph and

EMCCD, and motorized stage.

Code availability

All custom data analysis code will be made available online at: https://doi.org/10.17863/CAM.

42338

Results

Background correction using the normalised source profile and target

hyperspectral signals

The influence of varying illumination power on the calculation of reflectance and absorbance

spectra along with the proposed correction method is demonstrated in Fig 1. Experimentally

measured hyperspectral signals were acquired from absorbing nigrosin black dye as the sample

(Fig 1A) and a standard diffuse reflectance target as the background (Fig 1B, ω = 1). To emu-

late varying illumination intensities, two weighting factors were multiplied with the ground-

truth BG signal (Fig 1B, ω = 0.8, 1.2) and the resulting reflectance (Fig 1C) and absorbance

(Fig 1D) spectra were calculated according to the following equations (see Methods for com-

plete definition of all variables):

R lð Þ ¼
IðlÞ � Idark

o� ðI0ðlÞ � IdarkÞ
ð4Þ

A lð Þ ¼ � log10

IðlÞ � Idark
o� ðI0ðlÞ � IdarkÞ

� �

¼ � log10

IðlÞ � Idark
ðI0ðlÞ � IdarkÞ

� �

þ log10w ð5Þ

Varying the intensity in this way resulted in the expected change in the scale of the calculated
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reflectance, since ω is a multiplicative factor in Eq (4), and a change in the offset of the calcu-

lated absorbance, because ω becomes an additive constant in Eq (5) due to logarithm calcula-

tions. This simple illustration highlights how image processing with incorrect BG data would

cause errors in the interpretation of hyperspectral data. We propose instead to multiply the

normalised spectrum of the light source (Fig 1E) with the intensity ratio between the normal-

ised spectral profiles of the light source (Cb) and the sample (Cs) at a wavelength of low absor-

bance in the sample to estimate the actual spectrum of the light source at the target (Fig 1F).

Here, we select 800 nm as the wavelength for comparison, since this is central in the near-

infrared (NIR) tissue ‘optical window’ of low absorbance in biological tissues[40,41]. More-

over, there is an isosbestic absorption of haemoglobin at 800 nm meaning that any change in

absorption due to haemoglobin oxygenation status would not affect the calculation and the

loss of information at the normalisation is minimal since there are several other isosbestic

points for haemoglobin within the visible spectral region.

Fig 1. The effect of illumination power on absorbance and reflectance spectra. Raw spectra of 0.05 g/mL nigrosin

dye (a) and the background halogen light source (b, ω = 1) were measured. To simulate the effects of the low and high

illumination power, weighting factors (ω = 0.8 and 1.2) were multiplied with the background spectrum. (c, d)

Reflectance and absorbance were obtained for the three different weighting factors. Illumination power can be

observed to change the scaling of reflectance spectra and the offset of absorbance spectra. (e, f) The proposed

background retrieval method estimates the optical spectral power of the illumination at the sample by exploiting a

normalised spectral profile of the light source (e) and the intensity ratio between the normalised spectral profile of the

light source and sample data (Cs/Cb) at a wavelength displaying low absorbance in the sample of interest, here selected

as 800 nm (f).

https://doi.org/10.1371/journal.pone.0229502.g001
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The proposed method calculates reflectance and/or absorbance of the sample using the fol-

lowing equations:

R x; y; lð Þ ¼
Iðx; y; lÞ � Idark
Csðx;yÞ
Cbðx;yÞ � NSðlÞ

ð6Þ

A x; y; lð Þ ¼ � log10

Iðx; y; lÞ � Idark
Csðx;yÞ
Cbðx;yÞ � NSðlÞ

 !

ð7Þ

, where NS(λ) is the normalised spectrum of the light source, Cs(x,y) and Cb(x,y) are intensity

values of I(800) at the point x,y, and NS(800), respectively.

Proof-of-concept using a standard reflectance target and phantoms

In order to test the proposed method, hyperspectral imaging data were acquired via a hyper-

spectral endoscope (HySE) that consists of a line-scanning spectrograph and multi-core optical

fibre endoscope (S1 Fig, see Methods)[18]. The endoscopy system can image the sample using

light from an external fibre-coupled light source (referred to as ‘external illumination’) or

using light delivered through an internal illumination fibre (referred to as ‘internal illumina-

tion’). We introduce external illumination here to provide light with an easily adjustable dis-

tance and angle relative to the sample. During clinical endoscopy, internal illumination is

used, and the changing working distance and angle of endoscope lead to additional heteroge-

neities in sample illumination.

Data were first acquired from a standard white reflectance target that reflects 99% of illumi-

nating light using external illumination (Fig 2A), where a fibre coupled to a broadband light

source was tilted to create a variation in the optical power distribution across the sample. Line-

scanning HSI was performed at three different positions (indicated in Fig 2A with coloured

rectangles) and the resulting line-scan HySE image containing 1D spatial (vertical axis) and

spectral (horizontal axis) information (Fig 2B) was then processed at each position to retrieve

the average spectral profiles (Fig 2C). Min-max normalisation led to complete overlap of the

spectra (Fig 2D), indicating that the light source illuminates each position with the same spec-

tral profile but with different optical powers. Applying the proposed BG correction method,

ratios of the intensity values of three hyperspectral signals (Fig 2C; 2C1, 2C2 and 2C3), and the

normalised signal (Fig 2D and 2Cb) at 800 nm were taken (c1/cb, c2/cb, and c3/cb) and multi-

plied by the normalised spectrum (Fig 2D) to successfully retrieve the original signal (Fig 2E).

Repeating the same process via internal illumination (Fig 2F) also showed appropriate back-

ground retrieval (Fig 2G–2J).

To compare our results to other BG correction methods when imaging a range of samples,

we then defined three different BG conditions: ground-truth BG (GT); single BG (SB); and our

retrieved BG method (RB). GT was obtained by measuring HSI data from the standard white

reflectance target under precisely the same conditions as the sample imaging (S2A Fig). For

example, GT data was acquired at every working distance used. This is rarely feasible in practi-

cal clinical applications, such as during endoscopy, as a reference target cannot be introduced

into the lumen being imaged nor are working distance variations normally accounted for. SB

is the conventional background correction method commonly used in HSI and obtained by

measuring HSI data from the standard white reflectance target prior to sample measurements

under arbitrary illumination conditions and assuming this spectral profile to be representative

of the illumination conditions during the sample imaging[3]. SB does not allow compensation

of any variations that are introduced during the imaging condition, such as variations
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illumination power and working distance. In the present study, an arbitrary choice of a single

GT HSI data sets was taken as SB. RB is calculated as described above (S2B and S2C Fig).

We then analysed blood samples, since blood has distinct absorption profiles depending on

the level of oxygenation and provides relatively low absorbance at 800 nm[42]. Fully oxygen-

ated and deoxygenated blood (see Methods) and distilled water (20 μL) were pipetted onto a

plate, covered by a coverslip (Fig 3A) and imaged immediately. HySE was applied using inter-

nal illumination at 3 working distances (Fig 3B) and the spectral profile of distilled water was

used as GT. The measured absorption spectra of the deoxygenated (Fig 3C) and oxygenated

blood (Fig 3D) clearly show one (550 nm) and two (540 and 560 nm) peaks respectively, con-

sistent with known blood absorption spectra[42]. The slightly different absorption values of

three measurements might be originating from the varying imaging areas, which are depen-

dent on the working distance of the endoscope. The absorbance spectra calculated using the

retrieved BG are consistent with the GT results, albeit slightly lower in magnitude

(8.73 ± 1.56% lower at 550 nm peak and 6.84 ± 1.22% lower at 560 nm peak of the absorption

spectra of the deoxygenated and oxygenated blood, respectively), however, the conventional

single BG method produces substantial differences.

As the proposed method only uses a single normalisation wavelength, the accuracy of the

method may be affected by noise. The influence of noise levels to the retrieved signals was

assessed via simulation (S3 Fig). Four different noise levels (1%, 5%, 10%, and 20%) were

added to the spectral profile of oxygenated blood (S3A Fig) and absorbance was calculated

based on simulated spectral signals with different noise levels and the proposed method (S3B

Fig). S3C Fig shows that the error levels are 3.62 ± 0.31%, 4.35 ± 1.64, 4.98 ± 2.26%, and

7.81 ± 2.90% with increasing a noise level from 1% to 20%, respectively. This indicates that

high noise levels could compromise the accuracy of the proposed method and care should be

taken when applying the approach to noisy spectra.

To demonstrate that the BG correction method remains accurate under scattering, absorp-

tion and fluorescence conditions, a tissue-mimicking phantom was exploited. The phantom

was made of agarose and intralipid with high and low concentrations of nigrosin and

Fig 2. Spectral profiles of different illumination conditions can be accurately retrieved through hyperspectral endoscopy by different illumination methods. (a)

Schematic of the external illumination methods. Red, green, and blue lines indicate the hyperspectral imaging regions. (b) Representative spectral image from the

hyperspectral endoscope during external illumination. (c) Average spectral signals of the three hyperspectral images measured at the different locations shown in (a)

obtained from the white-dashed region in (b). (d) Min-max normalisation of spectral signals in (c) show complete overlap. (e) Spectra obtained (black dashed lines)

using the normalised spectral profile in (d) and ratio of values at 800 nm (c1, c2, c3, and cb). (f-j) As above but for the internal illumination method.

https://doi.org/10.1371/journal.pone.0229502.g002
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methylene blue dyes added to test the effects of absorption and fluorescence, respectively (Fig

4A, see Methods). HySE was applied using internal illumination at 2 working distances; the

spectral profile of agarose containing intralipid alone was used as GT (Fig 4B). Absorbance

spectra of nigrosin and methylene blue calculated using the GT, SB and RB methods (Fig 4C

and 4D) again show that GT and RB provide consistent spectral shapes, whereas SB has a sub-

stantial deviation in the profiles. The absorbance of nigrosin obtained using the retrieved BG is

slightly lower in magnitude compared to GT, however, methylene blue is indistinguishable

(0.83 ± 0.67% at peak 550 nm). This suggests that the underestimation observed in the blood

and phantom experiments occurs because both haemoglobin and nigrosin have a small but

finite absorption of light at 800 nm causing a slight inaccuracy in the BG estimation, whereas

methylene blue has truly negligible absorption around 800 nm. Our RB method therefore

leads to a slight underestimation of the actual absorbance values if light absorption around the

chosen background wavelength is not negligible, though it does not change the absorbance

spectrum itself.

Application of the background correction method to biological tissue and

endoscopic imaging conditions

To examine the practical application of the method, dissected chicken bone tissue, consisting

of compact bone and bone marrow, was first measured (see Methods). A total of 150 spectral

images of dissected chicken bone tissue were measured using the external illumination method

to cast shadows across the topology of the sample, which can be seen in the synthetic RGB

images (Fig 5A), created by the convolution of emulated RGB filters and measured hyperspec-

tral signals (see Methods). Before examining the proposed method, the raw spectral signals in

Fig 3. Retrieved background (RB) signals enable accurate measurements of absorbance of deoxygenated and oxygenated blood compared to ground truth (GT).

(a) Photograph of the experiment setup. Water (control) and blood (deoxygenation and oxygenation) were covered by a cover glass to prevent the sample from drying

during the measurement. Hyperspectral imaging was performed using the internal illumination method at three working distances. (b) Experimentally measured

reflectance signals of a control target (water) were used GT, with different optical illumination power according to working distance. Absorbance of deoxygenated (c)

and oxygenated (d) blood measured at three working distances were then calculated using GT, SB and RB methods, showing good agreement between GT and RB, but

substantial deviation for SB method.

https://doi.org/10.1371/journal.pone.0229502.g003
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two square areas (4 by 4 pixels) within each of bone marrow, compact bone, and shadowed

regions were assessed (S4A and S4B Fig). The reflected signal at the normalisation wavelength

under the same illumination conditions should be similar in order to use the proposed

method. The two nearby small squares in each tissue type were selected because illumination

conditions in these small areas could be considered as homogenous. S4C Fig shows that raw

reflected intensities at 800 nm of each tissue type are similar. There is no significant difference

in the data recorded from the same tissue type.

The synthetic RGB images of GT and RB methods clearly show the structure of the tissue

with uniform brightness, but the SB image shows bright and dark regions arising due to the

uneven illumination (Fig 5A). Moreover, the shadowed region resulting from the sample mor-

phology was restored to its original white colour only in the RB method. Representative absor-

bance images at three different wavelengths (456.1, 531.4 and 612.9 nm; Fig 5B) allow

structures of the dissected chicken bone tissue to be visualised, showing qualitative similarity

between GT and RB at all wavelengths, while the single BG reconstructions show different

absorbance even in the same anatomical structures (solid and dashed white lines in Fig 5B).

In order to investigate spectral fidelity of the BG retrieval method, the average and standard

deviation of the absorbance spectra in 6 different regions (red: bone marrow, orange: compact

bone, and blue: white reflectance; indicated in Fig 5A) were quantified (Fig 5C). Spectral pro-

files of bone marrow and compact bone, in GT and RB show similar values and trends. In

addition, our RB method brings the absorbance values on the left and right side of the white

reflectance target closer compared to the result obtained by GT. The SB result, however, shows

very different values and trends compared to the results obtained by the ground-truth and

retrieved BG.

HySE was then applied in a tubular tissue-mimicking phantom with homogeneous methy-

lene blue concentration (S5A Fig) placed on a tilted surface (S5B Fig). HySE was advanced

Fig 4. Background correction using the retrieved background method performs favourably in measurement of the absorbance spectra of nigrosin and methylene blue

(a) Photograph of tissue-mimicking phantoms with intralipid (control), nigrosin (absorbing dye), and methylene blue (fluorescent dye). (b) Experimentally measured

reflectance signals of the control phantom (intralipid only) at two different working distances gave the ground-truth background. (c) Absorbance of low and high

concentrations of nigrosin dye calculated using the ground truth background (GT), single background (SB) and our retrieved background (RB) method respectively. (d)

Absorbance of low and high concentrations of methylene blue calculated using GT, SB and RB methods respectively.

https://doi.org/10.1371/journal.pone.0229502.g004
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horizontally into the tube with a motorised stage, which leads to a gradual decrease in the

working distance of the endoscope. While the SB spectra show an offset as a function of work-

ing distance (S5C Fig), the RB spectra show the consistent measurement of absorbance regard-

less of the working distance (S5D Fig).

Investigating the influence of background correction on hyperspectral data

classification

To understand the extent to which incorrect background compensation influences HSI data

classification, experimentally measured data obtained in the previous sections were composed

into a set of 53 synthetic hypercubes in four steps: (1) generation of a random illumination pat-

tern; (2) creation of a GT reflectance hypercube based on four experimentally measured signals

Fig 5. HSI data from a chicken tissue sample obtained using the RB method agrees well with the GT (a) Synthetic RGB images of the sample were created from

hypercubes obtained by exploiting ground truth, single, and retrieved backgrounds. (b) Representative slice images from each hypercube (GT, SB and RB) were

illustrated at three wavelengths (456.1, 531.4 and 612.9 nm). Solid and dashed arrows indicate anatomically similar structures in the sample. (c) Average absorbance of

the hypercube reconstructed by using the GT, SB and RB methods within solid and dashed squares shown in (a) were obtained. Gray shaded area indicates the standard

deviation. Scale bars: 1 cm.

https://doi.org/10.1371/journal.pone.0229502.g005
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(muscle tissue, oxygenated blood, methylene blue and nigrosine dyes) with an uncorrelated

noise; (3) creation of SB and RB reflectance hypercubes by combining the GT hypercube with

the random illumination pattern; and (4) applying a log-transformation of the produced

reflectance hypercubes to generate absorbance hypercubes (Fig 6; see Methods).

The synthetic hypercubes were then subjected to PCA, SAM and machine learning classifi-

cation. PCA is commonly used in HSI analysis for dimensionality reduction by finding a small

number of orthonormal PCs that explain most of the variance of hyperspectral data, thus

enabling simpler interpretation and classification. PCA was performed pixel-wise with singu-

lar value decomposition (SVD): hyperspectral data were centred by subtracting the mean val-

ues of each pixel from its corresponding signal, while the scaling (variance) was preserved due

to the synthetic hypercubes being created under the same scale and unit conditions; the covari-

ance matrix of the centred data was used as the SVD input. As the first and second PCs capture

over 99% of the original variance, they were used to compare the influence of background cor-

rection methods. Scatter plots of PC2 against PC1 for GT, SB and RB in absorbance show no

differences and 2D image of the scores on PC1 are also identical (S6A Fig). For reflectance,

however, the scatter plots for SB show a dramatic elongation compared to the GT and RB

methods and the 2D image of the SB PC1 scores clearly shows the power distribution of

Fig 6. Synthetic absorbance and reflectance hypercubes created based on experimentally measured hyperspectral signals and randomly generated illumination

conditions. (a) Representative image of Gaussian illumination power. (b) Representative projection images of synthetic GT, SB, and RB hypercubes. (i)-(iv) indicate the

areas with spectral profiles of corresponding signals shown in (c, d). Three circles in the same horizontal position had the same spectral profile and were defined as a

cluster. (c, d) Four experimentally measured absorbance and reflectance spectra (muscle tissue, oxygenated blood, methylene blue, and nigrosin samples) were exploited

to create synthetic absorbance and reflectance hypercubes. Scale bar: 100 pixels.

https://doi.org/10.1371/journal.pone.0229502.g006
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illumination (S6B Fig), indicating an incomplete correction of the BG. Such behaviour arises

because the incorrect BG causes scaling and shifting of the ground-truth reflectance and absor-

bance signals, respectively. Scaling changes the variance of the hyperspectral data, which pro-

duces an incorrect PCA result for the reflectance hypercube, whereas shifting of absorption

data does not change PCA results as the variance is preserved.

SAM is widely used to evaluate the similarity between measured hyperspectral signals by

calculating angles between them. Substantial differences in SAM analysis of the absorbance

hypercube using the SB method were found compared to GT and RB and the SAM image

again shows the power distribution of the illumination indicating an incomplete correction of

the BG (S6C Fig). The reflectance data are identical regardless of the BG correction used (S6D

Fig). This is because the scaling factor of the reflectance signal is eliminated through the calcu-

lation of the spectral angle in Eq (3) so it does not affect the SAM results, but shifting the

absorption signal changes the calculated spectral angle values.

Finally, the effect of BG correction on machine learning-based data classification was evalu-

ated through: classification based on the distance between the data and the centroid of each

cluster by k-means clustering (K-Means, k = 4); maximising the distance between a decision

boundary and members of different classes by support vector machines (SVMs); and training

convolutional neural networks (CNNs). To enhance the learning process, min-max normalisa-

tion was employed with all three algorithms, to constrain the data between -1 and 1. For SVMs

and CNNs, the supervised learning approach was employed with ground-truth data of 50

training hypercubes produced for each of the three BG correction methods, whereas K-Means

was performed in an unsupervised learning manner without using data reduction methods

such as PCA or SAM.

The test dataset was composed of three GT, SB, and RB hypercubes and the accuracy of all

established classifiers was tested on all datasets (9 total comparisons). 100% classification accu-

racy is theoretically achievable due to the use of synthetic hypercubes, consisting of only four

distinct spectral signals, for training and test. Using k-means clustering, the SB method showed

accuracies of only 47.1% and 48.7%, respectively for the absorbance and reflectance hyper-

cubes (Fig 7A and 7B) when clustered using the SB method classifier, compared to over 97.0%

Fig 7. Investigating the effect of background correction on the accuracy of machine learning-based hyperspectral imaging classification. Classification accuracy of

three machine learning methods (k-means clustering, support vector machine and convolutional neural network) in absorbance (a) and reflectance (b) hypercubes

obtained by GT, SB and RB methods. (c—f) Representative images of classification results indicated by c–f in (a) and (b). Scale bar: 100 pixels.

https://doi.org/10.1371/journal.pone.0229502.g007
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for GT and RB method classifiers. The resulting segmented images again indicate incomplete

background correction (Fig 7C and 7D) for the SB method. SVMs successfully segmented the

four clusters in absorption hypercubes with 100% accuracy under all BG corrections, however,

the classification accuracy of SB reflectance hypercubes segmented by using the SVMs trained

via GT and RB hypercubes dropped to 69.1% and 89.1%, respectively again with incomplete

background correction (Fig 7E and 7F). Lastly, CNNs were implemented via a six-layered net-

work, including three convolutional layers, two fully connected layers and a softmax layer (S7

Fig). Trained CNNs classified the hypercubes with 100% accuracy regardless of hypercube

types and BG conditions.

Discussion

Applications of HSI in biomedicine frequently calculate optical reflectance and absorbance

spectra for tissue classification. The data processing procedures assume that the samples are

uniformly illuminated and while several methods can be employed to ensure that this assump-

tion holds, applications that encounter variations in surface topology or optical power distri-

bution, such as endoscopy, may result in classification errors. Here, we demonstrated a simple

background correction method that enables estimation of the spectral profile and optical

power distribution of illumination across a sample by exploiting the normalised spectra of the

light source and intensity values of the measured hyperspectral signals at a fixed wavelength

with negligible absorbance. The advantage of the method is that it is applied in software, so it

does not require any specialised equipment or application of contrast agents and can be

applied to any HSI data where a wavelength of negligible absorbance is available. It is therefore

practical for application in biomedical imaging, for example, during hyperspectral endoscopy

as demonstrated here using the HySE system. It could also be easily applied to snapshot multi-

spectral biomedical imaging applications, if one of the wavelength bands is located in the NIR

or other minimally absorbing wavelength range, which could enable the fast acquisition and

online post-processing of the data.

We selected 800 nm as the wavelength for normalisation in these studies. The results sug-

gest that in samples that are not absorbing at the selected normalisation wavelength, our

retrieved background (RB) method accurately recovers the ground truth (GT) HSI data com-

pared to the standard approach of using a single background (SB). The feasibility and applica-

bility of the proposed RB method were demonstrated by measuring oxygenated and

deoxygenated blood samples, a tissue-mimicking phantom with scattering, absorption, and

fluorescence agents and ex vivo chicken tissue. These experiments indicated the importance of

a complete background correction for analysis and interpretation of HSI data, with variations

in optical power distribution causing rescaling of reflectance data and introducing offsets in

absorbance data. Moreover, the importance of precisely retrieved and corrected background

was assessed using HSI analysis methods and machine-learning based image classification

techniques. In particular, the standard SB method led to erroneous findings for reflectance

data in PCA and absorbance data in SAM. It also led to misclassification in both data types for

k-means clustering and in reflectance data for SVMs, compromising their accuracy, however,

well-trained CNNs were not vulnerable to changes in BG corrections or data types.

Nonetheless, there remain some limitations to the present study. The proposed method

assumes that absorption at the normalisation wavelength is negligible. Should there arise some

non-negligible or spatially inhomogeneous absorption at the normalisation wavelength, the

calculated reflectance and absorbance may still introduce errors. For example, in our case

using 800 nm as the normalisation wavelength, we saw that the blood samples and nigrosin

dye samples had some non-negligible absorption at 800 nm, which meant that the magnitude
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of the corrected spectrum could be up to 29.6% lower than the GT, but importantly, the shapes

of the spectral profiles of the calculated reflectance and absorbance remained unaffected.

Therefore, prior information about the absorbance of a given sample at the normalisation

wavelength is necessary when making comparisons between the magnitude of the recorded

spectra. While many biological tissues have little absorption at 800 nm [40,41] choosing this

wavelength may produce problems for experiments that introduce NIR dyes for molecular

imaging. Selecting a wavelength further into NIR tissue optical window could overcome this,

though would require illumination of the tissue with further NIR/IR optical power and the

associated thermal deposition characteristics should be carefully considered from a safety

perspective.

In addition, we examined the influence of noise on the study and found that the accuracy of

the normalisation method decreases with increasing noise in the spectra. Care should therefore

be taken when applying the method to a noisy spectral data set. Another consideration is the

need for spectrally uniform illumination across the target, which is an important precondition

for many experiments in HSI and also affects the proposed method. If multiple incoherent

light sources are used, then spectral homogeneity should be checked before using the proposed

method. A further consideration is that the effects of BG correction on HSI classification using

machine learning algorithms were tested here using simple synthetic hypercubes composed of

experimentally measured data from only four spectra components. While these serve to illus-

trate the potential of the method in cases where known ground truth is available, further exper-

iments would be needed to establish the bounds of operation of the method in another chosen

application. Finally, we focused on the influence of background correction on reflectance and

absorbance hypercubes. Further work would be needed to understand how well the method

could perform for other HSI applications, such as multiplexing of fluorescence contrast agents

[12].

Despite these limitations, the proposed background correction method allows for accurate

and consistent measurement of HSI data, regardless of illumination method and optical power

distribution. Application of the method could facilitate further exploitation of multi- and

hyperspectral imaging techniques in practical clinical applications, where controlling the illu-

mination pattern and power are non-trivial.

Supporting information

S1 Fig. Optical design of the line-scanning hyperspectral endoscope. The system is assem-

bled using a CE-marked endoscope with an imaging fibre bundle and an integrated illumina-

tion fibre. A sample is illuminated either by coupling a halogen light source to the illumination

fibre (internal illumination method) or by directly illuminating via the fibre-coupled halogen

light source (external illumination method). Hyperspectral data is acquired using a CCD cou-

pled to the spectrograph. For line-scanning hyperspectral imaging, a motorized translational

stage is exploited to control imaging position in these studies. Abbreviations: CCD, charge

coupled device; L1–2, lens; Obj1–2, objective lens.

(PNG)

S2 Fig. Schematic for obtaining the ground truth background (GT), single background

(SB) and retrieved background (RB). (a) GT was obtained by measuring a white reflectance

target under the same position and illumination conditions as the sample measurement. From

the GT, the normalised spectral profile of the background was calculated by averaging across

all spatial locations within the hyperspectral image frame. One of GTs was used as SB. (b) To

obtain RB, the intensity ratio (Cs/Cb) at 800 nm and the normalised spectral profile of the

background was calculated. The intensity ratio of each vertical pixel was calculated by dividing
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intensity values of a sample spectral image (Cs, red dashed line) at 800 nm by the intensity

value of normalised background signal at 800 nm (Cb). (c) The spectrum of the RB used for

correction at a specific vertical pixel was determined by multiplying the normalised back-

ground to the intensity ratio value corresponding to the pixel.

(PNG)

S3 Fig. Influence of noise-to-signal ratio to the retrieved BG method (a) Simulation of raw spec-

tral profiles of oxygenated blood with different signal-to-noise ratios (1%, 5%, 10%, and 20%). (b)

Absorbance obtained using spectral signals in (a) and the retrieved BG method. Gray shaded area

indicates the standard deviation. (c). Bar graphs show the average error percentages of absorbance

at four different signal-to-noise ratios. Error bar indicates the standard deviation.

(PNG)

S4 Fig. Investigation of intensity variation at 800 nm (a) Left: Synthetic RGB image of chicken

tissue. Right: Magnified image of the dashed square shown in left figure. Scale bars: 1 cm (b)

Average measured spectral profiles of the bone marrow (BM), compact bone (C), and shade

(S) areas within solid squares shown in (a) were obtained. Gray shaded area indicates the stan-

dard deviation. (c). Bar graphs show average intensities of six regions shown in (a) were calcu-

lated. Error bar indicates the standard deviation. Statistical analysis was performed using

Student t-test.

(PNG)

S5 Fig. The RB method enables the accurate measurement of absorbance in endoscopy

conditions. (a) Photograph of the tubular tissue-mimicking phantom with homogeneous

methylene blue concentration. (b) Schematic of the experiment. Absorbance of the tissue-

mimicking phantom at three working distances was obtained using SB (c) and RB methods

(d). The solid line and the gray shaded area indicate average absorbance and standard devia-

tion, respectively.

(PNG)

S6 Fig. Assessment of background effects on hyperspectral image analysis via principal

component analysis (PCA) and spectral angle mapping (SAM). (a, b) Scatter plots of 2nd

principal component (PC) versus 1st PC (top) and representative images of 1st PC scores (bot-

tom) of absorbance and reflectance hypercubes, respectively. Scale bar: 100 pixels. (c, d) Bar

graphs indicate mean and standard deviation (error bars) of angle values for each cluster

shown in the bottom image (top) and 2D images of spectral angle values (bottom) of absor-

bance and reflectance hypercubes, respectively. SAM was performed using the average spectral

profile of the cluster i of each hypercube. Scale bar is 100 pixels.

(PNG)

S7 Fig. Schematic process for the application of convolutional neuronal networks.

(PNG)
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