
Sustained stress response after oxidative stress in trabecular
meshwork cells

Guorong Li, Coralia Luna, Paloma B. Liton, Iris Navarro, David L. Epstein, Pedro Gonzalez

Department of Ophthalmology, Duke University, Durham, NC

Purpose: To investigate the mechanisms by which chronic oxidative stress may lead to a sustained stress response similar
to that previously observed in the trabecular meshwork (TM) of glaucoma donors.
Methods: Porcine TM cells were treated with 200 μM H2O2 twice a day for four days and were allowed to recover for
three additional days. After the treatment, TM cells were analyzed for generation of intracellular reactive oxygen species
(iROS), mitochondrial potential, activation of NF-κB, and the expression of inflammatory markers IL-1α, IL-6, IL-8, and
ELAM-1. Potential sources of iROS were evaluated using inhibitors for nitric oxide, nitric oxide synthetase,
cyclooxygenase, xanthine oxidase, NADPH oxidase, mitochondrial ROS, and PKC. The role of NF-κB activation in the
induction of inflammatory markers was evaluated using the inhibitors Lactacystin and BAY11–7082.
Results: Chronic oxidative stress simulated by H2O2 exposure of porcine TM cells resulted in the sustained production
of iROS by the mitochondria. Inhibition of mitochondrial iROS had a significant inhibitory effect on the activation of NF-
κB and the induction of IL-1α, IL-6, IL-8, and ELAM-1 triggered by chronic oxidative stress. Inhibition of NF-κB partially
prevented the induction of IL-1α, IL-8, and ELAM-1, but not IL-6.
Conclusions: Chronic oxidative stress in TM cells induced iROS production in mitochondria. This increase in iROS may
contribute to the pathogenesis of the TM in glaucoma by inducing the expression of inflammatory mediators previously
observed in glaucoma donors as well as the levels of oxidative damage in the tissue.

Glaucoma is a major cause of irreversible blindness,
affecting more than70 million individuals worldwide [1].
Elevated intraocular pressure (IOP) is a major risk factor in
the development of glaucoma [2] and in the progression of
glaucomatous damage [3]. High IOP usually occurs as a result
of an increase in aqueous humor outflow resistance in TM.
The specific mechanisms leading to the failure of the TM to
maintain normal levels of aqueous humor outflow resistance
are not yet understood.

It has been reported that glaucoma is characterized by the
sustained activation of a tissue-specific stress response in the
cells of the TM. Such a stress response includes the sustained
activation of NF-κB and the expression of inflammatory
markers such as interleukin (IL)-1α and vascular endothelial
leukocyte-adhesion molecule (ELAM)-1 [4]. It has been
recently reported that treatment of porcine TM cells with an
acute treatment with H2O2 (1 mM concentration) induces the
expression of ELAM-1 [5], suggesting that oxidative stress
could contribute to the expression of this protein in POAG. A
contributing role for oxidative stress in the morphologic and
physiologic alterations in the aqueous outflow pathway in
aging and glaucoma has been hypothesized for a long time
and is supported by some experimental evidence [6-16].
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Sublethal oxidative damage has been shown to result in
the induction of inflammatory markers in several cell types
[17-19]. Sublethal oxidative damage has also been shown to
lead to a prolonged increase in the endogenous generation of
iROS in several cell types [20-23]. An increase in iROS
generation has the potential to result in sustained activation of
NF-κB, which is likely to induce the expression of
proinflammatory markers. Therefore, we investigated
whether chronic oxidative stress in TM cells can lead to
increased production of iROS and whether, in turn, this would
result in sustained activation of a stress response involving
sustained activation of NF-κB and the expression of
inflammatory markers similar to that observed in POAG. We
also analyzed the potential sources of iROS generation
induced by chronic oxidative stress in porcine TM cells.

METHODS
Porcine trabecular meshwork cell culture: TM tissue from
fresh porcine eyes was digested in 10 mg collagenase/20 mg
BSA (BSA)/5 ml phosphate buffer saline (PBS) solution. The
cells were plated on gelatin coated 10 cm Petri dishes and
maintained at 37 °C in a humidified atmosphere of 5% CO2
in TM culture medium. The TM culture medium was low
glucose Dulbecco's Modified Eagle Medium (DMEM) with
L-glutamine and 110 mg/l sodium pyruvate, supplemented
with 10% fetal bovine serum (FBS), 100 μM nonessential
amino acids, 100 units/ml penicillin, and 100 μg/ml
streptomycin sulfate. All reagents were obtained from
Invitrogen Corporation (Carlsbad, CA).
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Chemicals: Lactacystin (Lact, L6785), BAY11–7082 (BAY,
B5556), Dibenziodolium chloride (DPI, D2926), Oxypurinol
(Oxy, O4502), Indomethacin (Indo, I7378), /N/ω-Nitro-L-
arginine methyl ester hydrochloride (L-NAME, N5751),
Apocynin (Apo, A10809), Aminoguanidine bicarbonate salt
(AMG, A7259), Carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (Fccp, C2920), Chelerythrine Chloride
(Chele, C2932), and 30% Hydrogen peroxide solution
(H2O2, 31642) were commercially obtained from Sigma-
Aldrich (St. Louis, MO). 5,5′,6,6'-tetrachloro-1, 1',3,3′-
tetracthylbenzimidazolylcarbocyanine iodide (JC-1,
M34152) and 2',7'-dichlorodihydrofluorescein diacetate
(H2DCFDA, D-399) were purchased from Molecular Probes
(Carlsbad, CA).
H2O2 treatment: Porcine TM cells (passage 4–5) were treated
with H2O2 200 \mu M in DMEM containing 10% FBS, twice
a day, for four days. To differentiate from acute stress
responses to oxidative challenge, TM cells were allowed a
recovery time of three days after the H2O2 treatment. The
medium was changed with fresh DMEM containing 10% FBS
on the first recovery day. For iROS assay, inhibitors were
pretreated 1 h in a serum free condition followed by
H2DCFDA incubation. For realtime Q-PCR and NF-κB
activity assay, inhibitors were used 24 h before RNA and
protein extractions. For IL-6 and IL-8 ELISA assay,
supernatant was collected at the end of the recovery day.
Preparation of cytosolic and nuclear extracts: Cells were
trypsinized and washed twice with cold PBS and lysed with
200 μl cytosolic lysis buffer (10 mM Tris-HCl [pH7.4],
10 mM NaCl, 3 mM MgCl2, 0.5% NP-40, 1 mM dTT, and
freshly added proteinase inhibitor cocktail), incubated on ice
for 15 min and vortexed 10 s. Cytosolic proteins were
collected after centrifugation at 1,500× g for 5 min at 4 °C.
The pellet was washed once with wash buffer (20 mM Hepes,
pH 7.9, 1.5 mM MgCl2, and 0.2 mM EDTA), resuspended
with nuclear lysis buffer (20 mM Hepes, pH 7.9, 25%
glycerol, 0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA with
freshly added protease inhibitor cocktail), and shaken in an
orbital shaker for 30 min at 4 °C. Nuclear proteins were
collected after centrifugation at 10,000× g for 10 min at 4 °C.
Protein concentration was measured using the Micro BCA

Protein assay kit (23235; Pierce, Rockford, IL) following the
instruction.
NoShift II NF-κB assay: Nuclear NF-κB activities were
determined with the NoShift II Transcription Factor (71680–
3; Novagen, Inc., Madison, WI) following the manufacturer's
instructions. Briefly, 3 μg of nuclear protein was mixed with
Binding solution and incubated for 20 min at RT. Following
additional incubation with Binding Reagent for 20 min at RT,
digestion buffer or Digestion Reagent was added to each
reaction. The reaction mixtures were incubated at 37 °C for
20 min and then transferred to NoShift II Capture Plate for a
45 min hybridization period at RT with vigorous shaking.
After washing four times with Wash Buffer, Detection
Reagent was added to each well and the plate was incubated
30 min at RT with shaking. Following a second set of four
washes, Chemiluminescent Substrate was added to each well
and incubated 30 min at 37 °C. Light intensity was then
measured with a microplate chemiluminometer, and the
results were adjusted for negative control reading and
recorded as relative light units (RLUs).
RNA extraction and real-time quantitative polymerase chain
reaction: Total RNA from porcine TM cells was isolated
using the RNeasy kit (Qiagen Inc., Valencia, CA) following
the manufacturer's protocol. First strand cDNA was
synthesized using oligodT primer and Superscript II reverse
transcriptase (Invitrogen, Carlsbad, CA) according to the
manufacturer's instructions. Real-time Q-PCR was performed
using iQ SYBR Green Supermix (BioRad, Hercules, CA) in
the BioRad iCycler iQ system (BioRad, Hercules, CA). Fold
expression changes were determined using the iCycle iQ
system software. β-Actin served as an internal standard of
mRNA expression. The sequences of the primers used for the
amplifications are indicated in Table 1.
Assay of iROS: The production of iROS was measured by
DCFH oxidation as described previously, with minor
modifications [24]. Briefly, 10 mM H2DCFDA was dissolved
in methanol and was diluted 500 fold in HBSS to give a
20 μM concentration of H2DCFDA. H2O2 treated and control
cells in 96-well plates were treated with inhibitors and their
specific vehicles for 1 h, and then exposed to H2DCFDA for
an additional 1 h. After incubation, the fluorescence was read

TABLE 1. PRIMER SEQUENCES USED FOR REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION ANALYSIS.

Gene Accession
number

Forward primer Reverse primer

IL-1a NM_214029 AAGTGTTGACAGGCCGTATG TACCAGACTTCGCTCCCTCT
ELAM-1 NM_214268 CCCATGGAACACAACCTGTGCATT AGCTTTACACGTTGGCTTCTTGCC
IL-8 AB057440 AAACTGGCTGTTGCCTTCTT ATTTATGCACTGGCATCGGAA
IL-6 NM_214399 GCTTCCAATCTGGGTTCAAT CTAATCTGCACAGCCTCGAC
b-actin AY550069 AAGATCAAGATCATCGCGCCTCCA TGGAATGCAACTAACAGTCCGCCT

        For each gene, the nucleotide sequences of the two specific primers were detailed. The gene accession number used to find both
        primers is indicated. Abbreviations are: IL-1α, interleukin-1 alpha; ELAM-1, vascular endothelial leukocyte-adhesion
        molecule-1; IL-8, interleukin-8; and IL-6, interleukin-6.
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at 485 nm excitation and 530 nm emission on a fluorescence
plate reader.
Measurement of mitochondrial membrane potential (Δψm):
Mitochondrial membrane potential was monitored in cells
loaded with 2 μM of JC-1 dye according to the manufacturer
instructions. JC-1 is a positively charged fluorescent
compound, which is taken up by mitochondria proportionally
to the inner mitochondrial membrane potential. When a
critical concentration is reached, JC-1 monomers (fluorescent
green) form aggregates (fluorescent red). Briefly, cells in six-
well plates treated with or without H2O2 were trypsinized and
pellet by centrifuge. The cells were then washed with PBS
once, loaded with JC-1 in 1 ml of PBS to final concentration
of 2 μM, and incubated at 37 °C, 5% CO2 for 15 min. The cells
were pelleted and washed again with PBS, then resuspended
in 200 μl of PBS. The cells were analyzed on a flow cytometer
with 488 nm excitation using emission filters appropriate for
Alexa Fluor 488 dye and R-phycoerythrin.
Quantification of cytokines by enzyme-linked immunosorbent
assay (ELISA): IL-6 and IL-8 protein levels in cell culture
supernatant were determined using the Quantikine porcine
ELISA kits (P6000 and P8000; R&D Systems, Minneapolis,
MN) according to the manufacturer's instructions. The optical
density was read using a microplate reader setting to 450 nm
with 540 nm correction.
Statistical analysis: The data were presented as the mean ±SD.
For multiple comparisons of groups, ANOVA was used.
Statistical significance between groups was assessed by
paired or unpaired Student's t test, with Bonferroni's
correction. A value of p<0.05 was considered statistically
significant.

RESULTS
Chronic oxidative stress induced the activation of NF-κB and
upregulation of inflammatory markers IL-6, ELAM-1, IL-1α,
and IL-8: As indicated in Methods, TM cells were treated with
H2O2 (200 μM) twice a day for four days and then they were
allowed three days of recovery. After this treatment, TM cells
showed a fourfold increase (p<0.01, compared to control) in
the levels of activation of NF-κB analyzed by NoShift II NF-
κB Assay (Figure 1A). The activation of NF-κB was
accompanied by a significant upregulation of inflammatory
mediators including IL-6, ELAM-1, IL-1α, and IL-8 (Figure
1B,C).

Oxidative stress results in increased production of iROS and
loss of Δψm: As shown in Figure 1D, cells subjected to
oxidative stress showed a significant (p<0.01) increase of 25%
in iROS production measured with H2DCFDA. This increase
in iROS generation was accompanied by a significant
(p<0.01) decrease of 30% in mitochondrial membrane
potential measured by JC-1 (Figure 1D).
Sources of iROS production after oxidative stress: Inhibition
of nitric oxide with L-NAME, nitric oxide synthetase with

AMG, cyclooxygenase (COX) with Indo, and xanthine
oxidase with Oxy, did not have any significant effect on the
induction of iROS (Figure 2A). The NADPH oxidase inhibitor
DPI and the PKC inhibitor Chele exerted some inhibitory
effect on the total iROS in a dose dependent manner (14%,
25%, and 34% for Chele, and 9%, 13%, and 28% for DPI;
p<0.05 and 0.01; Figure 2B,C). The highest effect on iROS
production was obtained by inhibiting mitochondrial ROS
generation with Fccp (45%, 49%, and 51% reduction;
p<0.001; Figure 2D).

Effect of PKC inhibition on the induction of iROS: The PKC
inhibitor, Chele showed some effect on the production of
iROS (Figure 2B). However, Chele did not have any
significant effect on the induction of IL-6, IL-8, IL-1α, and
ELAM-1 (data not shown).
Role of iROS in induction of NF-κB, IL-6, ELAM-1, IL-1α, and
IL-8: Inhibition of iROS production by Fccp had a significant
effect on the reduction of NF-κB activities (43.3%, p<0.01),
as well as on the decrease of IL-6 (49.3%, p<0.01), ELAM-1
(84.2%, p<0.001), IL-1α (67.3%, p<0.01) and IL-8 (98.1%,
p<0.01) after oxidative stress (Figure 3).

Figure 1. Induction of proinflammatory factors by chronic H2O2

treatment. TM cells were treated with H2O2 200 μM twice a day for
four days and then they were allowed three days to recover. A:
Activation of NF-κB measured by NoShift II NF-κB assay. Data
represents the mean values of NF-κB activation in relative light units
(rlu) ±SD of n=3. B: Realtime Q-PCR analysis of the induction of
IL-1α, IL-6, IL-8, and ELAM-1. For each individual sample, the
expression level of each gene was first normalized with that of β-
actin and then the relative differences between groups were
expressed as mean fold changes compared with the controls ±SD of
n=3. C: Protein levels of IL-6 and IL-8 in cell culture media assessed
by ELISA. Data represent means of protein concentration ±SD of
n=6. D: Induction of iROS and decrease of Δψm detected by
H2DCFDA and JC-1. Data showed a percentage of control ±SD (n=5)
in iROS treated with H2O2. This increase in iROS was associated
with a reduction of percentage ±SD in Δψm (n=3). An asterisk means
that p<0.05; a double asterisk means that p<0.01; and three asterisks
mean that p<0.001 (compared to nontreated control).

Molecular Vision 2007; 13:2282-2288 <http://www.molvis.org/molvis/v13/a258> © 2007 Molecular Vision

2284

http://www.molvis.org/molvis/v13/a258


NF-κB activation is involved in the induction of ELAM-1,
IL-1α, and IL-8: The two NF-κB inhibitors tested (Lact
10 μM and BAY 5 μM) significantly decreased the induction
of ELAM-1 (Lact: 36.2%, p<0.05; BAY: 44.4%, p<0.01) and
IL-1α (Lact: 55.9%, p<0.01; BAY: 40%, p<0.05). BAY
significantly reduced IL-8 expression, but Lact did not (Lact:
27.6%, p=0.07; BAY: 88.8%, p<0.01). However, none of the

Figure 2. Sources of iROS in pTM cells induced by H2O2 treatment.
Production of iROS after H2O2 treatment was determined by
H2DCFDA. A:The following inhibitors were added to the cultures 1
h before H2DCFDA incubation: Chele; 5 μM, DPI; 10 μM, Apo; 10
μM, Fccp; 10 μM, L-NAME; 1 mM, AMG; 10 μM, Oxyp; 20 μM,
and Indo; 200 μM. The data represent the mean ±SD (n=3) of iROS
percentage change treated with inhibitors compared to controls
treated with the same vehicles in which the inhibitors were prepared.
Additional experiments were conducted to evaluate the dose
response to Chele (B), DPI (C), and Fccp (D). An asterisk means
p<0.05; a double asterisk means p<0.01; and three asterisks mean
p<0.001 (n=3).

Figure 3. Role of iROS generation in the induction of NF-κB and
proinflammatory mediators. The activation of NF-κB measured by
the NoShift II NF-κB assay and the induction of IL-6, IL-8, IL-1α,
and ELAM-1 measured by real-time Q-PCR, were evaluated in pTM
cells treated with H2O2 in the presence or absence of 5 μM Fccp. The
data show percentage changes in cultures treated with Fccp and
H2O2 compared to those treated with vehicle (ethanol) and H2O2. A
double asterisk means p<0.01; three asterisks mean p<0.001 (n=3).

NF-κB inhibitors had any significant effect on the induction
of IL-6 after oxidative stress (Figure 4).

DISCUSSION
In the present study, we found that chronic H2O2 treatment
resulted in sustained activation of NF-κB and the upregulation
of proinflammatory markers, including ELAM-1, IL-1α, IL-6,
and IL-8. Our data shows that chronic H2O2 treatment resulted
in increased generation of iROS, a key mediator of the
observed activation of NF-κB and the induction of
inflammatory mediators. A similar increase in iROS
production after exogenous H2O2 treatment has been observed
in several cell types [20-22,25] and appears to be a feature of
sublethal damaged and senescent cells [20]. Different
mechanisms have been implicated in the endogenous
generation of ROS after an oxidative stress challenge. These
mechanisms include the activation of NADPH oxidase (NOX)
[21] to produce anion superoxide radical (O2-) [21,25],
intracellular mitochondrial H2O2 generation [22], xanthine
oxidase [26], uncoupled endothelial nitrite oxide synthase
(eNOS) [27], and COX [28].

The observed lack of effect of the inhibitors for xanthine
oxidase with Oxy, eNOS with L-NAME, AMG, and COX
with Indo, suggests that none of these enzymes may contribute
significantly to the increase in iROS production after
oxidative challenge in TM cells.

The induction of iROS was partially inhibited by the
NOX inhibitor DPI. DPI is a large spectrum inhibitor of
electron transporters including not only various NOX
enzymes, but also mitochondrial oxidase and xanthine oxidase
[29]. Therefore, the effects of DPI could potentially be
attributed to inhibitory effects on mitochondrial and xanthine

Figure 4. Role of NF-κB activation in the induction of
proinflammatory mediators. The levels of induction of IL-6, IL-8,
IL-1α, and ELAM-1 three days after H2O2 treatment were evaluated
by realtime Q-PCR in the presence or absence of the NF-κB
inhibitors Lact 10 μM and BAY 5 μM. The data show percentage
changes in cultures treated with NF-κB inhibitors (Lact and BAY)
and H2O2 compared to those treated with vehicle (DMSO) and
H2O2. An asterisk means p<0.05; a double asterisk means p<0.01
(n=3–4).
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oxidase ROS production. However, since the inhibitor of
xanthine oxidase, Oxy, did not have any effect on iROS
generation, it is unlikely that the effect observed with DPI
would result from xanthine oxidase inhibition. Similarly, the
inhibitory effects of DPI on iROS generation can not be
attributed to mitochondrial inhibition since inhibition of ROS
generation occurred in the submicromolar range, while DPI
inhibition of mitochondrial oxidase occurs with an IC50 of
approximately 10 μM DPI [30,31]. In addition, while
inhibition of iROS generation by the mitochondrial inhibitor
Fccp also blocked the activation of NF-κB and upregulation
of proinflammatory markers, treatment with DPI had no
significant effect in any of these variables. In comparison with
DPI, the NOX inhibitor Apo did not have any effect on iROS
induction. This result is not necessarily surprising since Apo
is known to require myeloperoxidase-dependent metabolism
for full activity and therefore does not effectively inhibit NOX
activity in all cell types [32]. Therefore, our data suggests that
H2O2 treatment may lead to some activation of NOX that
should contribute to the total increase in ROS generation, but
is not responsible for the sustained activation of NF-κB and
the expression of inflammatory markers. In contrast, the
mitochondrial inhibitor Fccp, which is a protonophore (H+

ionophore) and uncoupler of oxidative phosphorylation in
mitochondria, was capable of reducing iROS production in a
dose-dependent manner. Treatment with Fccp inhibited the
induction of NF-κB, IL-1α, IL-6, IL-8, and ELAM-1,
suggesting that the production of iROS by the mitochondria
plays a key role in the activation of NF-κB and proinflamatory
markers that result from chronic oxidative stress in TM cells.

The activation of NF-κB appears to mediate the induction
of IL-1α, IL-8, and ELAM-1, but not that of IL-6. Our results
showed that neither of the two NF-κB inhibitors tested had
any effect on IL-6 induction after oxidative stress. Therefore,
endogenous ROS may activate other pathways different from
NF-κB that also contribute to the induction of inflammatory
mediators after oxidative stress including the induction of
IL-6.

PKC has been implicated in the activation of iROS
production by NOX and mitochondria in several cell types
[33-35]. Treatment of TM cells with Chele, a PKC inhibitor,
resulted in partial inhibition of iROS generation with no effect
observed on the induction of inflammatory markers.
Therefore, although activation of PKC might contribute to the
induction of iROS production, it does not appear to be the
exclusive mechanism leading to iROS generation and is not
necessary to activate the induction of inflammatory mediators.
Therefore, alternative mechanisms should be involved in the
activation of iROS generation.

It has been proposed that while short-term activation of
inflammatory mediators such as IL-1α and IL-6 may help to
decrease IOP [36,37], their chronic activation may exert
pathologic affects on the TM and contribute to the progression

of glaucoma [38]. Therefore, the observed induction of iROS
production resulting form oxidative stress may constitute
mechanisms by which oxidative stress could contribute to the
pathogenesis of glaucoma through the sustained activation of
inflammatory mediators.

In addition to the upregulation of proinflammatory
cytokines, the observed induction of iROS after chronic
oxidative stress also has the potential to contribute by itself to
pathophysiological changes of the outflow pathway by
increasing the levels of oxidative damage in the cells.
Consistent with this concept, our data showed a decrease in
mitochondria potential following this chronic H2O2 treatment
(Figure 2). Furthermore, the mitochondria damage and
generation of the secondary ROS was persistent since loss of
mitochondria potential is irreversible by Fccp (data not
shown).

In summary, our results show that chronic oxidative
stress leads to the endogenous production of ROS by the
mitochondria in TM cells, which in turn induces a sustained
stress response characterized by activation of NF-κB and
expression of inflammatory markers. The endogenous
production of ROS by TM cells resulting from oxidative stress
might thus contribute to the pathogenesis of the TM in
glaucoma by inducing the expression of inflammatory
mediators previously observed in the TM of glaucoma donors
and by increasing the levels of oxidative damage in the tissue.
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