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Background: Due to the relatively insidious early symptoms of lung adenocarcinoma
(LUAD), most LUAD patients are at an advanced stage at the time of diagnosis and
lose the best chance of surgical resection. Mounting evidence suggested that the
tumor microenvironment (TME) was highly correlated with tumor occurrence, progress,
and prognosis. However, TME in advanced LUAD remained to be studied and reliable
prognostic signatures based on TME in advanced LUAD also had not been well-
established. This study aimed to understand the cell composition and function of TME
and construct a gene signature associated with TME in advanced LUAD.

Methods: The immune, stromal, and ESTIMATE scores of each sample from The
Cancer Genome Atlas (TCGA) database were, respectively, calculated using an
ESTIMATE algorithm. The LASSO and Cox regression model were applied to select
prognostic genes and to construct a gene signature associated with TME. Two
independent datasets from the Gene Expression Omnibus (GEO) were used for external
validation. Twenty-two subsets of tumor-infiltrating immune cells (Tiics) were analyzed
using the CIBERSORT algorithm.

Results: Favorable overall survival (OS) and progression-free survival (PFS) were found
in patients with high immune score (p = 0.048 and p = 0.028; respectively) and stromal
score (p = 0.024 and p = 0.025; respectively). Based on the immune and stromal
scores, 453 differentially expressed genes (DEGs) were identified. Using the LASSO
and Cox regression model, a seven-gene signature containing AFAP1L2, CAMK1D,
LOXL2, PIK3CG, PLEKHG1, RARRES2, and SPP1 was identified to construct a risk
stratification model. The OS and PFS of the high-risk group were significantly worse
than that of the low-risk group (p < 0.001 and p < 0.001; respectively). The receiver
operating characteristic (ROC) curve analysis confirmed the good potency of the seven-
gene signature. Similar findings were validated in two independent cohorts. In addition,
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the proportion of macrophages M2 and Tregs was higher in high-risk patients (p = 0.041
and p = 0.022, respectively).

Conclusion: Our study established and validated a seven-gene signature associated
with TME, which might serve as a prognosis stratification tool to predict survival
outcomes of advanced LUAD patients. In addition, macrophages M2 polarization may
lead to worse prognosis in patients with advanced LUAD.

Keywords: tumor microenvironment, immune, lung adenocarcinoma, stromal, TCGA

INTRODUCTION

Lung cancer ranks first in the incidence and mortality of all
malignant tumors worldwide (Bray et al., 2018). The 5-year
survival rate of lung cancer patients is less than 20% (Herbst
et al., 2018). Lung adenocarcinoma (LUAD) is the most common
histological subtype of non-small cell lung cancer (NSCLC),
which accounts for about 40% of all lung malignancies and
usually occurs in the outer area of the lung (Chen et al.,
2014). Clinical studies have shown that nearly 70% of LUAD
patients are discovered in stage III–IV, and 57% of LUAD
patients have already developed distant metastasis at the time of
initial diagnosis, and have lost the best opportunity for surgical
resection (Jemal et al., 2017).

In recent years, significant progress has been made in the
research of molecular genetics and immunotherapy of lung
cancer, and molecular typing based on genetic characteristics
has brought the treatment of advanced lung cancer into the era
of personalized molecular targeted therapy (Subramanian and
Govindan, 2008). EGFR-Inhibitor and BRAF(V600E)-mutant,
rearrangements of ALK or ROS1 genes, as well as immune
checkpoint inhibitor antibodies against PD-1 or PD-L1 have
been approved for the treatment of advanced LUAD (Vargas
and Harris, 2016; Hirsch et al., 2017). At present, the TNM
staging system is still the most effective tool to judge the
survival of patients and guide clinical treatment strategies,
but the evaluation effect for advanced survival is not good
(Goldstraw et al., 2016). Therefore, looking for a new survival
predictor for advanced LUAD patients is particularly important
for personalized treatment of clinical decision-making and
prognostic health management.

Tumor microenvironment (TME) refers to the surrounding
microenvironment of tumor cells, including immune cells,
stromal cells, endothelial cells, inflammatory cells, and fibroblasts
(Neal et al., 2018). Among them, immune cells and stromal
cells are two major non-tumor cell components, which have
been considered important for the diagnosis and prognostic
evaluation of cancer patients (Gajewski et al., 2013). Therefore,
understanding the cell composition and function of TME will
bring a new dawn to patients with advanced LUAD in terms of
immunity and targeted therapy and improvement of prognosis.

The continuous improvement and development of public
databases, such as The Cancer Genome Atlas (TCGA)
database and Gene Expression Omnibus (GEO) database,
provide reliable data resources for TME research (Cancer
Genome Atlas Research Network, Weinstein et al., 2013;

NCBI Resource Coordinators, 2016). Yoshihara et al. (2013) first
proposed the ESTIMATE algorithm in 2013. This algorithm
uses the unique properties of the transcription profile of cancer
samples to infer infiltrating stromal/immune cells. According
to reports, researchers have explored the tumor characteristics
and prognosis assessment of liver cancer (Li et al., 2019), breast
cancer (Bai et al., 2019), and clear cell renal cell carcinoma (Luo
et al., 2020) based on the ESTIMATE algorithm. However, the
value of immune and stromal scores for advanced LUAD has
not been verified.

In the present study, the immune and stromal scores
were estimated using the ESTIMATE algorithm based on
the transcription profile of LUAD patients with stage III–IV.
A robust gene signature based on immune-stromal score
was subsequently developed for prognosis stratification in
advanced LUAD. Finally, we explored the relationship between
high-/low-risk advanced LUAD patients and immune cell
infiltration based on the CIBERSORT method, so as to provide
some references for combined immunotherapy and targeted
therapy for advanced LUAD patients.

MATERIALS AND METHODS

Data Collection and Processing
We obtained the fragments per kilobase per million (FPKM) data
of RNA-Seq from the TCGA-LUAD cohort1, including 535 LUAD
patients and 59 normal samples. Next, the FPKM data were
transferred to transcripts per million (TPM) expression data. The
gene expression levels of duplicate samples were averaged, and
normal samples were deleted for subsequent analysis.

We used the GDC tool and cBioPortal website2 to download
the corresponding clinical information, including age, gender,
history of smoking, tumor laterality, metastasis, lymph node
status, pathological T stage, stage, and prognostic information.
In this study, only patients with stage III–IV were included
and patients with incomplete key clinical information were
excluded. Finally, a total of 103 advanced LUAD patients were
included for follow-up analysis. We utilized the “limma” package
for normalization processing, and then immune, stromal, and
ESTIMATE scores were calculated using ESTIMATE algorithm.
Two independent datasets from the GEO database3, namely, 27

1https://portal.gdc.cancer.gov/
2http://www.cbioportal.org/
3https://www.ncbi.nlm.nih.gov/geo/
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LUAD patients with stage III–IV from Series GSE81089 and 53
LUAD patients with stage III–IV from Series GSE41271, were
used for external validation in this study. For all patients from
the GEO database, a normalized expression matrix was used for
subsequent analyses.

Correlations Between Prognoses and
Immune/Stromal Scores
Overall survival (OS) was used as the primary prognosis
endpoint, and progression-free survival (PFS) was used as the
secondary prognosis endpoint. According to the stromal and
immune scores of each advanced LUAD patient, the best cutoff
value based on the R package “maxstat” (i.e., the maximum
selective rank statistic method) (Ritchie et al., 2015) was used to
divide the patients into high-score and low-score groups. Based
on “survival” packages, the Kaplan–Meier (K–M) survival curve
analysis and log-rank tests were used to compare the prognoses
of the two groups.

Differentially Expressed Gene (DEG)
Screening
The “limma” package in R software was used to screen for
DEGs between high-score and low-score groups of immune score
and stromal score. In this study, an adjusted p-value < 0.05
and fold change ≥1.5 were regarded as the critical value for
screening DEGs. The immune-related DEGs and stromal-related

DEGs showing the same expression trend were selected for
further analysis using a Venn diagram. We used the “pheatmap”
package to generate the immune-related heatmap and stromal-
related heatmap.

DEG Functional Enrichment Analysis
The David online database4 was used to explore the potential
functions of DEGs. Gene ontology (GO) analysis included
biological processes (BP), molecular functions (MF), and cellular
components (CC), which are demonstrated by a bar plot.
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
was performed to conduct the pathway analysis, which was
illustrated by a dot plot. With false discovery rate (FDR) < 0.05
as cutoff value, all enrichment results were visualized with
“ggplot2” package.

Construction of Gene Signature and
Survival Analysis
Firstly, the univariate Cox model was used to determine the
relationship between TME-related DEG expression and patient’s
survival. Then, the least absolute shrinkage and selection operator
(LASSO) regression analysis was used to further screen out key
genes from significant DEGs in the univariate analysis. LASSO
regression increases penalty function on the basis of the least

4http://david.ncifcrf.gov

TABLE 1 | Clinical characteristics of 103 advanced LUAD patients included in the study from the TCGA cohort.

Variables Total (N = 103) Death Log-rank P Progress or Death Log-rank P

No (N = 44) Yes (N = 59) No (N = 35) Yes (N = 68)

Age 0.766 0.378

<65 48 (46.60) 21 (43.75) 27 (56.25) 18 (37.50) 30 (62.50)

≥65 55 (53.40) 23 (41.82) 32 (58.18) 17 (30.91) 38 (69.09)

Gender 0.915 0.549

Female 55 (53.40) 24 (43.64) 31 (56.36) 21 (38.18) 34 (61.82)

Male 48 (46.60) 20 (41.67) 28 (58.33) 14 (29.17) 34 (70.83)

Smoke 0.148 0.130

No 16 (15.53) 12 (75.00) 4 (25.00) 10 (62.50) 6 (37.50)

Yes 87 (84.47) 32 (36.78) 55 (63.22) 25 (28.74) 62 (71.26)

Tumor laterality 0.227 0.493

Left 41 (39.81) 16 (39.02) 25 (60.98) 14 (34.15) 27 (65.85)

Right 62 (60.19) 28 (45.16) 34 (54.84) 21 (33.87) 41 (66.13)

Metastasis 0.928 0.820

M0 79 (76.70) 35 (44.30) 44 (55.70) 29 (36.71) 50 (63.29)

M1 24 (23.30) 9 (37.50) 15 (62.50) 6 (25.00) 18 (75.00)

Lymph node status 0.098 0.145

No 17 (16.50) 11 (64.71) 6 (35.29) 10 (58.82) 7 (41.18)

Yes 86 (83.50) 33 (38.37) 53 (61.63) 25 (29.07) 61 (70.93)

Pathological T stage 0.063 0.228

T1–T2 67 (65.05) 33 (49.25) 34 (50.75) 26 (38.81) 41 (61.19)

T3–T4 36 (34.95) 11 (30.56) 25 (69.44) 9 (25.00) 27 (75.00)

Stage 0.950 0.853

III 78 (75.73) 34 (43.59) 44 (56.41) 28 (35.90) 50 (64.10)

IV 25 (24.27) 10 (40.00) 15 (60.00) 7 (28.00) 18 (72.00)
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squares method, which can reduce the number of variables and
avoid overfitting effectively (Bovelstad et al., 2007). Finally, the
key genes screened by LASSO were included in multivariate
Cox analysis, and the gene signature (risk score) formula was
constructed according to the analysis results.

The risk score was calculated as follows: risk score =
∑

(βi ∗ Expi) (“i” = the number of prognostic hub genes, “βi”
represents the coefficient of each gene, and “Expi” represents
gene expression).

In addition, advanced LAUD patients were divided into
high-risk and low-risk groups according to the median risk
score. The receiver operating characteristic (ROC) curves and
the consistency index (C-index) were then used to assess the
predictive ability of the risk score. The K–M curves and log-
rank tests were used to analyze the difference in survival between
the high-risk group and the low-risk group. Furthermore,
the independent prognostic value of the gene signature was
explored by multivariate Cox analysis combined with other
clinicopathologic characteristics.

Validation of Gene Signature in the
Testing Dataset
The GSE81089 and GSE41271 independent datasets were used
for verification. According to the gene signature calculation

formula of the training dataset, the samples in the test dataset
were divided into the high-risk group and the low-risk groups.
The K–M survival analysis and ROC curves were used to evaluate
the predictive ability of this model. Immunohistochemistry
(IHC) images of the selected prognosis-related genes in tumor
and normal tissue were retrieved from the Human Protein Atlas
online database5.

Estimating the Composition of Immune
Cells
CIBERSORT is a deconvolution algorithm based on the principle
of linear support vector regression to describe the infiltration
of immune cells in the sample (Shen-Orr et al., 2010). LM22
is composed of 547 genes that accurately distinguish 22 human
hematopoietic cell phenotypes, including seven T-cell types, naïve
and memory B cells, plasma cells, NK cells, and myeloid subsets
(Newman et al., 2015). We used CIBERSORT and LM22 to jointly
estimate the scores of 22 human immune cell types in advanced
LAUD patients from the TCGA cohort. For each sample, the
sum of all estimated immune cell type scores was equal to 1. We
compared differences in the composition of immune cell types
between high-risk and low-risk groups.

5http://www.proteinatlas.org

FIGURE 1 | Correlation of immune score and stromal score with advanced LUAD survival outcomes. (A–C) K–M survival curves of the relationships between
different score levels and OS showed that patients with lower immune, stromal, and ESTIMATE scores had worse OS outcomes (p = 0.048, p = 0.024, and
p = 0.012, respectively). (D–F) K–M survival curves of the relationships between different score levels and PFS showed that patients with lower immune, stromal, and
ESTIMATE scores had worse PFS outcomes (p = 0.028, p = 0.025, and p = 0.002, respectively).
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Statistical Analysis
Statistical analysis was performed using R software (version
3.6.1). All statistical tests were two sided and p-value < 0.05
indicated statistical significance.

RESULTS

Estimation of Immune Score and Stromal
Score
We included 103 LUAD samples from the TCGA database, of
which 78 (75.73%) were in stage III and 25 (24.27%) were in
stage IV. The clinical and pathological characteristics of the
included patients are listed in Table 1. Among them, elderly
LUAD patients (≥65 years) accounted for 53.40%, and the

proportion of LUAD patients with a history of smoking was as
high as 84.47%.

The immune, stromal, and ESTIMATE scores of each sample
were, respectively, calculated using an ESTIMATE algorithm. The
immune score ranged from −941.95 to 2,940.32, the stromal
score ranged from −1,755.55 to 1,923.43, and the ESTIMATE
score ranged from−2,298.51 to 4,012.25.

Immune Score and Stromal Score Were
Significantly Related to Advanced LUAD
Survival Outcomes
Lung adenocarcinoma samples were divided into high-
score and low-score groups, based on the best cutoff value
of immune score, stromal score, and ESTIMATE score,

FIGURE 2 | Identification of DEGs and function and pathway enrichment analysis. (A) A heatmap of 715 DEGs between patients with high or low immune scores.
(B) A heatmap of 1,092 DEGs between patients with high or low stromal scores. (C,D) Cross-upregulated and cross-downregulated DEGs between the immune
and stromal groups. (E,F) Function and pathway enrichment analysis of DEGs by GO and KEGG.
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respectively. The K–M survival curves were performed to
evaluate the relationships between different score levels and
survival outcome. K–M survival curves of the relationships
between different score levels and OS showed that patients
with lower immune, stromal, and ESTIMATE scores had
worse OS outcomes (p = 0.048, p = 0.024, and p = 0.012,
respectively; Figures 1A–C). Consistently, K–M survival
curves of the relationships between different score levels
and PFS showed that patients with lower immune, stromal,
and ESTIMATE scores had worse PFS outcomes (p = 0.028,
p = 0.025, and p = 0.002, respectively; Figures 1D–F). These
observations consistently suggested that advanced LUAD

patients with a higher immune score or stromal score had a more
favorable outcome.

Identification of DEGs Based on Immune
Score and Stromal Score in Advanced
LUAD
In order to explore the DEGs closely related to the
TME, the “limma” package was used to process the
Affymetrix microarray data from 103 advanced LUAD
patients. Figure 2A showed a heatmap of 715 DEGs
between high and low immune scores, and Figure 2B

FIGURE 3 | Construction of seven-gene signature. (A) LASSO coefficient profiles. (B) Tenfold cross-validation result that identified optimal values of the penalty
parameter λ. (C) Forest plot of seven hub genes based on stepwise regression method and multivariate Cox results. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4 | Survival curves of seven prognostic hub genes. (A–G) Survival curves of seven DEGs were constructed to explore the prognostic value of each gene in
the TCGA database.

showed a heatmap of 1,092 DEGs between high and
low stromal scores.

For the immune score, there were 37 upregulated DEGs and
678 downregulated DEGs in the high group compared with the
low group. For stromal score, compared with the low score group,
there were 160 upregulated DEGs and 932 downregulated DEGs
in the high-score group. A Venn diagram showed 18 cross-
upregulated DEGs and 435 cross-downregulated DEGs between
the immune and stromal groups (Figures 2C,D).

Function and Pathway Enrichment
Analysis of DEGs
Functional enrichment analyses for DEGs, including BP, CC,
MF, and KEGG pathways, were conducted using the David
gene annotation tool. BP indicated that these genes may be
associated with immune response, defense response, response
to wounding, inflammatory response, and positive regulation of
immune system process. CC indicated that these genes may be
associated with intrinsic to membrane, integral to membrane,
and plasma membrane. MF indicated that these genes may
be associated with carbohydrate binding, cytokine binding,
and polysaccharide binding (Figure 2E). The result of KEGG
enrichment was related to immune response, including cytokine–
cytokine receptor interaction, chemokine signaling pathway, cell
adhesion molecules (CAMs), and hematopoietic cell lineage
(Figure 2F). Overall, our results confirmed that TME-related
DEGs were closely related to the anti-tumor immunity of
advanced LUAD patients.

Construction of Seven-Gene Signature
and Survival Analysis
In order to explore the potential role of DEGs in survival
outcome, a univariate Cox proportional hazards regression

model was first conducted, and the results showed that 96
DEGs were selected by univariate analysis. Next, according
to the −2 log-likelihood test, the 10-fold cross-validation
random sampling method was used, and LASSO regression
analysis further screened out 18 DEGs (Figures 3A,B). Finally,
a multivariate Cox proportional hazards model was performed,
and a total of seven DEGs were selected to establish a seven-gene
signature, and the seven-gene signature formula was as follows:
risk score = (−0.29529∗AFAP1L2) + (−0.24317∗CAMK1D) +
(0.35563∗LOXL2) + (−0.50661∗PIK3CG) + (−0.47294∗
PLEKHG1) + (−0.35771∗ RARRES2) + (0.35258∗
SPP1) (Figure 3C).

In addition, survival curves of seven DEGs were constructed
to explore the prognostic value of each gene (Figure 4).
Furthermore, a total of 51 patients with risk scores higher
than the median were classified as “high-risk group,” and the
remaining 52 patients were classified as “low-risk group.” K–
M curves showed that the OS and PFS of high-risk patients
were significantly worse (p < 0.001 and p < 0.001, respectively;
Figures 5A,B).

In order to evaluate the predictive ability of the seven-gene
signature, we drew the ROC curve based on the risk score
and calculated the AUC of the area under the curve. The
AUCs of the first, second, and third year of OS prognostic
models were 0.783, 0.806, and 0.843, respectively (Figure 5C).
Consistently, the AUCs of the first, second, and third year
of PFS prognostic models were 0.733, 0.795, and 0.766,
respectively (Figure 5D).

To explore the independent prognostic value of seven-
gene signature, multivariate Cox analysis combined with other
clinicopathologic characteristics showed that risk score was an
independent predictor (For OS, HR: 6.42, 95% CI: 3.32–12.40;
For PFS, HR: 4.74, 95% CI: 2.71–8.28) (Table 2).
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FIGURE 5 | Evaluation of the predictive ability of the seven-gene signature. (A,B) K–M curves for OS and PFS of high- and low-risk groups in the TCGA database.
(C,D) ROC curves for OS and PFS based on the seven-gene signature in the TCGA database.

Validation of the Risk Stratification
Model
In the GSE81089 and GSE41271 datasets (Supplementary
Figures 1, 2, respectively), the correlation between seven genes
and the risk score indicated that AFAP1L2, CAMK1D, PIK3CG,
PLEKHG1, and RARRES2 were negatively correlated with the
risk score, while LOXL2 and SPP1 were positively correlated with
the risk score. The human protein atlas database was used to
explore protein expression levels. Typical IHC of four favorable
and two adverse prognostic genes (except RARRES2, which was
not included in the database) in normal and tumor tissues is
shown in Supplementary Figure 3.

In order to verify the generalization value of the seven-gene
signature based on the TCGA cohort, we separately calculated
the risk score of each sample for the 27 advanced LUAD patients
in GSE81089 and the 53 advanced LUAD patients in GSE41271
using the above risk score formula. For the GSE81089 dataset, K–
M survival curves indicated that the low-risk group had higher
OS (p = 0.019) (Figure 6A). ROC curves based on the risk
score model showed that the AUCs for the first, second, and
third year of OS prognostic models were 0.746, 0.728, and 0.764,
respectively (Figure 6C). Consistently, for the GSE41271 dataset,
K–M survival curves indicated that the low-risk group also had
higher OS (p = 0.04) (Figure 6B). ROC curves based on the risk
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TABLE 2 | Multivariate Cox analysis of clinical information and risk group.

Variables OS PFS

HR (95% CI) p HR (95% CI) p

Age 0.390 0.331

<65 1 1

≥65 1.28 (0.73–2.26) 1.30 (0.77–2.19)

Gender 0.946 0.355

Female 1 1

Male 1.02 (0.58–1.80) 1.28 (0.76–2.17)

History of smoking 0.092 0.122

No 1 1

Yes 2.50 (0.86–7.28) 1.98 (0.83–4.70)

Tumor laterality 0.719 0.546

Left 1 1

Right 0.90 (0.49–1.64) 1.19 (0.68–2.09)

Metastasis 0.205 0.506

M0 1 1

M1 1.59 (0.78–3.27) 1.25 (0.65–2.39)

Lymph node status 0.082 0.100

N0 1 1

N1–N3 2.48 (0.89–6.87) 2.11 (0.87–5.14)

Pathological T stage 0.360 0.895

T1–T2 1 1

T3–T4 1.30 (0.74–2.28) 1.04 (0.61–1.76)

Risk group <0.001 <0.001

Low 1 1

High 6.42 (3.32–12.40) 4.74 (2.71–8.28)

score model showed that the AUCs for the first, second, and
third year of OS prognostic models were 0.630, 0.653, and 0.623,
respectively (Figure 6D).

Estimating the Composition of Immune
Cells
We used CIBERSORT to estimate the immune cell composition
of 103 samples and to quantify the relative levels of different
cell types in the mixed cell population (Figure 7A). In patients
with advanced LUAD, the expression level of macrophage M2
was significantly higher than that of macrophage M1 (p < 0.001).
As shown in Figure 7B, we compared different cell types of
patients in the low-risk group with those in the high-risk group.
These results indicated that the expression levels of macrophages
M2 and regulatory T cells (Tregs) in the high-risk group were
significantly higher than those in the low-risk group (p = 0.041
and p = 0.022, respectively).

DISCUSSION

Early symptoms of LUAD are relatively insidious, without typical
symptoms. As a result, most LUAD patients are at an advanced
stage at the time of diagnosis, losing the best chance of surgical
resection and affecting the treatment effect and quality of life
of patients (Shapira, 2018). Fortunately, the treatment of LUAD

continues to develop, from the original surgery, radiotherapy,
chemotherapy, and targeted therapy to the current tumor
immunotherapy, and the continuous innovation of treatment
methods provides new treatment options for patients with
advanced LUAD (Hanna et al., 2017). Previous studies have
shown that TME plays a vital role in malignant progression,
immune escape, and therapeutic resistance (Lambrechts et al.,
2018). Therefore, it is important to study the TME of advanced
LUAD in this study to determine biomarkers that can predict
survival outcomes of patients.

In order to study the TME of advanced LUAD, we first
calculated the immune score, stromal score, and estimate score
of each advanced LUAD sample extracted from the TCGA
database by applying an ESTIMATE algorithm. These patients
were then divided into high/low immune score groups and
high/low stromal score groups, and 453 cross-sectional DEGs
were identified.

The GO and KEGG analyses of DEGs showed that DEGs
mainly participated in TME, such as immune response,
defense response, response to wounding, inflammatory response,
and positive regulation of immune system process. These
processes may inhibit tumor progression and metastasis, thereby
improving the prognosis. We also found that these DEGs have a
strong correlation with the immune response and tumor immune
microenvironment.

In addition, we applied univariate Cox, LASSO, and
multivariate Cox regression model to construct a gene signature
based on seven DEGs that were screened from 453 cross-
sectional DEGs. According to this gene signature, OS and PFS
in the high-risk group were significantly worse than those in
the low-risk group. Based on the LASSO model, Ma et al.
(2020) established a prognostic model for patients with stage
I–IV LUAD (AUC = 0.648). Based on the multivariate Cox
model, our prognostic model for patients with advanced LUAD
had more powerful predictive ability (The AUCs of the first,
second, and third year of OS prognostic models were 0.783,
0.806, and 0.843, respectively). Therefore, survival outcomes in
advanced LUAD patients could be well predicted by this seven-
gene signature.

Among this seven-gene signature, we found that high
expression levels of LOXL2 and SPP1 were associated with poor
survival outcomes. In contrast, the higher the expression levels
of AFAP1L2, CAMK1D, PIK3CG, PLEKHG1, and RARRES2,
the better the survival outcomes. LOXL2 can promote the
survival and drug resistance of tumor cells, regulate cell adhesion,
movement and invasion, and reshape the TME (Barker et al.,
2012). Upregulation of LOXL2 has been shown to promote lung
cancer invasion and metastasis (Peng et al., 2017). Peinado et al.
(2008) also showed that high LOXL2 expression was associated
with reduced survival of patients with NSCLC. SPP1, also known
as OPN, is a pleiotropic chemokine involved in the induction
of tumor metastasis (Shi and Wang, 2017). In various types of
cancer, elevated serum SPP1 levels are frequently detected in
patients with metastatic cancer (Chiou et al., 2019). Advanced or
metastatic LUAD patients with lower SPP1 levels had significantly
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FIGURE 6 | Validation of the risk stratification model. (A) K–M curves for OS of high- and low-risk groups in the GSE81089 dataset. (B) K–M curves for OS of high-
and low-risk groups in the GSE41271 dataset. (C) ROC curves for OS based on the seven-gene signature in the GSE81089 dataset. (D) ROC curves for OS based
on the seven-gene signature in the GSE41271 dataset.

superior OS and PFS compared with patients with higher levels
(Mack et al., 2008).

Actin filament-associated protein 1-Like 2 (AFAP1L2 also
known as XB130) is a novel multifunctional adapter protein
(Cho et al., 2019). AFAP1L2 mediates the innate immune
response and inhibits tumor lung cancer cell proliferation and
metastasis (Wang et al., 2020). CAMK1D, an inhibitory kinase, is
a member of the calcium/calmodulin-dependent protein kinase 1
family. CAMK1D overexpression impairs tumor neoangiogenesis
in vivo, thus achieving tumor inhibition (Dimitrova et al., 2016).
PIK3CG is deemed to be a tumor suppressor gene (Kratz et al.,
2002). Immunohistochemistry revealed a decreased PIK3CG
expression in 85% of colorectal cancers, which was associated

with tumor invasiveness and metastasis (Semba et al., 2002).
RARRES2 is also known as chemerin (Shin et al., 2018). For
LUAD, Yi et al. (Liu-Chittenden et al., 2017) found that the
expression level of RARRES2 was positively correlated with
NK cells in tumor invasion. Previous studies have also shown
that higher RARRES2 expression was associated with positive
prognosis in lung cancer patients (Zhao et al., 2011; Cai et al.,
2016). PLEKHG1 belongs to a family of Rho-GEFs. Matthew et al.
(Traylor et al., 2019) found that genetic variation in PLEKHG1
was associated with white matter hyperintensities and ischemic
stroke. However, the relationship between PLEKHG1 and LUAD
has not been reported, and PLEKHG1 may be a new therapeutic
target for LUAD.
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FIGURE 7 | Estimating the composition of immune cells (A) Relative proportion of 22 immune cell infiltration in high- and low-risk patients. (B) Differences of immune
infiltration between high- and low-risk groups.

Currently, immunotherapy for advanced LUAD mainly uses
checkpoint inhibitors, such as PD-1/PD-L1 inhibitors and CTLA-
4 inhibitors, to activate the patient’s own immune system to
kill tumor cells. According to the different phenotypes and
activation states of macrophages, they are classified into two
polarized types: classically activated macrophages (macrophages
M1) and alternatively activated macrophages (macrophages
M2) (Martinez and Gordon, 2014). The macrophages M2
exhibit immunosuppression, which can promote tumorigenesis,
angiogenesis, and metastasis (Noy and Pollard, 2014), and
macrophages M1 play a key role in the anti-tumor immune
effect (Mantovani et al., 2017). Our results showed that the
proportion of macrophages M2 in advanced LUAD patients was

significantly higher than that of macrophages M1. Although
the ratio of macrophage M1/M2 in the high-risk group was
lower than that in the low-risk group, it was not found
to be statistically significant in our study, possibly due to
the limitation of sample size. For the ratio of macrophage
M1/M2, our study can be used as a hint, and further large
sample data may be needed to verify this. These may indicate
that the late stage of LUAD is related to the differentiation
of macrophages M1 into macrophages M2. Interestingly, we
also found that for advanced LUAD patients, the expression
levels of Tregs and macrophages M2 in the high-risk group
were significantly higher than those in the low-risk group.
Tregs cells can attenuate the anti-tumor effects of CD4 T,
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CD8 T, and NK cells (Frydrychowicz et al., 2017). Therefore,
combination immunotherapy for inducing macrophages M2 to
polarize macrophages M1 and regulating the function of Treg
immunosuppressive cells may provide clues for the precise
immune treatment of advanced LUAD patients and improving
the effect of tumor immunotherapy.

However, this study also had certain limitations. First,
this study only conducted bioinformatics research on public
databases. Next, we should verify the results of this study
through clinical patients in the prospective design. Second, our
study provided evidence that seven TME-related genes were
significantly related to the prognosis of advanced LUAD patients,
but they were analyzed only through data mining merely. The
biological function and mechanism of these genes depend on
further experimental studies to elucidate.

CONCLUSION

In summary, our study established and validated a seven-gene
signature associated with TME, which might serve as a prognosis
stratification tool to provide a theoretical basis for predicting
survival outcomes of advanced LUAD patients. In addition,
macrophages M2 polarization may lead to worse prognosis in
patients with advanced LUAD.
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