
sensors

Article

Action Recognition Using Close-Up of Maximum Activation
and ETRI-Activity3D LivingLab Dataset

Doyoung Kim 1, Inwoong Lee 1, Dohyung Kim 2 and Sanghoon Lee 1,3,*

����������
�������

Citation: Kim, D.; Lee, I.; Kim, D.;

Lee, S. Action Recognition Using

Close-Up of Maximum Activation

and ETRI-Activity3D LivingLab

Dataset. Sensors 2021, 21, 6774.

https://doi.org/10.3390/

s21206774

Academic Editor: Francisco

Florez-Revuelta

Received: 6 September 2021

Accepted: 7 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea;
tnyffx@yonsei.ac.kr (D.K.); mayddb100@yonsei.ac.kr (I.L.)

2 Intelligent Robotics Research Division, Electronics and Telecommunications Research Institute,
Daejeon 34129, Korea; dhkim008@etri.re.kr

3 Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
* Correspondence: slee@yonsei.ac.kr

Abstract: The development of action recognition models has shown great performance on various
video datasets. Nevertheless, because there is no rich data on target actions in existing datasets,
it is insufficient to perform action recognition applications required by industries. To satisfy this
requirement, datasets composed of target actions with high availability have been created, but it is
difficult to capture various characteristics in actual environments because video data are generated in
a specific environment. In this paper, we introduce a new ETRI-Activity3D-LivingLab dataset, which
provides action sequences in actual environments and helps to handle a network generalization issue
due to the dataset shift. When the action recognition model is trained on the ETRI-Activity3D and
KIST SynADL datasets and evaluated on the ETRI-Activity3D-LivingLab dataset, the performance
can be severely degraded because the datasets were captured in different environments domains. To
reduce this dataset shift between training and testing datasets, we propose a close-up of maximum
activation, which magnifies the most activated part of a video input in detail. In addition, we
present various experimental results and analysis that show the dataset shift and demonstrate the
effectiveness of the proposed method.

Keywords: action recognition; dataset shift; self-attention map

1. Introduction

There have been significant improvements in action recognition researches [1–8] with
various industrial applications including surveillance systems, human–computer inter-
action, virtual reality, sports video analysis and home-care robots [9–17]. The datasets
such as Kinetics [1], UCF [10] and HMDB [11] are generally used public datasets in action
recognition, which were made by clipping and collecting existing videos. These datasets
have a great variety of videos in terms of subject, background, lighting condition and view
point. The diverse characteristics could enable classifiers to learn powerful generalized
representation to avoid overfitting. Nevertheless, actions involved in the datasets some-
times differ from those that we need to use in a specific application. For example, although
actions such as putting on cosmetics, spreading bedding/folding bedding, and doing neck roll
exercise are very ordinary in real life, these are not included in the datasets consisting of
collected videos such as Kinetics, UCF and HMDB. Owing to this problem, despite the
remarkable development of the action recognition model, it is difficult to develop the
model which recognizes specific target actions in the actual industry. This lack of the target
actions forces users to acquire data directly.

Due to the need for target action data, datasets containing daily activities such as NTU
RGB+D [18,19], ETRI-Activity3D [20], and KIST SynADL [21] have been actively released.
They were produced on purpose by directly capturing actions for actual use instead of
collecting existing videos. However, the action data capture requires a fixed environment
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set-up for efficiency, and the fixed environment limits diversity of action videos in terms
of camera angles, backgrounds, and lighting conditions. When the action recognition
models are trained on these videos, the limitations lead the models to overfitting and
poor generalized representation, which could not handle various characteristics of other
environments such as interior design, structure, and furniture arrangement.

In the field of machine learning research, generalization issues arising from gaps
between training and testing data have been studied. The issues are also very important in
action recognition, but the existing datasets cannot provide sufficient data to deal with tar-
get actions with various characteristics. However, since the datasets have limited attributes
in the target actions, it is difficult to test on target action videos with different attributes. To
handle this problem, we introduce a new dataset of ETRI-Activity3D-LivingLab captured
for testing on actual environments. The new dataset has the same class configuration as
ETRI-Activity3D [20] and KIST SynADL [21], but has been produced in diverse environ-
ments different from the other datasets. Through action recognition models trained on
ETRI-Activity3D [20] and KIST SynADL [21] and tested on ETRI-Activity3D-LivingLab,
the performance degradation problem due to environmental changes can be observed.

In this paper, we introduce a new ETRI-Activity3D-LivingLab dataset, which is cap-
tured in an actual environment with tremendous diversity and provides useful data to
users and researchers. The new dataset is available online at https://ai4robot.github.
io/etri-activity3d-livinglab-en/. As shown in Figure 1, the ETRI-Activity3D-LivingLab
dataset has different characteristics in terms of lighting condition, pose, background, and
action scale while the ETRI-Activity3D dataset shows monotonous characteristics. These
different characteristics cause dataset shift, which occurs when models encounter unseen
dataset, and predicting action labels of the ETRI-Activity3D-LivingLab videos with ac-
tion recognition models trained on other datasets is a very challenging task. We expect
the ETRI-Activity3D-LivingLab dataset helps to study reducing the dataset shift due to
different attributes of the same actions.

To reduce the dataset shift, we train the action recognition model to focus on actions
by learning diverse scales of the actions. One of the main obstacles to training the ETRI-
Activity3D dataset is monotonous attributes such as action scales. The scale of a foreground
containing a human action in the ETRI-Activity3D videos is mostly constant for each
action due to the fixed camera set-up, but the action scale appears different in testing
environments. To handle the diverse action scales, action videos need to be cropped with
various scales, but action information can be excluded in a video input when cropping
without a guide to the position of an action. Meaningless video inputs without action
information severely degrades the performance of classifiers. To prevent the classifiers
from sampling meaningless parts, the close-up of maximum activation searches the action
region based on self-attention map, and magnifies the action region from the video input.
Through this process, the classifiers can focus more on the action in various backgrounds,
and this leads to better performance for action recognition.

Finally, we present various experimental results and analysis that show the dataset
shift on the ETRI-Activity3D-LivingLab dataset and demonstrate the effectiveness of the
proposed method. We provide not only ablation studies according to action scales but
also comparison with other methods. In particular, dataset shift analysis shows one of the
reasons that the dataset shift occurs between datasets in terms of an action box detected
from a video. Furthermore, we propose MaxOverlap to measure the difference of an
action box between datasets and show that the improvement of MaxOverlap values by the
proposed method leads to action recognition performance enhancement.

https://ai4robot.github.io/etri-activity3d-livinglab-en/
https://ai4robot.github.io/etri-activity3d-livinglab-en/
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(a) Monotonous characteristics of ETRI-Activity3D

(b) Lighting condition

(c) Pose

(d) Background

(e) Action scale

Figure 1. Examples of videos on 01_eating food with fork in ETRI-Activity3D and ETRI-Activity3D-
LivingLab. (a) Shows monotonous characteristics of ETRI-Activity3D due to fixed environments
while (b–e) show diverse characteristics of ETRI-Activity3D-LivingLab in terms of lighting condition,
pose, background, and action scale, respectively.

2. Related Works

Action recognition datasets. The action recognition datasets have played a very im-
portant role in the development of 3D classification tasks. The RGB-based action recognition
problem has been studied for a very long time, and the datasets contain diverse situations
and actions. Kuehne et al. [11] extracted clips from a variety of sources ranging from
digitized movies to YouTube. Soomro et al. [10] collected videos of 101 classes that were
provided to overcome the existing unrealistic environments and a small number of action
classes. Researchers have used these two datasets to improve deep learning techniques for
action recognition before Kinetics [1]. Carreira et al. [1] released a truly large-scale video
dataset, and inflated the existing image classification network to a 3D classification net-
work, and by learning the tremendous representation power of the dataset in advance, the
action classifier showed better performance on other datasets. Although the development
of deep learning techniques has been achieved, appropriate action data for actual target
applications are still necessary to apply these techniques.

Due to the lack of action categories and three-dimensional information in RGB videos,
datasets captured by various sensors to provide multimodal data were released. In particu-
lar, it is very easy to acquire data by using devices such as a Kinect equipped with multiple
sensors [22,23]. From Kinect, Shahroudy et al. [18] and Liu et al. [19] could capture multi-
modal data such as RGB, depth, infrared images, and skeletons in the NTU RGB+D dataset.
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Despite its controlled environment, this large-scale dataset helps to improve deep learning
techniques [2,24–33] with various approaches. The ETRI-Activity3D dataset [20] is also
the multimodal dataset, which provides the actions of the eldery, and KIST SynADL [21]
generated synthetic data with motion capture data. It was possible to recognize target
actions by the release of the datasets, but there was no guarantee that it would recognize
the target actions in different environments with high accuracy. In this respect, since the
ETRI-Acitivity3D-LivingLab dataset contains action sequences in diverse environments
with the same action class configuration with ETRI-Activity3D and KIST SynADL, the new
dataset can help researchers to evaluate the generalization performance of their methods.

Action recognition networks. Researchers have proposed methods for applying im-
age classification networks [34–40] to temporal video data. Inflated versions [1,3] of
classification networks have played a role as the great baseline for action recognition with
the accuracy of 75.7% and 75.4% on Kinetics. In particular, Tran et al. [3] inflated Deep
Residual Network [37,38], and ResNet3D has been widely used as a core structure used
in action recognition. Wang et al. [4] proposed the non-local block which comprehended
non-local dependencies among spatiotemporal features and achieved the accuracy of 77.7%
on Kinetics. Feichtenhofer et al. [6] proposed the SlowFast network, which fused spatial
semantics at a low frame rate and temporal motion at a high frame rate and the action
recognition accuracy was improved to 79.8%. Expanded architectures [8] for efficient video
recognition predicted actions with reduced computational costs and fewer parameters.
Only with 20% flops of the SlowFast network, X3D [8] achieved the accuracy of 79.1%
on Kinetics.

Self-attention map. Zhou et al. [41] proposed class activation mapping, which pre-
dicts an object region without a localization label and showed the localization accuracy
of 46.29% on ImageNet-1k [34]. However, the class activation map represents only a dis-
criminative part of an image, not the overall shape of an object in the image. To overcome
this limitation, Choe et al. [42] proposed an attention-based dropout layer, which ran-
domly dropped information of the discriminative part in the image to activate an entire
object region by using its self-attention map. Based on this insight, we adopt the self-
attention map of an action video, which is examined in detail by cropping activated parts
only. The attention-based dropout technique achieved the localization accuracy of 48.71%
on ImageNet-1k.

Contributions

We arrange the main contributions as follows:

• We introduce a new ETRI-Activity3D-LivingLab dataset with tremendous diversity,
which does not exist in the ETRI-Activity3D [20] and KIST SynSDL [21] datasets.
We reveal the dataset shift problem between datasets and propose a new training and
testing protocol to target it.

• We utilize a self-attention map [42] to localize the activated part in a video, and the
close-up of the maximum activation process magnifies a meaningful part for action
recognition precisely. The proposed method mitigates the influence of the background
and allows the action model to see the foreground in detail.

• We present various experimental results and analyses on ETRI-Activity3D [20], KIST
SynADL [21], and ETRI-Activity3D-LivingLab. The experimental results demonstrate
that the close-up of the maximum activation process effectively reduces the dataset
shift problem by using various methods.

3. System Model

In this section, we describe our system model consisting of two main steps, maximum
activation search and a close-up of the maximum activation. A detailed description of the
proposed model is provided, and we specify only the spatial size of a video for convenience
because the temporal length of the video input is fixed in the system model.
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3.1. Overview of System Model

As shown in Figure 2, the proposed method is composed of the first and second flows.
The first flow is the process of obtaining the feature map of the initial video input I0(x, y, t),
and the second flow is the action recognition process to search and magnify the most
activated region of the initial video input. Specifically, in the first flow indicated by the
solid lines, the original video is resized to the initial size W0 × H0 and randomly cropped
(RandCrop) to always contain its human action, and the backbone network is trained with
the initial video input for action classification. In the second flow indicated by the dotted
lines, the self-attention map A(x, y) is obtained from the feature map of the initial video
input in the first flow for the maximum activation search. In the maximum activation
search, the most activated region for action classification is searched with the kernel of a
size K× K, and the kernel size and position (xma, yma) of the region are delivered to the
next step. In the close-up of maximum activation, the original video is resized to WK × HK
and the cropping position (xK, yK) is calculated from K and (xma, yma). The resized video
is cropped in the position (xK, yK) (ActCrop), and the backbone network is trained with this
magnified video input IK(x, y, t) for action classification.

RandCrop
L × L

Original video
1920 × 1080

Resize
W0 × H0

Calculate
𝑥𝑥𝐾𝐾 ,𝑦𝑦𝐾𝐾

ActCrop
L × L Backbone Classification

Self-
Attention

(1) Maximum Activation Search

(2) Close-up of Maximum Activation

Maximum activation region information (K, 𝑥𝑥𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚 )

Resize
WK × HK

First flow Second flow

𝐾𝐾 × 𝐾𝐾

𝑥𝑥𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚

𝐼𝐼0 𝑥𝑥,𝑦𝑦, 𝑡𝑡

𝐼𝐼𝐾𝐾 𝑥𝑥,𝑦𝑦, 𝑡𝑡

𝐴𝐴 𝑥𝑥, 𝑦𝑦

Figure 2. Overall system model, which consists of the maximum activation search (light blue) and the
close-up of maximum activation (light orange). In the maximum activation search process, the most
activated region, the red box in the self-attention map A(x, y), is represented as the action region
where the action occurs. In the close-up process of maximum activation, the most activated region of
the initial video input I0(x, y, t) is enlarged to the magnified video input IK(x, y, t), where K is the
kernel size. The backbone network is trained with these two video inputs for action classification.
RandCrop and ActCrop mean random crop and activation crop, respectively.

3.2. Maximum Activation Search

As the position of an action in a video is unknown, the backbone network needs
to watch the video globally and find the position of the action. To always contain the
action regardless of the cropping position, the video is resized spatially to the sufficient
size W0 × H0 and randomly cropped (RandCrop) to the size L× L. RandCrop is one of data
augmentation techniques [3] and enables the networks to learn different video inputs from
the same video which has fixed backgrounds in the ETRI-Activity3D dataset. RandCrop
also has an influence on magnified video inputs IK(x, y, t) due to the random position for
cropping and can slightly improve the classification performance. The backbone network
is trained with this initial video input I0(x, y, t) for action classification. The action region
is activated in the self-attention map A(x, y) obtained by taking the average along the
temporal and channel axes of the feature map generated by the backbone network in (1)
Maximum Activation Search of Figure 2.

In this self-attention map, to search the maximum activation for action classification,
average-pooling is used with a kernel of size K× K, where K has a value from 3 to 6, and
the position of the maximum activation (xma, yma) of Figure 3a is obtained as shown in the
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light blue box of Figure 2. Therefore, the maximum activation search in the self-attention
map is defined as

(xma, yma) = argmax
(x,y)

AvgPoolK×K(A(x, y)). (1)

𝑊𝑊0

𝐻𝐻0

𝐿𝐿

𝑃𝑃𝑃𝑃

𝑥𝑥0,𝑦𝑦0

𝑥𝑥𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚

(a) Initial video input.

𝐻𝐻𝐾𝐾 =
𝐻𝐻0𝐿𝐿
𝑃𝑃𝑃𝑃

𝑊𝑊𝐾𝐾 =
𝑊𝑊0𝐿𝐿
𝑃𝑃𝑃𝑃

𝐿𝐿

𝑥𝑥0𝐿𝐿
𝑃𝑃𝑃𝑃

,
𝑦𝑦0𝐿𝐿
𝑃𝑃𝑃𝑃

𝑥𝑥𝐾𝐾 , 𝑦𝑦𝐾𝐾 =
𝑥𝑥𝑚𝑚𝑚𝑚𝐿𝐿
𝑃𝑃𝑃𝑃 ,

𝑦𝑦𝑚𝑚𝑚𝑚𝐿𝐿
𝑃𝑃𝑃𝑃

(b) Magnified video input.

Figure 3. Video resizing and cropping process of the initial video input and the magnified video
input. (a) is the initial video input for the maximum activation search, (b) is the magnified video
input for the close-up of maximum activation. The dark yellow square and the light yellow square are
the video inputs, I0(x, y, t) and IK(x, y, t), respectively. The initial video input is randomly cropped in
the position (x0, y0). After the maximum activation information is obtained, the position of (xK , yK)

is calculated for the close-up.

3.3. Close-Up of Maximum Activation

From the maximum activation search, the kernel size and the position of the maximum
activation are obtained. To magnify the initial video input I0(x, y, t), the original video
is resized to (WK, HK) according to the kernel size K × K. As shown in Figure 3b, the
magnified video input is L

PK larger than the initial video input, where P is the pooling
factor by the backbone network. According to this ratio L

PK , the position of the maximum
activation (xK, yK) is calculated in the close-up and defined as

(xK, yK) =

(
xmaL
PK

,
ymaL
PK

)
. (2)

The resized video input is also cropped to the size L× L in this position of Equation (2)
(ActCrop). Since the cropping size is same and the resized video input is enlarged, the
activated region is focused and magnified with the same cropping size. The backbone
network is trained with this magnified video input IK(x, y, t) and the initial video input
I0(x, y, t) together for action classification.

3.4. Training and Testing

Training phase. The proposed close-up of maximum activation provides a magnified
video input which consists of meaningful motion for action recognition only in training.
By learning the initial video inputs and the magnified video inputs together, the classifier
is able to handle various action scales. To help understanding, we describe the detailed
training process of the proposed method in Algorithm 1.

Testing phase. Since various action scales are learned in training, in testing, a video
input is cropped in the center position and predicted by the classifier without adjusting an
action scale. Nevertheless, we examine how an accuracy changes depending on the actions
scales in experimental results.
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Algorithm 1: Training a video input by using the close-up of maximum activation.
Input: Original video I (1920× 1080× T) and classification model F
Output: Classification model F

1 # First flow
2 function ResizeAndRandCrop(I)
3 # Resize and RandCrop the original video in spatial dimension
4 I0 = Resize(I, W0 × H0)
5 I0 = RandCrop(I0, L× L)
6 return I0
7 function MaximumActivationSearch(I0, F )
8 # Extract feature map of the video input
9 M = F (I0)

10 # Calculate self-attention map by averaging along t-axis
11 A = AvgPool(M, axis = t)
12 # Find maximum activation with kernel
13 K ← RandomSelect({3, 4, 5, 6})
14 (xma, yma) = argmax(x,y) AvgPoolK×K(A)

15 return K, (xma, yma)
16 # Second flow
17 function CloseupMaximumActivation(I, K, (xma, yma))
18 # Resize and ActCrop the original video

19 (xK, yK) = ( xma L
PK , yma L

PK )
20 IK = Resize(I, WK × HK)
21 IK = ActCrop(IK, L× L, (xK, yK))
22 return IK
23 function UpdateModel(I0, IK, F )
24 # Predict a label from the video
25 f0 = F (I0)
26 fK = F (IK)
27 f = concat(f0, fK)
28 y = Classi f icationLayer(f)
29 # Calculate cross entropy loss and update the model
30 L = CrossEntropy(y, ygt)
31 F ← BackPropagate(F , L)
32 return F

4. Datasets

In this section, we introduce three datasets, ETRI-Activity3D [20], KIST SynADL [21],
and ETRI-Activity3D-LivingLab. These datasets share the same action classes, but have
different subjects and environments. These differences make it difficult to transfer the
knowledge learned from one dataset to another. We describe the detailed explanations of
the three datasets as follows.

ETRI-Activity3D [20]. This dataset was performed by actors/actresses and captured
to recognize 55 daily activities in a robot view. The total number of sequences is 112,620,
and the number of subjects is 100, which include half and half each for senior citizens and
young adults. This dataset provides an action sequence in eight views of various heights
and angles using Kinects, but the fixed positions of Kinects result in limited action scales
and backgrounds. These limitations lead the classifier to overfitting, resulting in poor
action recognition performance in other datasets.

KIST SynADL [21]. The daily activities in this dataset were recorded by motion
capture (MoCap), and randomized textures, viewpoints, and lighting conditions were
added on top of a static real-world background image to generate data. Synthetic video can
be generated from various camera viewpoints by utilizing the advantages of a game engine.
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The total number of sequences is 462,200, and they generated data with 15 characters and
4 backgrounds. However, despite the large amount of video data, the texture of computer
graphics is one of the factors that degrade action predictions in actual environments. This
dataset shift makes it difficult for action classifiers to correctly predict the action of a
real video.

ETRI-Activity3D-LivingLab. Although two aforementioned datasets were released,
they are still limited in terms of lighting condition, pose, background, and action scale.
Therefore, it is questionable whether it is possible to recognize human action captured in
a completely different environment from ETRI-Activity3D and KIST SynADL. To solve
this question, we introduce the ETRI-Activity3D-LivingLab dataset, which captures daily
activities in real elderly homes. A total of 30 elderly people participated, and the total
number of video sequences is 6,589. For each action sequence, the videos are captured in
2 to 12 views. This dataset provides multimodal data such as RGB, depth, and skeletons
using Kinect v2. Figure 1 shows various characteristics such as lighting condition, pose,
background, and action scale due to the different environments of each house for the
action like Eating food with a fork. The ETRI-Activity3D-LivingLab dataset is very useful
for evaluating the generalization performance of action recognition models because it is
composed of an actual environment completely independent of the existing datasets.

5. Implementation Details

The initial size of the video input T ×W0 × H0 is 16× 171× 128, and the network
input size is equal to the cropping size, L = 112, which is the same value used in [3].
Random sampling with a stride of 4 is used in both training and testing in the temporal
dimension, and random and center cropping are used in training and testing in the spatial
dimension, respectively. The network used for action recognition is ResNet3D-18 [3], which
is modified in temporal pooling and downsampling of skip connection layers. The videos
are not pooled in temporal dimension to keep the temporal information, and max-pooling
layers with stride 2 and convolutional layers with stride 1 are used instead of convolutional
layers with stride 2 in the spatial dimension. This modification yields higher accuracies
by 2–3%. When training with ResNet3d-34 and 50, there is no improvement in action
recognition accuracy. The scale factor of pooling P is 16, and the spatial size of the feature
map L

P ×
L
P is 7× 7. The SGD optimizer is used with the cosine annealing scheduler. The

initial learning rate, momentum, and weight decay are 0.01, 0.9, and −5, respectively. The
network is trained on seven GPUs and each GPU has eight clips in a mini-batch (so in total
with a mini-batch size of 56 clips).

Baseline model trains only one video size, 171× 128 without the close-up of maximum
activation. For the close-up of maximum activation, the size of the average-pooling kernel
in the maximum activation search is ranged from 3× 3 to 6× 6. Corresponding video sizes
in the close-up of maximum activation are 200× 149, 239× 179, 299× 224, and 388× 299,
respectively. Including the scale in maximum activation search, the network can learn
videos of five scales simultaneously. In training, the initial size and the randomly selected
scale are used together, and the mid-level scale is used for testing. For example, in the case
of 5 scales, the videos of size 239× 179 is used for the final predictions.

6. Experimental Results

In this section, we evaluate the action recognition performance of the proposed method
and other methods on the ETRI-Activity3D-LivingLab dataset with various training data
combinations. Through these experiments, we investigate practical problems of action
recognition in terms of dataset shift.

6.1. Intra-Dataset (ETRI-Activity3D)

We evaluate the proposed method according to protocols, cross-subject (CS) and cross-
view (CV), which are provided in [20,21], respectively. These are intra-dataset protocols,
where training and testing data are from the same dataset. In the CS protocol, 67 subjects
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are used for the training set {1, 2, 4, 5, . . . , 97, 98, 100} and 33 subjects are used for the testing
set {3, 6, 9, . . . , 93, 96, 99}. In the CV protocol, 6 camera views are used for the training set
{3, 4, 5, 6, 7, 8} and 2 camera views are used for the testing set {1, 2}.

Table 1 shows the action recognition results of the existing methods [2,20,43] by using
RGB or skeleton inputs and the proposed method according to the CS and CV protocols.
Since the training and testing data are from the same dataset, all methods achieve more
than 80% accuracy. Specifically, the baseline and proposed method show much higher
accuracy of 95% by using only RGB videos than the other methods. The classifiers seem to
work successfully for action recognition, but it is unclear that they also work well in other
environments which differ from those of the ETRI-Activity3D dataset. In order to resolve
this question, the ETRI-Activity3D-LivingLab dataset is introduced for testing and consists
of videos with unfamiliar characteristics to the classifiers.

Table 1. Action recognition accuracies on ETRI-Activity3D according to cross-subject and cross-view
protocol. The results of FSA-CNN [20] were reported on the cross-subject protocol only.

Method Modalities CS CV

Glimpse [2] RGB 80.2% 80.0%
ST-GCN [44] Skeleton 83.4% 77.9%
VA_CNN [43] Skeleton 82.0% 79.7%

FSA-CNN [20]
RGB 90.1% -

Skeleton 90.6% -
RGB + Skeleton 93.7% -

Baseline RGB 95.0% 95.3%
Proposed RGB 95.5% 95.7%

6.2. Inter-Dataset (ETRI-Activity3D and ETRI-Activity3D-LivingLab)

To measure the performance of action recognition models in real-life situations,
we need to test the models in various environments as possible. The ETRI-Activity3D-
LivingLab dataset provides real-life videos to test the models practically outside lab envi-
ronments. In this sense, classifiers are trained on the ETRI-Activity3D videos and tested
on the ETRI-Activity3D-LivingLab videos, and this result gives performance degradation
due to their different characteristics. This is an inter-dataset protocol, where training and
testing data are from different datasets.

Comparing the baseline results of Tables 1 and 2, the action recognition accuracy is
greatly degraded from 95.7% to 50.4% according to testing data. This result shows that the
classifier trained on the videos in the lab environments cannot handle unfamiliar charac-
teristics of the testing videos, and this gap occurs when action classifiers recognize target
actions that have not been encountered. The performance degradation can be improved by
learning different types of video data or reducing dataset shift. As it is practically difficult
to collect different action videos that can occur in real life, the proposed method focuses on
reducing dataset shift in terms of action scales and improves accuracy by up to 10%.

To show the effectiveness of the proposed method, we present ablation studies in
Table 2, which shows the results of Baseline, RandCrop, and ActCrop. We train ResNet3D-18
network by using RandCrop and ActCrop with multiple scales. RandCrop means that a
video of the size WK × HK is cropped to a magnified video input in a random position
instead of two processes in the second flow of Figure 2, and ActCrop means the close-up
process of the proposed method as shown in Figure 2. The results of RandCrop and ActCrop
show that searching the position where the action occurs is very important when training
multiple scales of videos in the ETRI-Activity3D datasets. ActCrop has a higher accuracy
than RandCrop by up to 9.6%. Since RandCrop may sample the region where there is no
action on the larger scale, it is tough to improve action recognition performance.
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Table 2. Ablation studies trained on ETRI-Activity3D and tested on ETRI-Activity3D-LivingLab. To
show the effectiveness of the proposed method, RandCrop is used instead of ActCrop of (2) Close-up
of Maximum Activation in Figure 2 for comparison. The accuracies of RandCrop and ActCrop from
1-scale to 5-scale are presented.

Method 171 × 128 200 × 149 239 × 179 299 × 244 399 × 299

Baseline 50.4% - - - -

2-scale RandCrop 54.1% 50.1% - - -

ActCrop 54.4% 51.0% - - -

3-scale RandCrop 53.7% 52.5% 47.5% - -

ActCrop 58.1% 56.6% 48.8% - -

4-scale RandCrop 54.7% 53.4% 51.4% 44.4% -

ActCrop 58.8% 57.8% 55.6% 49.1% -

5-scale RandCrop 54.1% 54.8% 53.1% 48.2% 39.0%

ActCrop 59.4% 60.0% 60.0% 57.8% 49.3%

Figure 4 shows the different results between RandCrop and ActCrop. Since RandCrop
literally crops videos in a random position, meaningful parts which provide a clue to
action recognition may be eliminated while ActCrop reflects the semantics of the video and
helps to handle significant motion precisely. For example, to recognize 01_eating food with a
fork, a classifier needs to take a closer look at hand motion in the video. While RandCrop
sometimes crops in backgrounds, ActCrop based on the self-attention map crops exactly in
the position where hand motion occurs. Incorrect cropping degrades action recognition
performance by providing video inputs without motion information. Therefore, ActCrop
plays an important role in action recognition which needs to search action in diverse scales
without localization labels.

The proposed method does not improve all tested activities. After applying the
proposed method with 5-scale, the classification accuracy of 10 activities decreases by
4.5% on average while the accuracy of the other activities increases by 12.9% compared
to the baseline. Since the performance improvement is overwhelming rather than the
performance degradation, the proposed method achieves better action recognition accuracy
than the baseline. The performance degradation of 10 activities seems to be caused by
underfitting. While the baseline reduces sufficiently cross entropy loss under 0.01, the
proposed method could not reduce the loss under 0.54. Nevertheless, the proposed method
gives better feature representation by learning the close-up of maximum activation. A more
complicated model with the proposed method could not be tried due to the limitation of
the hardware.

There are other factors to degrade classification performance: interaction with other
objects, partially occluded objects, and low illumination. Forty activities interact with an
object and the other activities are bare hands without an object. The activities interacting
with an object (54.5%) achieve lower accuracy than the other activities (74.6%) because the
interacting activities with an object mostly has slight motion compared to the other activities.
The performance improvement by the proposed method is larger in the interacting activities
with an object (+11.5%) than in the other activities (+4.3%).

The partial occlusion of objects usually occurs in cooking activities such as 08_using a
gas stove and 09_cutting vegetable on the cutting board because cameras capture the elderly’s
back in these activities. Two activities have very low accuracy, 11.7% and 5.0%, in the
baseline because of the occlusion. In this case, the classifier needs to predict the activity
label from small motion or background information. After applying the proposed method,
the accuracy is improved to 32.5% and 25.0%, respectively.

The low illumination makes it difficult to recognize activities correctly. ‘P201’, one
of the subjects in the ETRI-Activity3D-LivingLab videos, were captured in environments



Sensors 2021, 21, 6774 11 of 21

under relatively low illumination compared to the others. In the baseline, ‘P201’ and the
others achieve the accuracy of 43.6% and 52.3%. This result shows that the low illumination
degrades the action recognition accuracy. In the proposed method, the accuracy is improved
to 54.6% and 61.3%, respectively.

(a) RandCrop.

(b) ActCrop.

Figure 4. Cropping results of RandCrop and ActCrop for 01_eating food with a fork from 1 to scale
(leftmost) to 5-scale (rightmost). RandCrop literally crops a video input in a random position and
ActCrop crops a video input in the most activated position based on its self-attention map.

6.3. Dataset Shift Analysis: ETRI-Activity3D and ETRI-Activity3D-LivingLab

As mentioned in the previous Section 6.2, we try to infer the influence of the dataset
shift with the results of Tables 1 and 2. The inter-dataset results in Table 2 are approximately
35% lower in accuracy than the intra-dataset results in Table 1. This difference shows a
severe shift between the ETRI-Activity3D and ETRI-Activity3D-LivingLabdatasets. Since
the homogeneous videos from the ETRI-Activity3D dataset are used and share similar data
distributions in both training and testing, the classifiers predict their action labels easily due
to the same characteristics of videos such as camera angles, action scales, backgrounds, and
so on. On the other hand, training and testing videos used in Table 2 are heterogeneous,
and this causes significant degradation in accuracy due to the different characteristics
between training and testing videos.

The dataset shift is observed in detail as shown in Figure 5, which presents action
class accuracies. The blue and orange bars (intra-dataset and homogeneous) indicate
testing accuracies on ETRI-Activity3D according to CS and CV protocols, respectively,
and the red bars (inter-dataset and heterogeneous) indicate testing accuracies on ETRI-
Activity3D-LivingLab. All accuracies on the ETRI-Activity3D-LivingLab videos are much
lower than those on the ETRI-Activity3D videos. In comparison with the intra-dataset
results, 44_Taking a bow and 48_Fighting each other in the inter-dataset results have only
5–8% degradation in accuracy, while 01_Eating food with fork and 09_Cutting vegetable on the
cutting board in the inter-dataset results have the 77–88% degradation in accuracy. Although
the former actions are captured in different camera views, the poses and motions by two
people are very similar in videos of both datasets, but the latter actions have different
action scales and motions in their videos according to their camera views. The proposed
method improves their degraded performance of 01_eating food with fork and 09_cutting
vegetable on the cutting board by 20–28% in accuracy, and this improvement shows that the
proposed method has a great effect on the actions with small motions.
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Figure 5. Action recognition accuracy of each action category with baseline. The results of ETRI-
Activty3D CS, CV, and ETRI-Activity3D-LivingLab are presented. The x-axis and y-axis are the index
of an action class and its accuracy, respectively.

To help understanding, the examples of the aforementioned actions as shown in
Figure 6 are presented from two datasets. Figure 6a,b where only hand motions occur
show that the actions are captured smaller in the ETRI-Activity3D videos than the ETRI-
Activity3D-LivingLab videos. These actions are too small to be recognized by the Baseline
network and their accuracies on ETRI-Activity3D-LivingLab are less than 10%. By mag-
nifying these actions similar to the actions of ETRI-Activity3D-LivingLab in training, the
proposed method achieves performance improvements by 25–39% in accuracy. Never-
theless, the actions have only 30–40% accuracy because there are still other factors to
degrade the performance besides the action scale. Although the shift due to the action
scale is reduced, the datasets have different characteristics such as light condition, pose,
and background as mentioned earlier. On the other hand, Figure 6c,d where two people
interact with each other have similar action scales and poses. These similar characteristics
led to the high accuracy of more than 90%.

In this respect, the action scale is one of the important factors in action recognition,
and we analyze action scales of videos according to an action class as shown in Figure 7,
which shows the distributions of action boxes detected in the ETRI-Activity3D and ETRI-
Activity3D-LivingLab videos by Yolo v3 [45]. An action box is determined by finding the
maximum size which includes all human boxes detected in an action video. In general, the
action boxes of ETRI-Activity3D-LivingLab is mostly larger than those of ETRI-Activity3D.
These distributions mean that there is the obvious dataset shift between two datasets due
to the different action scales, which cause the performance degradation. This degradation
depends on an action class. The different scales of action boxes in Figure 7a,b result in
the lowest accuracy while the similar scales of action boxes in Figure 7c,d result in the
highest accuracy. In the proposed method, the action boxes of ETRI-Activity3D-LivingLab
videos are mostly similar to those of magnified ETRI-Activity3D videos and this leads to
the performance improvement.

In terms of the action scale, the decreasing accuracy according to the increasing video
size in Table 2 can be explained. ETRI-Activity3D-LivingLab videos have larger action
scales than ETRI-Activity3D videos without the close-up as shown in Figure 7, and the
action scale increases along with the increase of a video size because a video input is
always cropped by the fixed size of L× L. The action scale of both ETRI-Activity3D and
ETRI-Activity3D-LivingLab videos are enlarged by the close-up process. After the close-up,
the action scale of ETRI-Activity3D-LivingLab videos is still larger than the action scale of
ETRI-Activity3D videos. This action scale difference leads to the lower accuracy for the
larger video size in Table 2.
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(a) 01_Eating food with fork

(b) 09_Cutting vegetable on the cutting board

(c) 44_Taking a bow

(d) 48_Fighting each other

Figure 6. Examples of action videos that have different or similar characteristics between ETRI-
Activity3D (the first and second columns) and ETRI-Activity3D-LivingLab (the third and fourth
columns). (a,b) show different characteristics and (c,d) show similar characteristics between
two datasets.
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(a) 01_Eating food with fork
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(b) 09_Cutting vegetable on the cutting board
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(c) 44_Taking a bow
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(d) 48_Fighting each other

Figure 7. Distributions of action boxes for the same actions in Figure 6. The red and green samples
are action boxes detected in ETRI-Activity3D and ETRI-Activity3D-LivingLab videos. The orange
samples are action boxes of the magnified video inputs. The x-axis and y-axis are the normalized
width and height of an action box, which is divided by the width and height of a video. The maximum
action box size is selected to contain all human boxes detected in a video by Yolo v3 [45].
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To verify the influence of the action box similarity numerically, MaxOverlap (maxi-
mum overlap) is measured between action boxes of ETRI-Activity3D and ETRI-Activity3D-
LivingLab and defined as:

MaxOverlapi = argmax
j

(
min(hi

liv, hj
ea3)

max(hi
liv, hj

ea3)
∗

min(wi
liv, wj

ea3)

max(wi
liv, wj

ea3)

)
, (3)

where hi
liv and wi

liv is the height and width of an action box in ith ETRI-Activity3D-

LivingLabLivingLab video and hj
ea3 and wj

ea3 is the height and width of an action box in jth
ETRI-Activity3D video. Through Equation (3), the action box in the ETRI-Activity3D video
which has the maximum overlap with the action box in ith ETRI-Activity3D-LivingLab
video is searched, and this could be a measure of how similar the action is in terms of the
action scale. Table 3 shows MaxOverlap proportions for the ETRI-Activity3D-LivingLab
videos. As shown in Figure 7, when using the baseline, 01_Eating food with fork and 09_Cut-
ting vegetable on the cutting board with the lowest accuracy have relatively low MaxOverlap
values while 44_Taking a bow and 48_Fighting each other with the highest accuracy have about
90% of MaxOverlap values in the interval between 0.9 and 1.0. When the proposed method
is applied, all actions have high MaxOverlap values, which are concentrated on the interval
between 0.9 and 1.0 with the performance improvement as mentioned in Section 6.2. From
these proportions, a large MaxOverlap value can be expected to reduce the impact of
dataset shift due to the action scale and enhance an action recognition accuracy.

Table 3. MaxOverlap proportions of action boxes from ETRI-Activity3D-LivingLab videos compared
to those from ETRI-Activity3D videos according to an action and a classifier.

Method Action # <0.6 <0.7 <0.8 <0.9 <1.0

Baseline

1 0.034 0.067 0.092 0.160 0.647
8 - 0.059 0.119 0.110 0.712

44 - - - 0.067 0.933
48 - - 0.042 0.025 0.932

Proposed

1 - - - - 1.000
8 - - 0.017 0.085 0.898

44 - - - 0.008 0.992
48 - - - - 1.000

6.4. Inter-Dataset (KIST SynADL, ETRI-Activity3D, and ETRI-Activity3D-LivingLab)

Since computer graphics enable to generate data with diverse characteristics, a syn-
thetic video dataset is captured in various camera angles, appearances, lightings, and
backgrounds. KIST SynADL were designed to complement limited characteristics of
ETRI-Activity3D, and we expect the synthetic data to improve the performance on the
ETRI-Activity3D-LivingLab videos. However, it is difficult to show good performance by
learning the synthetic dataset alone because there is domain shift between KIST SynADL
and ETRI-Activity3D-LivingLab. In this section, we demonstrate step by step how the
KIST SynADL videos can help to improve action recognition performance on the ETRI-
Activity3D-LivingLab dataset and also provide an analysis of action boxes.

As shown in Table 4, the classifiers are trained on the KIST SynADL or ETRI-Activty3D
videos and tested on the ETRI-Activity3D-LivingLab videos. (1) KIST SynADL is trained
only in a supervised manner. (2) KIST SynADL (S) + ETRI-Activity3D (T) are trained
by Unsupervised Domain Adaptation (UDA) [46], which learns action semantics from a
source domain and domain characteristics from a target domain simultaneously. (3) ETRI-
Activity3D is trained only in a supervised manner and is reported in Table 2. (4) KIST
SynADL + ETRI-Activity3D are trained together in a supervised manner. The testing
dataset is all the same as ETRI-Activity3D-LivingLab.
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Table 4. Action recognition results tested on the ETRI-Activity3D-LivingLab videos by the baseline
and the proposed method trained with the ETRI-Activity3D or KIST SynADL videos. To reduce the
influence due to the domain shift, ref. [46] is employed for UDA (Unsupervised Domain Adaptation).
S and T are Source and Target domains, respectively.

Training Data Method Baseline Proposed

(1) KIST SynADL Supervised 32.5% 34.2%
(2) KIST SynADL (S) + ETRI-Activity3D (T) UDA [46] 42.7% 43.9%
(3) ETRI-Activity3D Supervised 50.4% 59.4%
(4) KIST SynADL + ETRI-Activity3D Supervised 61.6% 67.2%

Due to the dataset shift caused by the domains, (1) KIST SYnADL achieves only 32.5%
and 34.2% in accuracy. To reduce the influence of the domain shift, ref. [46] is employed for
UDA. The combined training, (2) KIST SynADL (S) + ETRI-Activity3D (T), improves the
action recognition performance of the classifiers on the ETRI-Activity3D-LivingLab videos
by about 9–10% in accuracy, and the performance improvement is still small even though
the proposed method is applied. (3) ETRI-Activity3D is the same result of Table 2 and
gives better accuracy than (1) KIST SynADL. Lastly, (4) KIST SynADL + ETRI-Activity3D
gives the highest accuracy with improvements of approximately 9–13% over UDA. The
proposed method also achieves a performance improvement of 5.6% in accuracy. These
results of our dataset configuration show that the domain shift seems to be an important
factor in the performance improvement.

6.5. Dataset Shift Analysis: KIST SynADL, ETRI-Activity3D, and ETRI-Activity3D-LivingLab

In this section, to give analysis of the action box for (1) KIST SynADL and (4) KIST
SynADL + ETRI-Activity3D, we show action box distributions of 13_Wiping face with a
towel, 18_Putting on a jacket, 48_Fighting each other, and 52_Opening the door and walking in,
which have the most improved action recognition accuracy by training ETRI-Activity3D
videos additionally.

In Figure 8, the distributions of the action boxes detected from original videos and
magnified videos are presented to compare the results of the baseline and the proposed
method. Even though the action boxes of KIST SynADL and ETRI-Activity3D-LivingLab
videos overlap a lot, there is only an improvement of 1.7% in accuracy as shown in Table 4.
In the case of 48_Fighting each other, both classifiers give a zero accuracy although their
MaxOverlap values increase obviously after applying the proposed method in Table 5. It
seems that the domain shift between KIST SynADL and ETRI-Activity3D-LivingLab is very
dominant despite applying the proposed method. The domain adaptation method [46]
gives the improvement from 0% to 6% in accuracy for 48_Fighting each other, but the severe
domain shift still remains. Consequently, if the domain shift is not handled, there are limits
to improving action recognition accuracy with the proposed method.

By training both KIST SynADL and ETRI-Activity3D in a supervised manner, the
different action scales lead to the performance improvement as shown in Table 4. As
shown in Figure 9, the action boxes (red samples) of ETRI-Activity3D provide additional
action scales which the action boxes (blue sample) of KIST SynADL do not cover, and this
complement leads to the great improvement in action recognition accuracy. Especially, the
result of the baseline shows the improvement greatly to 86.6% in accuracy for 48_Fighting
each other by learning the KIST SynADL and ETRI-Activity3D videos together. Furthermore,
the proposed method achieves 93.3% in accuracy for 48_Fighting each other. These results
show that learning data from different domains in a supervised manner helps to overcome
the domain shift and maximize the effectiveness of the proposed method.
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(a) 13_Wiping face with a towel
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(b) 18_Putting on a jacket
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(c) 48_Fighting each other
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(d) 52_Opening the door and walking in

Figure 8. Distributions of action boxes for 13_Wiping face with a towel, 18_Putting on a jacket, 48_Fighting
each other, and 52_Opening the door and walking in. The blue and green samples are action boxes
detected in KIST SynADL and ETRI-Activity3D-LivingLab videos. The azure samples are action
boxes of the magnified video inputs. The x-axis and y-axis are the normalized width and height of an
action box, which is divided by the width and height of a video. The maximum action box size is
selected to contain all human boxes detected in a video by Yolo v3 [45].

MaxOverlap is measured numerically for different action scales as shown in Table 5.
The action boxes of KIST SynADL and ETRI-Activity3D-LivingLab are similar after ap-
plying the proposed method in terms of MaxOverlap. Nevertheless, the action recognition
accuracy is not improved by the proposed method because it seems that there remains
the domain shift between KIST SynADL and ETRI-Activity3D-LivingLab. While training
both KIST SynADL and ETRI-Activity3D in supervised manner and reducing the domain
shift, MaxOverlap values are improved significantly and this leads to the improvement
in accuracy.

Table 5. MaxOverlap proportions of action boxes from ETRI-Activity3D-LivingLab video compared
to those from KIST SynADL or ETRI-Activity3D according to an action and a classifier.

Training Dataset Method Action # <0.6 <0.7 <0.8 <0.9 <1.0

KIST SynADL

Baseline

13 - 0.017 0.050 0.092 0.842
18 - - 0.008 0.083 0.908
48 0.034 0.078 0.138 0.362 0.388
52 - - 0.025 0.076 0.898

Proposed

13 - 0.017 0.050 0.075 0.858
18 - - 0.008 0.058 0.933
48 - - 0.008 0.034 0.958
52 - - 0.025 0.076 0.898

KIST SynADL +
ETRI-Activity3D

Baseline

13 - - 0.017 0.059 0.924
18 - - - 0.008 0.992
48 - - 0.042 0.008 0.949
52 - - - 0.025 0.975

Proposed

13 - - - 0.008 0.992
18 - - - 0.008 0.992
48 - - - 0.025 0.975
52 - - - - 1.000
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(a) 13_Wiping face with a towel
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(b) 18_Putting on a jacket
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(c) 48_Fighting each other
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(d) 52_Opening the door and walking in

Figure 9. Distributions of action boxes for 13_Wiping face with a towel, 18_Putting on a jacket, 48_Fighting
each other, and 52_Opening the door and walking in. The blue, red, and green samples are action boxes
detected in KIST SynADL, ETRI-Activity3D and ETRI-Activity3D-LivingLab videos, respectively.
The x-axis and y-axis are the normalized width and height of an action box, which is divided by the
width and height of a video. The maximum box size is selected to contain all human boxes detected
in a video by Yolo v3 [45].

6.6. Application to Other Methods

To examine the effect of the proposed method, the proposed method is applied to
the non-local neural network [4] and the SlowFast network [6], which are state-of-the-art
action recognition models. The baseline is pre-trained without non-local blocks, and non-
local blocks are trained together after the pre-training. For the SlowFast network, we use
16 frames in the fast pathway and 4 frames in the slow pathway. We train the networks on
ETRI-Activity3D and evaluate the performance of the networks on the ETRI-Activity3D-
LivingLab dataset.

As shown in Table 6, the applying the proposed method improves the performance
of two state-of-the-art action recognition models by up to 10–12% in the accuracy. These
results show that the proposed close-up of maximum activation can easily enhance the
performance of action recognition models by cropping activated parts of a video.

Table 6. Results of applying close-up of maximum activation to other existing methods. Only
predictions for the videos of the size 171× 128 are presented.

Method 1-Scale 2-Scale 3-Scale 4-Scale 5-Scale

Non-local 51.2% 54.7% 58.3% 60.1% 61.6%
SlowFast 50.3% 55.2% 59.1% 60.9% 62.3%

6.7. Visualization of Self-Attention Map

The self-attention map in action recognition indicates activated parts where action
occurs and is used to search an action region in the proposed method. In Figure 10, the
self-attention map is utilized to visualize the performance improvement of the proposed
method. The baseline classifier activates wider parts as shown in Figure 10a,b or wrong
parts as shown in Figure 10c compared to the proposed method. On the other hand,
the proposed method activates the action parts precisely and exactly compared to the
baseline classifier and improves the action recognition performance. This means that
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the proposed method including the close-up of maximum activation makes the classifier
predict exactly in terms of quantity and quality without additional network parameters
and localization labels.

1 
 

(a) 

(b) 

(c) 
 
Figure 10. Self-attention maps on video frames activated by the baseline and the proposed method
of Table 2. The red and blue color mean high and low activations, respectively. The proposed method
activates correctly compared to the baseline. As a result, the baseline misclassifies (a), (b), and (c) as
30_looking around for something, 45_talking to each other, and 05_putting food in the fridge/taking food from
the fridge, respectively, while the proposed method classifies correctly. (a) 02_Pouring water into a cup.
The proposed method activates more precisely than the baseline; (b) 23_Vacuumming the floor. The
proposed method activates correctly while the baseline activates the wrong parts; (c) 23_Vacuumming
the floor. The proposed method activates correctly while the baseline activates the wrong parts.
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7. Conclusions

In this paper, we introduced the new ETRI-Activity3D-LivingLab dataset which can
be used for generalization test and proposed the close-up of maximum activation which
magnifies helpful parts for action recognition. Furthermore, through various experiments,
we examined the data shift among the three datasets, ETRI-Activity3D, KIST SynADL,
and ETRI-Activity3D-LivingLab. By utilizing these datasets, researchers can challenge the
reduction of the dataset shift, and we expect that this study will be helpful in developing
action recognition models for generalized representation. The close-up of maximum
activation is a very simple method, but it can effectively improve the action recognition
accuracy. While the proposed method predicts an action separately on each scale, we will
research to achieve optimal performance by integrating close-up scales.
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