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Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic ge-
nus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class 
Epsilonproteobacteria. The species is of interest because it is frequently found in crude oil 
and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, 
sulfide and thiosulfate as electron donors. Members of the species do not utilize sugars, or-
ganic acids or hydrocarbons as carbon and energy sources. This genome sequence represents 
the type strain of the only species in the genus Sulfuricurvum. The genome, which consists of 
a circular chromosome of 2,574,824 bp length and four plasmids of 118,585 bp, 71,513 bp, 
51,014 bp, and 3,421 bp length, respectively, harboring a total of 2,879 protein-coding and 
61 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain YK-1T (= DSM 16994 = ATCC BAA-921 = JCM 
11577) is the type strain of the species 
Sulfuricurvum kujiense, which is the type species of 
the monotypic genus Sulfuricurvum [1,2]. The ge-
nus name was derived from the Latin word 'sulfur' 
and the Latin word 'curvus' meaning 'curved', 
yielding the Neo-Latin word 'Sulfuricurvum', the 
'curved bacterium that utilizes sulfur' [1]. The spe-
cies epithet is derived from the Neo-Latin word 
'kujiense' (referring to Kuji, Iwate Prefecture,  

Japan, where the bacterium was isolated) [1]. Three 
more strains of the species S. kujiense were isolated 
from the same habitat and exhibited identical phys-
iological characteristics with the type stran YK-1T 
[3]. Sulfuricurvum spp. have been detected in dif-
ferent groundwater environments [4,5] and in oil 
fields [6]. Here we present a summary classification 
and a set of features for S. kujiense strain YK-1T, to-
gether with the description of the complete ge-
nomic sequencing and annotation. 
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Classification and features 
A representative genomic 16S rRNA sequence of S. 
kujiense YK-1T was compared using NCBI BLAST 
[7,8] under default settings (e.g., considering only 
the high-scoring segment pairs (HSPs) from the 
best 250 hits) with the most recent release of the 
Greengenes database [9] and the relative frequen-
cies of taxa and keywords, reduced to their stem 
[10], were determined, weighted by BLAST scores. 
The most frequently occurring genus was 
Sulfuricurvum (100.0%) (3 hits in total). Regard-
ing the three hits to sequences from members of 
the species, the average identity within HSPs was 
99.1%, whereas the average coverage by HSPs 
was 92.9%. No hits to sequences with (other) spe-
cies names were found. (Note that the Greengenes 
database uses the INSDC (= EMBL/NCBI/DDBJ) 
annotation, which is not an authoritative source 
for nomenclature or classification.)  

The highest-scoring environmental sequence was 
AB030609 ('groundwater clone 1061') [11], 
which showed an identity of 99.7% and an HSP 
coverage of 96.9%. The most frequently occurring 
keywords within the labels of all environmental 
samples which yielded hits were 'spring' (9.6%), 
'cave' (9.4%), 'microbi' (6.9%), 'sulfid' (5.7%) and 
'mat' (5.2%) (247 hits in total). These keywords 
suggest that habitats for S. kujiense well-matched 
to that supposed in the original description [1] 
and other publications [3,12]. Environmental 
samples which yielded hits of a higher score than 
the highest scoring species were not found. 
Figure 1 shows the phylogenetic neighborhood of 
S. kujiense YK-1T in a 16S rRNA based tree. The 
sequences of the three 16S rRNA gene copies in 
the genome differ from each other by one nucleo-
tide, and differ by up to two nucleotides from the 
previously published 16S rRNA sequence 
(AB053951). 

 

 
Figure 1. Phylogenetic tree highlighting the position of S. kujiense relative to the type strains of the type spe-
cies of the other genera within the class Epsilonproteobacteria. The tree was inferred from 1,364 aligned 
characters [13,14] of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion [15]. Root-
ing was done initially using the midpoint method [16] and then checked for its agreement with the current 
classification (Table 1). The branches are scaled in terms of the expected number of substitutions per site. 
Numbers adjacent to the branches are support values from 1,000 ML bootstrap replicates [17] (left) and from 
1,000 Maximum-Parsimony bootstrap replicates [18] (right) if larger than 60%. Lineages with type strain ge-
nome sequencing projects registered in GOLD [19] are labeled with one asterisk, those also listed as 
'Complete and Published' with two asterisks [20-24]. 
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As one of the families selected for Figure 1, 
Nautiliaceae (comprising the genera Caminibacter, 
Lebetimonas, Nautilia, Nitratifractor, Nitratiruptor 
and Thioreductor) did not appear as monophyletic 
in the tree, we conducted both unconstrained heu-
ristic searches for the best tree under the maxi-
mum likelihood (ML) [15] and maximum parsi-
mony (MP) criteria [18] as well as searches con-
strained for the monophyly of all families (for de-
tails of the data matrix see the figure caption). Our 
own re-implementation of CopyCat [25] in con-
junction with AxPcoords and AxParafit [26] was 
used to determine those leaves (species) whose 
placement significantly deviated between the con-
strained and the unconstrained tree. The best-
known ML tree had a log likelihood of -8,012.83, 
whereas the best trees found under the constraint 
had a log likelihood of -8,014.70. The significantly 
(α = 0.05) distinctly placed species were Hydro-
genimonas thermophila ('Hydrogenimonaceae'), 
Nitratifractor salsuginis and Thioreductor 
micantisoli (Nautiliaceae). However, the con-
strained tree was not significantly worse than the 
globally best one in the Shimodaira-Hasegawa test 
as implemented in RAxML [15] (α = 0.05). The 
best-known MP trees had a score of 1,290, where-
as the best constrained trees found had a score of 
1,295 and were not significantly worse in the 
Kishino-Hasegawa test as implemented in PAUP* 
[16] (α = 0.05). (See, e.g. chapter 21 in [27] for an 
in-depth description of such paired-site tests.) Ac-
cordingly, the current classification of 
Campylobacterales (Campylobacteraceae, 
Helicobacteraceae, 'Hydrogenimonaceae') and 

Nautiliales (Nautiliaceae) is not in significant disa-
greement with the 16S rRNA data. 
The cells of strain YK-1T are curved rods of 0.4 × 
1-2 µm length (Figure 2) [1]. Spiral cells are also 
observed in the exponential growth phase [1]. S. 
kujiense cells stain Gram-negative and non spore-
forming (Table 1). The organism is described as 
motile with one polar flagellum (not visible in Fig-
ure 2). Motility-related genes account for 5.3% of 
total genes in the genome (COG category N). The 
organism is a facultatively anaerobic chemo-
lithoautotroph [1,3]. S. kujiense can grow only un-
der NaCl concentrations below 1% [1,3]. A low-
ion-strength medium (MBM) has been developed 
for growing S. kujiense [1,3]. The organism also 
grows in solid medium containing 1.5% Bacto-
agar [1,3]. The temperature range for growth is 
between 10°C and 35°C, with an optimum at 25°C 
[1,3]. The pH range for growth is 6.0-8.0, with an 
optimum at pH 7.0 [1,3]. S. kujiense grows 
autotrophically on carbon dioxide and bicar-
bonate [1,3]. The organism does not utilize organ-
ic acids such as acetate, lactate, pyruvate, malate, 
succinate, or formate nor does it utilize methanol, 
glucose or glutamate [1,3]. S. kujiense is not able to 
ferment phenol, octane, toluene, benzene, benzo-
ate or ascorbate [1,3]. S. kujiense uses sulfide, ele-
mental sulfur, thiosulfate and hydrogen as elec-
tron donors, and nitrate as well as small amounts 
of molecular oxygen (1% in gas phase) as electron 
acceptors [1,3]. It does not utilize nitrite [1,3]. S. 
kujiense shows oxidase activity, but is catalase-
negative [1,3]. The organism is of ecological inter-
est because of its ability to utilize different sulfur 
species and nitrate [1,3]. 

 

 
Figure 2. Scanning electron micrograph of S. kujiense YK-1T 
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Table 1. Classification and general features of S. kujiense YK-1T according to the MIGS recommendations [28] and 
the NamesforLife database [29]. 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [30] 
Phylum Proteobacteria TAS [31] 
Class Epsilonproteobacteria TAS [32,33] 
Order Campylobacterales TAS [32,34] 
Family Helicobacteraceae TAS [32,35] 
Genus Sulfuricurvum TAS [1] 
Species Sulfuricurvum kujiense TAS [1] 
Type strain YK-1 TAS [1] 

 Gram stain negative TAS [1] 
 Cell shape curved rods TAS [1] 
 Motility motile TAS [1] 
 Sporulation none TAS [1] 
 Temperature range 10°C–35°C TAS [1] 
 Optimum temperature 25°C TAS [1] 
 Salinity below 1% NaCl; best without NaCl TAS [1] 
MIGS-22 Oxygen requirement anaerobic, microaerobic TAS [1] 
 Carbon source carbon dioxide, bicarbonate TAS [1] 
 Energy metabolism chemolithoautotroph TAS [1] 
MIGS-6 Habitat groundwater TAS [3,11] 
MIGS-15 Biotic relationship free-living NAS 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [36] 

 
Isolation 

drain water from an underground crude-oil 
storage cavity 

TAS [3,11] 

MIGS-4 Geographic location Kuji in Iwate, Japan TAS [1] 
MIGS-5 Sample collection time March 1999 TAS [3,11] 
MIGS-4.1 Latitude 40.19 NAS 
MIGS-4.2 Longitude 141.78 NAS 
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude sea level NAS 

Evidence codes - NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, 
but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from 
the Gene Ontology project [37]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [38], and is part 
of the Genomic Encyclopedia of Bacteria and 
Archaea project [39]. The genome project is de-
posited in the Genomes On Line Database [19] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Growth conditions and DNA isolation 
S. kujiense strain YK-1T, DSM 16994, was grown 
anaerobically in DSMZ medium 1020 (MBM medi-
um) [40] at 25°C. DNA was isolated from 0.5-1 g of 
cell paste using MasterPure Gram-positive DNA 
purification kit (Epicentre MGP04100) following 
the standard protocol as recommended by the 
manufacturer with modification st/DL for cell 
lysis as described in Wu et al. 2009 [39]. DNA is 
available through the DNA Bank Network [41]. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, one 
454 PE library (8.7 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 357.4 × Illumina; 51.1 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.3, Velvet, phrap version SPS - 4.24 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID 
CP002355 (chromosome) 
CP002356-9 (plasmids SULKU01-04) 

 Genbank Date of Release October 7, 2011 (chromosome and plasmids) 
 GOLD ID Gc01552 
 NCBI project ID 43399 
 Database: IMG-GEBA 649633097 
MIGS-13 Source material identifier DSM 16994 
 Project relevance Tree of Life, GEBA 

Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 sequencing platforms. All general 
aspects of library construction and sequencing can 
be found at the JGI website [42]. Pyrosequencing 
reads were assembled using the Newbler assem-
bler (Roche). The initial Newbler assembly consist-
ing of 18 contigs in two scaffolds was converted 
into a phrap [43] assembly by making fake reads 
from the consensus, to collect the read pairs in the 
454 paired end library. Illumina GAii sequencing 
data (788.0 Mb) was assembled with Velvet [44] 
and the consensus sequences were shredded into 
1.5 kb overlapped fake reads and assembled to-
gether with the 454 data. The 454 draft assembly 
was based on 124.3 Mb 454 draft data and all of the 
454 paired end data. Newbler parameters are -
consed -a 50 -l 350 -g -m -ml 20. The 
Phred/Phrap/Consed software package [43] was 
used for sequence assembly and quality assess-
ment in the subsequent finishing process. After the 
shotgun stage, reads were assembled with parallel 
phrap (High Performance Software, LLC). Possible 
mis-assemblies were corrected with gapResolution 
[43], Dupfinisher [45], or sequencing cloned bridg-
ing PCR fragments with subcloning. Gaps between 
contigs were closed by editing in Consed, by PCR 
and by Bubble PCR primer walks (J.-F. Chang, un-
published). A total of 85 additional reactions were 
necessary to close gaps and to raise the quality of 
the finished sequence. Illumina reads were also 
used to correct potential base errors and increase 
consensus quality using a software Polisher devel-
oped at JGI [46]. The error rate of the completed 

genome sequence is less than 1 in 100,000. Togeth-
er, the combination of the Illumina and 454 se-
quencing platforms provided 408.5 × coverage of 
the genome. The final assembly contained 368,924 
pyrosequence and 27,990,437 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [47] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [48]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, 
UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and 
InterPro databases. Additional gene prediction 
analysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [49]. 

Genome properties 
The genome consists of a 2,574,824 bp long circu-
lar chromosome with a G+C content of 45% and 
four circular plasmids of 3,421 bp, 51,014 bp, 
71,513 bp and 118,585 bp length, respectively (Ta-
ble 3 and Figure 3). Of the 2,879 genes predicted, 
2,818 were protein-coding genes, and 61 RNAs; 20 
pseudogenes were also identified. The majority of 
the protein-coding genes (67.9%) were assigned 
with a putative function while the remaining ones 
were annotated as hypothetical proteins. The dis-
tribution of genes into COGs functional categories is 
presented in Table 4. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 2,819,357 100.00% 
DNA coding region (bp) 2,623,121 93.04% 
DNA G+C content (bp) 1,256,420 44.56% 
Number of replicons 5 100% 
Extrachromosomal elements 4  
Total genes 2,879 100.00% 
RNA genes 61 2.12% 
rRNA operons 3  
Protein-coding genes 2,818 97.88% 
Pseudo genes 20 0.69% 
Genes with function prediction 1,964 67.87% 
Genes in paralog clusters 1,264 43.90% 
Genes assigned to COGs 2,129 73.95% 
Genes assigned Pfam domains 2,100 72.94% 
Genes with signal peptides 926 32.16% 
Genes with transmembrane helices 633 21.99% 
CRISPR repeats 0  

 
Figure 3. Graphical map of the chromosome (plasmids not shown). From bottom to center: 
Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG 
categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 
Code Value %age Description 

J 154 6.4 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 119 5.0 Transcription 

L 126 5.3 Replication, recombination and repair 

B 0 0.0 Chromatin structure and dynamics 

D 33 1.4 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 46 1.9 Defense mechanisms 

T 283 11.8 Signal transduction mechanisms 

M 177 7.4 Cell wall/membrane/envelope biogenesis 

N 127 5.3 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 96 4.0 Intracellular trafficking, secretion, and vesicular transport 

O 102 4.3 Posttranslational modification, protein turnover, chaperones 

C 168 7.0 Energy production and conversion 

G 73 3.1 Carbohydrate transport and metabolism 

E 129 5.4 Amino acid transport and metabolism 

F 57 2.4 Nucleotide transport and metabolism 

H 107 4.5 Coenzyme transport and metabolism 

I 40 1.7 Lipid transport and metabolism 

P 134 5.6 Inorganic ion transport and metabolism 

Q 21 0.9 Secondary metabolites biosynthesis, transport and catabolism 

R 229 9.6 General function prediction only 

S 175 7.3 Function unknown 

- 750 26.1 Not in COGs 
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