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Introduction
Many stroke patients still have long-term functional deficits, 
especially in motor function[1-4]. There are many investi-
gators who have attempted to explore the mechanism of 
functional recovery after stroke[5-7], yet until now there have 
been no breakthroughs in this area[8]. In this study, we ask 
the question: are there changes in the connectivity of motor 
areas following stroke, and what kinds of changes happen?

In the past two decades, functional magnetic resonance 
imaging (fMRI), as one of the most recently developed 
forms of neuroimaging, has been used as a reliable method 
of clinical diagnosis and assessment for stroke[9-11]. Owing to 
the relatively low invasiveness and high spatial resolution of 
fMRI, scientists have started to use this method of neuroim-
aging to focus on cerebral connectivity[12-14]. 

A growing number of studies have tried to use connec-
tivity analysis to understand the changes in brain networks 
between stroke patients and healthy controls as well as 
the mechanism of neural plasticity after stroke[15-17]. Using 

dynamic causal models, Mintzopoulos et al.[18] illustrated 
that stroke patients showed increased coupling from the 
SMA to M1 and the SMA to the cerebellum. The intrinsic 
neural coupling between M1 and the cerebellum has also 
been found to decrease. The results suggest that alterations 
in brain connectivity between motor areas could compen-
sate for the abnormal function of M1 in chronic stroke             
patients[18]. 

With graph-theoretical approaches to the fMRI data of 
stroke patients, Wang et al.[19] explored functional changes 
in and the reorganization of the brain network after stroke. 
The study illustrated that the brain network may evolve to 
a random mode during the process of rehabilitation after 
stroke[19]. Grefkes and Gereon[20] pointed out that connec-
tivity analysis could be a useful way to develop new hypoth-
esis-driven treatment methods to promote motor function 
recovery for stroke patients[20]. Westlake and Nagarajan[21] 
also found that cerebral network modeling is a powerful tool 
to explore cerebral reorganization and to predict the prog-
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nosis of stroke.
Previous studies on brain connectivity for stroke focused 

on functional connectivity and effective connectivity among 
motor areas[15, 18]. Functional connectivity is defined as the 
correlation between spatially remote neurophysiological 
events, and can be used to study the relationship among in-
dividual voxels or regions with fMRI activation images[22]. 

Effective connectivity can be defined as the influence 
that one neural system exerts over another. The various ap-
proaches of effective connectivity, such as dynamic causal 
modeling, accommodate the nonlinear and dynamic perfor-
mance of the interactions of neural units[23], and can describe 
the task-dependent influence that the activation of one area 
exerts over another to infer the connectivity between selected 
areas within a brain network[23-24]. However, these methods 
always require a priori knowledge about neurophysiology 
and the experimental paradigm, or given assumptions about 
the specific processing of fMRI data. 

Can we use a data-driven approach to study the connec-
tivity between brain areas? Independent component analysis 
is a useful method of studying functional connectivity with 
little reliance on previous knowledge[25-27]. It can decompose 
fMRI data into time courses of spatially independent com-
ponents to distinguish task-related or non-task-related sig-
nal components[28-31]. A significant advantage of independent 
component analysis is that it is a model-free and data-driven 
approach. Thus, independent component analysis is a good 
selection for the study of brain network connectivity when 
we lack a priori knowledge to use other techniques.  

McKeown et al.[25] showed that independent component 
analysis is an useful way to decompose fMRI datasets into 
mutually independent components of the space, from 
both the experimental fMRI (artificially constructed fMRI 
datasets) datasets and the real datasets (actually collected 
fMRI datasets)[25]. Many studies have used independent 
component analysis to decompose such datasets and pro-
duce meaningful results. For example, Demirci et al.[12] used 
independent component analysis to pretreat the fMRI data-
sets, after which a Granger causality model was established 
among the independent component analysis components. 
Their results suggested that there was a significant difference 
in the models of healthy controls and patients with schizo-
phrenia. These results have important theoretical and clinical 
significance for the diagnosis and treatment of schizophre-
nia[12]. Other studies have also used independent component 
analysis to investigate fMRI datasets, and have achieved good 
results[31].

Functional network connectivity, into which independent 
component analysis is integrated, has been regarded as a 
strong tool to study the functional interactions among se-
lected independent components that represent different acti-
vated regions without an a priori model. It can also describe 
the constrained maximal time-lagged correlation for every 
pair of component combinations. Therefore, functional 
network connectivity approaches have been applied in both 
the study of brain network changes in schizophrenia[26] and 
the temporal sequence of the activated hemispheric network 
during semantic processing[32]. Using this method, Jafri et 

al.[26] reported that there was more functional connectivity 
and a longer lag time between the independent component 
analysis components in patients with schizophrenia than in 
healthy controls. 

Assaf et al.[32] used a similar method to study functional 
network connectivity among brain areas in the left and right 
hemispheres during the processing of semantic memory. The 
results indicated an early activation in the right hemisphere 
that was closely followed by an area of activation in the left 
hemisphere. However, there is as yet no research that uses 
functional network connectivity to investigate possible alter-
ations in the brain network after stroke. A major question is 
whether a new theory of neurological rehabilitation can be 
discovered by exploring the brains of stroke patients using 
functional network connectivity.

In this study, acute stroke patients and healthy controls 
were recruited to take part in blood oxygenation level de-
pendent (BOLD) fMRI experiments while performing alter-
nating unilateral finger-to-thumb opposition movements. 
Group independent component analysis was used to obtain 
spatially independent components of brain activation with 
the time courses of decomposed components[25, 27]. Then, to 
study brain connectivity changes after stroke, functional net-
work connectivity was constructed from the selected com-
ponents. 

Based on the previous study in stroke patients versus 
healthy controls, it has been hypothesized that the function-
al network connectivity of stroke patients is more complex 
than that of healthy controls; moreover, we assumed that 
functional compensation could be achieved through the 
other neural circuits in the stroke patients. The purpose of 
this study was to explore the changes in brain network con-
nectivity after stroke. 

Results
Quantitative analysis of participants
The fMRI datasets of eight right-handed patients with acute 
stroke and eight healthy controls were collected in this study. 
The independent component analysis method was used to 
decompose the datasets to independent components after 
preprocessing each dataset. 

In the preprocessing of fMRI datasets, two patients and 
two healthy controls were excluded for exceeding the head 
movement parameters. Therefore, in the final analysis, six 
stroke patients and six healthy controls were used. 

Baseline data analysis of subjects 
There were six stroke patients, five males and one female, 
with a mean age of 41.5 (range 17–65) years. Detailed clini-
cal and demographic data for all patients are shown in Table 
1. There were six healthy controls, four males and two fe-
males, with a mean age of 53 (range 40–58) years. 

There were no significant differences in age, gender, and 
years of education between stroke patients and healthy con-
trols (Table 2). 

Selection of independent components
To obtain the connectivity differences between stroke pa-
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tients and healthy controls, six independent components 
highly correlated to the experimental paradigm were chosen. 
The components chosen (A–F) are shown in Figure 1. The 
Brodmann areas (BA)[33] and MNI coordinates correspond-
ing to the activated regions are also shown in Table 3. The 
temporal multiple regression correlation between each se-
lected component and the experimental paradigm was com-
puted by temporal sorting analysis as follows. Component A: 
R = 0.22; component B: R = 0.22; component C: R = 0.215; 
component D: R = 0.200; component E: R = 0.186; compo-
nent F: R = 0.185.

Establishment of the functional network connectivity 
model 
Functional network connectivity for healthy controls and 
stroke patients is shown in Figure 2 and Figure 3. The links 
indicate that there was a significant correlation between two 
different components (P < 0.05). From the figures, there 
were four links in healthy controls, and 11 links in stroke 
patients. The arrow direction describes the relationship of 
the lag between the two linked components. For example, A→B 
means that component A preceded component B according to 
the group lag average. Through graphical analysis, we found 

Figure 1   Six independent components highly correlated to the experimental paradigm were chosen.
A–F represent the selection components obtained by the group independent component analysis, and the regions comprising each component 
are shown in Table 3. Component A mainly includes frontal lobe, medial frontal gyrus, and superior frontal gyrus. Component B includes fron-
tal lobe and temporal lobe. Component C includes paracentral lobule, culmen, and cerebellum anterior lobe. Component D includes superior 
frontal gyrus, occipital lobe and inferior frontal gyrus. Component E includes the covarying regions in limbic lobe and anterior cingulate cortex. 
Component F includes parietal lobe and precuneus. The color illustrated the activation level. In this study, the components, which were highly 
correlated to the paradigm of experiments, took priority over other components. Because the purpose of this study was related to motor function, 
components that had no apparent relationship to motor execution were excluded.

Table 1  Clinical and demographic data of stroke patients

Patient number Age (year) Gender Year of education Affected hand Myodynamia (grade) Localization of infarct

1 35 Male 12 Right 4 Left basal ganglia

2 17 Male 9 Right 4 Left basal ganglia

3 65 Male 9 Right 2 Left thalamus

4 60 Female 9 Right 3 Left paraventricular corona radiata

5 31 Male 12 Right 4 Left thalamus and left corpus callosum

6 41 Male 9 Right 3 Left basal ganglia

A B C

D E F
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significant correlations for D→→E and C→→F for both healthy 
controls and stroke patients. For healthy controls only, we 
found connectivity for C→→D and E→→C, while we found con-
nectivity in stroke patients only for D→→B, B→→C, E→→A, A→→F, 
F→→D, A→→C, B→→A, F→→B and B→→E.  

From the results, we found compensatory connection loop 
in the functional network of stroke patients. For example, 
we found that the correlations C→→D and E→→C only existed in 
healthy controls. There were no direct connections in stroke 
patients between components C and D, or components E 
and C. 

However, there was an indirect connection between com-
ponents C and D in stroke patients through component F 
with the path: C→→F→→D. There was also an indirect connec-
tion in stroke patients between components E and C through 
component A with the path: E→→A→→C.

Discussion
In this paper, functional network connectivity was used to 
study functional connectivity during rehabilitation follow-
ing stroke and was used to explore the differences between 
stroke patients and healthy controls.

Previous studies have shown that independent compo-
nent analysis is one of the most effective methods for fMRI 
dataset analysis[29, 34-35]. Independent component analysis and 
functional network connectivity can be used to distinguish 
the difference between patients with schizophrenia and 
controls[26], and can also be used to study the temporal se-
quence of hemispheric network activation during semantic 
processing[32]. We studied changes in the functional network 
connectivity of stroke patients during movements using 
independent component analysis and the functional net-
work connectivity method. Our results illustrated that the 
functional network connectivity of stroke patients was more 
complex than that of healthy controls. 

In addition, a compensatory connection loop existed in 
the functional network of stroke patients. These results illus-
trate that the changes in functional network connectivity can 
be explored by the dual methods of independent component 
analysis and functional network connectivity.

The independent component analysis method is a da-
ta-driven method for preprocessing fMRI datasets. Many 
fMRI datasets have been decomposed in this way in a large 
number of recent studies. Independent component analysis 
can decompose the fMRI datasets into mutually independent 
components in the spatial domain, and a single component 
of time synchronization. This method has been used in dif-
ferent studies and has obtained good results[30-31]. In this study, 
the fMRI datasets of stroke patients and healthy controls 
were first preprocessed using the independent component

Table 3  The details of activated regions for each component

Region Brodmann area MNI coordinate (X, Y, Z)

Component A

  Frontal lobe 9, 8, 6, 10, 13 42, 32, 38

  Middle temporal gyrus 39 –40, –68, 22

  Parietal lobe 40, 39 40, –56, 40

  Precuneus 31, 7 2, –68, 28

  Cingulate gyrus 23 4, –20, 28

  Parietal lobe 40 –50, –48, 34

  Frontal_Mid_L 9, 8 –36, 30, 40

  Cingulate gyrus 31 2, –30, 40

  Paracentral gobule 4, 5 0, –40, 64

  Medial frontal gyrus 6 –2, –8, 74

Component B

  Frontal lobe 46, 9 –40, 12, 26

  Inferior parietal lobule 40, 7 30, –60, 42

  Temporal lobe 2, 39, 31, 4 45, –60, 28

  Middle frontal gyrus 6, 8 34, 16, 52

  Superior frontal gyrus 6, 8 0, 18, 60

Component C

  Culmen 6, –38, –26

  Cerebellum anterior lobe 14, –36, –16

  Limbic lobe 23 0, –60, 12

  Insula 13, 41 44, –26, 16

  Precuneus 31, 7, 18 –2, –76, 30

  Paracentral lobule 6, 5, 7, 4, 3, 31, 40 0, –44, 60

  Superior frontal gyrus 8, 6 2, 26, 58

Component D

  Cerebellum anterior lobe –6, –46, –18

  Occipital lobe 19, 18 –26, –70, –18

  Temporal lobe 18, 13 –48, –52, 4

  Sub-lobar 8, 4, 7 2, –14, 10

  Insula 13, 40 56, –34, 18

  Cingulate gyrus 24 0, 8, 38

  Precuneus 7 –4, –58, 46

  Frontal lobe 6, 8, 4, 5, 3 0, –14, 74

Component E

  Declive 19, 18 –28, –70, –18

  Culmen –14, –32, –16

  Frontal lobe 32, 9, 10, 24, 46, 
13, 33, 47, 45

–36, 42, 16

  Occipital lobe 18, 17 –16, –84, 12

  Middle temporal gyrus 39, 22 –40, –70, 14

  Parietal obe 6, 4, 3, 9, 13, 40, 43 –58, –18, 22

  Superior frontal gyrus 6 –20, 12, 64

  Paracentral lobule 4, 5 –4, –40, 64

Component F

  Parahippocampa gyrus 19 –30, –48, –6

  Corpus Callosum 0, –46, 8

  Middle temporal gyrus 39, 19, 22 44, –62, 16

  Parietal lobe 7, 31, 5, 4 0, –54, 48

  Inferior frontal gyrus 9, 6 44, 4, 32

  Superior frontal gyrus 6 –18, 12, 64

Table 2  Baseline data of stroke patients and healthy controls

Item Stroke patients Healthy controls

Age (year) 41.5 (17–65) 53(40–58)

Sex (male/female) 5/1 4/2

Year of education 10.0 (9–12) 11.2 (27–30)

There were no significant differences in age, gender and years of 
education between stroke patients and healthy controls (all P > 0.05).

Component A mainly includes frontal lobe, medial frontal gyrus, and 
superior frontal gyrus. Component B includes frontal lobe and temporal 
lobe. Component C includes paracentral lobule, culmen, and cerebellum 
anterior lobe. Component D includes superior frontal gyrus, occipital 
lobe and inferior frontal gyrus. Component E includes the covarying 
regions in limbic lobe and anterior cingulate. Component F includes 
parietal lobe and precuneus.
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analysis method. 
In this study, the functional regions involved in com-

ponent A include the supplementary motor cortex and 
premotor cortex. These regions have been shown to play a 
crucial role in motor control[22, 36-37]. Component B mainly 
represents primary somatosensory cortex[38]. These regions 
of component C are generally associated with the recogni-
tion of human beings[39]. They are also considered to have a 
relationship with the motor cortex. Component D may be 
related to sensory systems[40].  

Component E has been shown to be involved in directing 
attention in space both when an individual makes move-
ments and while imaging or preparing the movements[41]. 
From the selected components, we can find that many of the 
areas of movement were found by the independent compo-
nent analysis method, although we did not obey the previous 
seed-voxel method. The results show the feasibility of select-
ing components with this method, and provide a theoretical 
basis for future research.  

Previous studies on stroke have demonstrated that cortical 
activation is increased in stroke patients in comparison with 
healthy controls in the contralesional primary sensorimo-
tor cortex during the performance of movement[42]. It also 
has been suggested that the disorganization of the motor 
network after stroke is increased, notably including more bi-
lateral involvement of BA4p[43]. This result indicates that the 
neurovascular coupling may be affected by infarct lesions in 
patients[44-46]. 

Wang et al.[19] found from analysis of the whole brain 
network that the connectivity of patients was much more 
complex than that of healthy controls. The result was consis-
tent with our hypothesis. The same results were also found 
in a study by Jafri et al.[26]. Thus, the optimal structure of the 
brain may change during disease, which is also consistent 
with a previous study of brain injury[47]. 

The network connections in the healthy controls were 
simple and of good group consistency, which may imply a 
simple but efficient network. For stroke patients, we could 
interpret their complex connectivity as evidence that plenty 
of new connections were produced to compensate for the 
damaged or injured connections and nerves[48-49]. Although 
the network connections in stroke patients may be less stable 
and efficient than those in controls, this solution evolved af-
ter the stroke and does work[50-51]. 

Previous studies have suggested that the functional net-
works of patients with brain disease were more complex 
than those of healthy controls[52] and our study also demon-
strated this fact, which could help us to comprehend the 
mechanism of neurological rehabilitation after stroke. These 
results have very important theoretical and clinical signifi-
cance for stroke. 

The analysis of functional network connectivity could also 
be used to obtain the functional connectivity of various oth-
er brain regions and the temporal relationships among the 
identified components[26]. Theoretically, the time lag between 
the two components could be due to temporal differences 

Figure 2   Functional network connectivity model for the healthy 
controls.
Components A–F represent the independent component analysis com-
ponents that were selected for establishing the functional network (the 
regions comprising each component are shown in Table 3). The links 
indicate that there was a correlation between the two components, and 
the direction of the arrow describes the lag relationship between the 
two linked components. For example, C→F means that component C 
precedes component F according to the group lag average.

Figure 3   Functional network connectivity model for the stroke 
patients.
Components A–F represent the independent component analysis com-
ponents that were selected for establishing the functional network (the 
regions comprising each component are shown in Table 3). The links 
indicate that there was a correlation between the two components, and 
the direction of the arrow describeds the lag relationship between the 
two linked components. For example, C→F means that component C 
preceded component F according to the group lag average.

A
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in blood supply to different brain regions[32, 53-54]. Results 
from this study showed that the significant correlations D→E 
and C→F existed in both healthy controls and stroke patients, 
which suggests that these connections, including correlations 
and temporal relationships, existed after stroke in patients, 
and still worked during performance of movements. 

From our results, we also found some connections which 
were found in healthy controls disappeared in the stroke 
patients, while these components can be connected through 
other components. This shows that some cerebral regions 
play an important role as a bridge to connect damaged con-
nections, such as component F or component D. Thus, it 
suggests that although some connections were damaged after 
stroke, indirect connections were produced and functional 
compensation may be achieved through such new indirect 
connections or neural circuits[55-56].  

Generally, the studies illustrated that the human brain has 
a strong robustness[57], and that the function of the injured 
brain regions could be compensated for by their peripheral 
regions or nerves that have similar functions. This may be 
due to the long-term evolution of the brain. In this study, a 
loop existed in the functional network connectivity of stroke 
patients although small components were selected. This con-
clusion further demonstrates the robustness of the brain, and 
confirms the reliability of the previous studies. At the same 
time, it illustrates that functional compensation plays a very 
important role in functional rehabilitation for stroke patients.  

It should be mentioned here that there are several limita-
tions to this study. The sample set is not large enough, and 
the behavioral data have not been included in the network 
connectivity analysis. In future research, it may be meaning-
ful to combine the behavioral data and functional network 
connectivity analysis to explore the possible correlations be-
tween them after stroke.  

In conclusion, differences in functional network connectivi-
ty between stroke patients and healthy controls were explored 
in this paper. Six spatially independent components highly 
correlated to the experimental paradigm were extracted using 
independent component analysis to find the nodes of the net-
work. The results of network modeling illustrated that func-
tional network connectivity in stroke patients was much more 
complex than that in healthy controls. This result suggests 
that many new connections are produced to compensate for 
the damaged connections and nerves after stroke. 

Furthermore, it also has been found that some damaged 
connections may be compensated for by new indirect con-
nections or circuits produced after stroke, which implies that 
functional network reorganization plays a very important 
role in the process of rehabilitation after stroke. 
 

Subjects and Methods
Design
A case-control study.

Time and setting
This study was performed at the Laboratory of Nuclear 
Magnetic Resonance, Tongji Hospital, Tongji Medical Col-
lege, Huazhong University of Science and Technology, China 

between April 2010 and November 2010. 

Subjects
Each subject was recognized as having had a stroke using a 
T1 image. The patients were recruited by the Department 
of Rehabilitation, Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, China. All 
participants were stroke patients who received treatment in 
Tongji Hospital and came from Hubei Province, China. 

All stroke patients fulfilled the following inclusion crite-
ria: (1) first-ever ischemic stroke; (2) within 2 weeks after 
stroke; (3) showing motor deficits with acute unilateral loss 
of hand strength (grade 4 on the Medical Research Council 
(MRC) scale (0–5, the higher the score, the greater the mus-
cle strength, a score of 5 = normal))[58]; (4) good hand motor 
function. 

Exclusion criteria for stroke patients were as follows: (1) 
language or cognitive deficits that would impair cooperation 
in fMRI examination; (2) significant somatosensory (light 
touch or proprioception) deficits in the stroke-affected 
hand; (3) mirror movements; and (4) contraindication to 
magnetic resonance imaging. 

In this study, healthy controls (4 male; age range: 40–58 
years; mean: 53 years) with a similar age and education to 
the patients with stroke (5 male; age range: 17–65 years; 
mean: 41.5 years) were selected. Healthy controls were re-
cruited by the Department of Rehabilitation, Tongji Hospi-
tal, and all of them came from Hubei Province. All healthy 
controls fulfilled the following inclusion criteria: (1) No 
previous history of brain injury; (2) no history of mental 
illness; (3) normal motor function. Exclusion criteria for 
the healthy controls were as follows: (1) contraindication to 
MRI; (2) the subjects could not complete the experiment.

This study was approve by the Ethics Committee of Tongji 
Hospital, Tongji Medical college, Huazhong Unversity of Sci-
ence and Technology, China, all subjects gave their informed 
consent before being submitted to fMRI examination.

The clinical characteristics of the stroke patients are sum-
marized in Table 2. All six patients had a subcortical stroke 
encompassing the left basal ganglia or the left frontal cortex 
(Table 1), and the illustration of the lesion location is shown 
in red in Figure 4. For all stroke patients, the localization of 
infarct was almost the same. 

Methods
Experimental paradigm
All the subjects were instructed to execute alternating unilat-
eral finger-to-thumb opposition movements at a frequency 
of 1 Hz in a block-design fMRI paradigm. 

The task occurred in 20-second blocks of movements 
alternated with 20-second intervals as rest periods: Rest   – 
Movements (Left) – Rest – Movements (Right) – Rest – 
Movements (Left) – Rest – Movements (Right) – Rest – 
Movements (Left) – Rest – Movements (Right) – Rest. It 
lasted for a total of 260 seconds as shown in Figure 5. 

During the fMRI procedure, the subjects kept their eyes 
open, and their head was kept motionless. Prior to scanning, 
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the subjects were instructed and trained until they fully un-
derstood the task and were able to adequately follow the cues 
and instructions.

Parameters of fMRI and data acquisition  
MRI scans were acquired on a 3.0T GE Signaxs scanner 
(Signa HDxt, GE Healthcare, Fairfield, CT, USA) with a cus-
tom-built head coil. A high resolution T1-weighted spoiled 
grass gradient recalled (SPGR) inversion recovery three-di-
mensional MRI sequence was performed for each subject 
with the following parameters: inversion time = 400 ms; 
repetition time = 6.5 ms; echo time = 2.1 ms; flip angle = 15 
degrees; field of view = 25.6 cm; 132 slices in coronal plane; 
matrix = 256 × 256; number of excitations = 1; acquired res-
olution = 1.5 mm × 0.9 mm × 1.1 mm. 

BOLD signal was collected with a T2-weighted gradient 
echo spiral in-out pulse sequence[59] with the following pa-
rameters: repetition time = 2,000 ms; echo time = 30 ms; flip 
angle = 90 degrees; 1 interleave; field of view = 24 cm; 64 × 
64 matrix. A total of 32 axial slices (5.0 mm thickness, 0 mm 
skip), which were parallel to the AC-PC line and covered the 
whole brain, were obtained with a temporal resolution of 2 
seconds. For the whole task, 120 images were obtained for a 
total duration of 4 minutes. Structural and functional scans 
were acquired in the same scan session.

Preprocessing of fMRI data 
The fMRI datasets were preprocessed using SPM8 soft-
ware (www.fil.ion.ucl.ac.uk/spm). First, the dicom dataset 
was converted into *.img/*.hdr document. Then, all image 
volumes were realigned to the mean volume. The subjects 
whose head displacements were more than 2 mm in the X, Y, 
Z direction or whose head rotation exceeded 1° were exclud-
ed (two patients were excluded for this reason and are not 
shown in Table 1).

Using the unified segmentation approach[60], functional 
images were normalized to the MNI template (voxel 3 mm × 
3 mm × 3 mm). In order to decrease spatial noise, volumes 
were smoothed by a 4-mm full-width half maximum Gauss-
ian kernel.

Independent component selection
The procedure of component identification and selection 
described by Jafri et al.[26] was followed in this study. First, 
the preprocessed data of all twelve participants (six stroke 
patients and six healthy controls) were decomposed using 
the group spatial independent component analysis. Then, 
36 independent components were obtained using the GIFT 
toolbox (http://icatb.sourceforge. net/). The rules of com-
ponent selection should include the principles described as 
follows.

Figure 4   Illustration of lesion location in red for each patient.
A–F indicate the six stroke patients in the experiment. The red circled area in the figure is the position of the lesion.

A B C

D E F
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First, only those components highly correlated to gray 
matter would be chosen, as the activation of those compo-
nents always represent significant hemodynamic change[27]. 
Second, different from prior studies in which M1, S1 and 
PMd regions of interest were extracted from the template[2], 
only those components highly correlated to our experimen-
tal paradigm would be chosen. In standard general linear 
model analysis, the canonical hemodynamic response func-
tion obtained from SPM8 software was convolved with the 
experimental paradigm time course to get the BOLD time 
courses. Then, GIFT was used to obtain the association co-
efficients between the time courses of components and our 
experimental paradigm. GIFT is a software package that in-
cludes different independent component analysis methods. 

In this study, the information algorithm was used in the 
preprocessing of the fMRI datasets. The independent com-
ponents whose correlation coefficients were greater than 0.15 
between the activation of independent component and the 
task were chosen.

Establishing the functional network connectivity model
In this study, six spatially independent component analy-
sis components were selected. However, according to their 
temporal properties, there were correlations between them. 
A constrained maximal lagged correlation between every 
pairwise combination of time courses of the independent 
component analysis components selected was computed by 
a functional network connectivity toolbox (http://mialab.
mrn.org/software). 

Theoretically, there should be a maximum of 15 connec-
tions among the six components. The statistical analysis 
was performed using SPSS 13.0 software (SPSS, Chicago, IL, 
USA). The connections between any two components were 
first calculated, and then an independent sample t-test was 
used to test the significance of any connection. If the P value 
was < 0.05, the connection was established. The group aver-
age of the lag was evaluated for two groups (stroke patients 
and healthy controls). For more detail on this method, refer 

to Jafri et al.[26]. 
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