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Abstract

Conditionally reprogrammed cells (CRCs) are epithelial cells that are directly isolated from

patients’ specimens and propagated in vitro with feeder cells and a Rho kinase inhibitor. A

number of these cells have been generated from biopsies of breast cancer patients, includ-

ing ductal carcinoma in situ and invasive carcinomas. The characterization of their genomic

signatures is essential to determine their ability to reflect the natural biology of their tumors

of origin. In this study, we performed the genomic characterization of six newly established

invasive breast cancer CRC cultures in comparison to the original patients’ primary breast

tumors (PBT) from which they derived. The CRCs and corresponding PBTs were simulta-

neously profiled by genome-wide array-CGH, targeted next generation sequencing and

global miRNA expression to determine their molecular similarities in the patterns of copy

number alterations (CNAs), gene mutations and miRNA expression levels, respectively.

The CRCs’ epithelial cells content and ploidy levels were also evaluated by flow cytometry.

A similar level of CNAs was observed in the pairs of CRCs/PBTs analyzed by array-CGH,

with >95% of overlap for the most frequently affected cytobands. Consistently, targeted next

generation sequencing analysis showed the retention of specific somatic variants in the

CRCs as present in their original PBTs. Global miRNA profiling closely clustered the CRCs

with their PBTs (Pearson Correlation, ANOVA paired test, P<0.05), indicating also similarity

at the miRNA expression level; the retention of tumor-specific alterations in a subset of miR-

NAs in the CRCs was further confirmed by qRT-PCR. These data demonstrated that the

human breast cancer CRCs of this study maintained at early passages the overall copy

number, gene mutations and miRNA expression patterns of their original tumors. The further

characterization of these cells by other molecular and cellular phenotypes at late cell
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passages, are required to further expand their use as a unique and representative ex-vivo

tumor model for basic science and translational breast cancer studies.

Introduction

Conditionally reprogrammed cells (CRCs) are epithelial cells that grow indefinitely without

the need for transduction of exogenous viral or cellular genes [1]. In this technology, epithelial

cells directly isolated from either normal or malignant specimens are co-cultured with irradi-

ated Swiss 3T3 fibroblast feeder cells (J2 cells) in the presence of the Rho protein kinase

(ROCK) inhibitor (Y-27632) [2], and can be passaged long-term in tissue culture, bypassing

signals for senescence. CRCs have been established from many different human [3–12] and

animal [13] tumor tissues and have been used as models to study diverse cancer cellular mech-

anisms, including drug resistance and tumor invasion [4–7, 11]. A potential and direct clinical

translation of the CRC model is the ability to assess for sensitivity a variety of chemotherapy

drugs, allowing for the in vitro selection of the most likely effective drugs for a particular

patient [3,10]. This unique possibility, offers a system where response to known drug therapies

and/or novel therapeutic compounds can be directly tested on cells expanded from individual

cancer patients.

A sine qua non requirement for the experimental use of these established CRCs is the

determination of their biological representativeness in relation to their original tumor

tissue, such as the maintenance of their genomic signatures after the CRC immortalization

system. For most of the commercially available cancer cell lines, this comparison is not pos-

sible due to the unavailability of their original corresponding tumor tissue. Determining the

genomic “fidelity” of these CRCs in relation to the tumor they derived and assessing the

occurrence and effects of possible immortalization system-related effects are critical steps

for the development of the system. These steps would guarantee that future molecular and/

or functional downstream analysis using these CRCs can be consistently and reproducibly

performed.

In this study, we performed the genomic characterization of six newly established invasive

breast cancer CRC cultures in comparison to the original patients’ primary breast tumors

(PBT) from which they derived. The CRCs and corresponding PBTs were simultaneously

profiled by genome-wide array-CGH, targeted next generation sequencing and global

miRNA expression to determine their molecular similarities in the patterns of copy number

alterations (CNAs), gene mutations and miRNA expression levels, respectively. The CRCs’

epithelial cell content and ploidy levels were also evaluated by flow cytometry. A high level of

overlap was observed between the CRCs and their corresponding PBTs in relation to the

overall number and type of CNAs and the specific somatic variants identified. Global

miRNA profiling analysis also showed a similarity in the miRNA expression levels between

the CRCs and PBTs, as they clustered together with high correlation coefficients. The evalua-

tion of the individual expression levels of specific miRNAs by real-time quantitative PCR

showed no significant difference in their expression levels within each pair of CRC and PBT.

These findings demonstrated that the breast cancer CRCs cultures evaluated, maintained the

genome copy number, gene mutation and miRNA expression patterns of their correspond-

ing original tumor tissue, supporting the ex-vivo representation of the patients’ tumor molec-

ular signatures.

Conditionally reprogrammed cell cultures from breast cancer patients
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Material and methods

Breast cancer CRC cultures and corresponding primary tumors

Six conditionally reprogrammed cells (CRCs) generated from fresh primary breast tumors

(PBTs) were established by the Conditionally Reprogramming Cell laboratory, part of the

Tissue Culture Shared Resource (TCSR) of the Lombardi Comprehensive Cancer Center

(LCCC), according to an established protocol [12]. The cases were collected at MedStar

Georgetown University Hospital (MGUH) at the time of the surgery, prior to any cancer treat-

ment and under the patients’ informed consent for research and an IRB approved protocol

(Histopathology Tissue Shared Resources (HTSR)- IRB#1992–048). The fresh primary tumor

specimens collected were sent to the MGUH Surgical Pathology for standard histology evalua-

tion and research assessment. An expert breast cancer pathologist (B.K.) delineated the tumor

component in the resected material, for culture establishment. The mirror section of this the

original resected tissue, not subjected to CRC culture, was subsequently obtained from the

HTSR in formalin fixed paraffin embedded (FFPE) material. The workflow of the CRC estab-

lishment and molecular analysis is presented in Fig 1. All the experiments of this study were

performed in accordance with relevant guidelines and regulations.

Relevant clinical and pathological information pertaining to the patients included: age at

diagnosis, tumor size, stage and grade, and presence of lymph node metastasis (S1 Table). The

average age at diagnosis of the patients was 53.33±7.87 years and the average tumor size was

4.9±4.03 cm. Most of the cases were of invasive ductal carcinoma, grades 2 and 3, except for

case 1 of mixed invasive ductal and lobular carcinoma and cases 2 of invasive lobular carci-

noma. In only case 1 there was no lymph node involvement. Estrogen Receptor (ER), Proges-

terone Receptor (PR) and Human Epidermal Growth Factor Receptor 2 (HER2) were accessed

in the primary tumor tissue by immunohistochemistry (IHC) +/- FISH analysis for diagnostic

purposes, following the current American Society of Clinical Oncology (ASCO)/College of

American Pathology (CAP) guidelines [14,15]. Based on the “IHC subtypes”, as defined by the

analysis of these 3 surrogate markers, four of the CRCs established were from hormone posi-

tive (HR+) (ER+ and/or PR+, HER2-) tumors, one from a hormone negative (HR-) (ER- and

PR-) and HER2+ tumor, and one of the TNBC (ER-/PR-/HER2-) “IHC subtype”.

CRC culture and passaging

CRCs were directly cultured using the fibroblast feeder cell system (Swiss 3T3 fibroblasts-J2

strain) according to previous protocols [1,12]. Briefly, epithelial cells were co-cultivated with

irradiated 3T3 fibroblasts in F medium (3:1 (v/v) F-12 Nutrient Mixture (HAM)–Dulbecco’s

modified Eagle’s medium (DMEM), 5% fetal bovine serum, 0.4 μg/mL hydrocortisone, 5 μg/

mL insulin, 8.4 ng/mL cholera toxin, 10 ng/mL epidermal growth factor, and 24 μg/mL ade-

nine with addition of 5–10 μmol/L Y-27632. Cells were passaged in DMEM/F12 medium con-

taining 10 mM Y-27632 once reached 80–90% of confluence. Fibroblast feeder cells were

separated from the epithelial cells by differential trypsinization. Cells were passaged until suffi-

cient numbers were obtained for the genomic profiling and flow cytometry analysis. The assays

conducted in this study were performed in cells isolated from CRCs cultured from 5 to 10 cel-

lular passages. Cultures’ time ranged from three weeks to two months.

DNA and RNA isolation

DNA and RNA were isolated from the CRC cultures by standard protocols once they reached

0.5x106 number of cells. For their corresponding PBT, the FFPE “mirror” tissue sections con-

taining at least 80% of tumor cells were carefully microdissected prior to DNA and RNA
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isolation to ensure the molecular analysis of a pure tumor cell population, as per previous pro-

tocols [16,17].

DNA fingerprinting

Genomic authentication of the breast cancer CRCs was conducted for a subset of the CRCs in

relation to their original PBTs, to ensure unequivocal donor identity. This analysis was per-

formed by short tandem repeat (STR) profiling, as recommended by the International Cell

Line Authentication Committee (ICLAC) [18] using the Promega Power Plex 16HS PCR kit

(Promega, WI) and the ABI 3730 DNA Analyzer (Applied Biosystems). Allele size was

Fig 1. Workflow of the breast cancer CRC’s establishment using the Y-27632 compound (Y) and

comparative molecular analysis of the CRCs and corresponding PBTs.

https://doi.org/10.1371/journal.pone.0186190.g001
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performed using Soft Genetics, Gene Marker Software Version 1.85. (Softgenetics LCC, PA)

(S1 Fig).

Flow cytometry analysis

The proportion of epithelial cells within the CRC cultures was determined by flow cytometry

analysis using the EpCAM fluorescence labeled antibody (APC anti-human CD326 EpCAM,

BioLegend, Inc, CA). Briefly, a minimum of 0.5x106 CRC cells were harvested with trypsin-

EDTA and incubated with 1:1000 of antibody dilution. Non-staining cells were used as con-

trols. The analysis was performed using the FACSAria system (BD Biosciences, NJ). A mini-

mum of 10,000-gated cells was analyzed. Ploidy level analysis was performed in a minimum of

1x106 cells. The cells were stained with propidium iodide (PI) and analyzed on FACSAria sys-

tem utilizing FACSDiva and FCS Express 4 software (DeNovo Software, CA) with Peripheral

Blood Lymphocyte (PBL) as an internal control. Ploidy level was calculated based on the cell

cycle results. These analyses were performed at the Flow Cytometry Shared Resources (FCSR)

of LCCC.

Array-CGH analysis

DNA isolated from each of the CRC cultures and their corresponding PBTs were simulta-

neously profiled for copy number using an oligonucleotide array-CGH platform (SurePrint

G3 Human CGH Microarray 8x60K (Agilent Technologies, CA). DNA isolated from periph-

eral blood from multiple normal individuals was used as reference. Digestion, labeling and

hybridization were performed according to our previous protocols [16, 17]. Briefly, equal

amounts of CRCs (and PBTs) and reference DNA, were enzymatically digested and directly

labeled with SureTag Labeling Kit (Agilent Technologies, CA). The labeled DNA was hybrid-

ized with human Cot1-DNA (Life Technologies, CA) to the arrays, at 65˚C for 40 hours. The

scanned data was analyzed using the Feature Extraction (FE) software v.10.10 following

importing into Agilent Cytogenomics v.2.9.2.4 software (Agilent Technologies, CA). The algo-

rithm ADM-2 and a threshold value of 6.0 were applied with the appropriated filters to analyze

the data. Gene amplifications and deletions were considered when the corresponding plotted

oligo-probes presented values of log2�7/6 and log2�5/6, respectively. Duplicate experiments

were performed independently for both the CRCs and corresponding PBT to assess data

reproducibility.

Next-generation sequencing

Next-generation sequencing (NGS) was performed on the Illumina MiSeq System (Illumina,

Inc., CA) using the NEBNext Direct Cancer HotSpot Panel (New England BioLabs, Inc., MA).

Isolated genomic DNA from CRCs and PBTs was quantified using the Quantifluor ONE

dsDNA kit (Promega Corporation, WI) by following the manufacturer’s protocol. Briefly, 100

to 300 nanograms (ng) of each genomic DNA were sheared to a target size of 200 base pairs

(bp) using the Covaris M220 focused-ultrasonicator (Covaris, Inc., MA). Each sheared DNA

sample was enriched for DNA fragments with the NEBNext Direct Cancer HotSpot Panel,

which targets 190 cancer hotspot regions in 50 genes. Each enriched DNA fragment was con-

structed into individual indexed libraries by following the manufacturer’s protocol. Quality

and quantity of the indexed libraries were assessed using the Agilent High Sensitivity DNA kit

(Agilent Technologies, CA), and were combined into a 4 nM equimolar pool. One percent of

the PhiX v3 Control (Illumina) was spiked into the library pool. Paired end 2x150 bp sequenc-

ing was performed on the Illumina MiSeq using the MiSeq Reagent Micro Kit, v3 (300 cycles).

Alignment to the human reference genome 19 (GRCh37, UCSC hg 19 assembly), quality and
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adapter trimming, and variant calling were automatically executed by the MiSeq Reporter soft-

ware (version 2.6.2) on the MiSeq instrument. Annotations and filtering of all the variants

were completed on the VariantStudio software (version 2.2.1) (Illumina). Variants were fil-

tered by a mapping quality score greater than 30, read depth greater than 30, and variant fre-

quency greater than 0.20. All synonymous and non-coding (intron) variants found outside of

splicing regions were also removed. Each filtered variant was examined in the Integrative

Genomics Viewer (IGV, Broad Institute) for verification and visual inspection.

MicroRNA (miRNA) analysis

MiRNA expression analysis was performed using the Human v2 miRNA Expression Assay

from NanoString nCounter Technology (NanoString Technologies, WA) as previously per-

formed [16]. The raw data was pre-processed by NanoString’s nCounter RCC collector and

the miRNAs were normalized using the geometric mean. Fold changes, represented on the

log2 scale (logFC) were calculated for all differentially expressed miRNAs. Supervised hierar-

chical cluster (SHC) analysis was performed on miRNAs that were found to be significantly

differentially expressed (P<0.05, FDR<0.05), using Pearson’s correlation coefficient and aver-

age linkage by using the Multiexperiment Viewer software (MeV 4.9.0). Gene distance matrix

(GDM) analysis was also performed using MeV software to evaluate the distance of the CRCs

and corresponding PBTs based on the total number of miRNAs profiled (range limits were 0.0

(lower limit) to 1 (upper limit).

Quantitative real-time PCR

QRT-PCR was performed using TaqMan miRNA Assays (Applied Biosystems) for four indi-

vidual miRNAs (miRs 125b-5p, 423-5p, 661 and 3934-5p), alleatorily selected among the 800

miRNA probes of the Nanostring platform (LifeTechnologies assays #ID000449, ID002340, ID

001606 and ID463410, respectively). CRCs and PBTs samples were normalized to the internal

standard control RNA48. Each reaction was performed in triplicate, and mean value of the

three-cycle threshold was used. Data was presented as means ± SE and P value�0.05. The Stu-

dent’s t-test was used for comparing the miRNA expression levels between the CRCs and the

corresponding PBTs. Bonferonni correction for multiple comparisons was used and miRNAs

expression was calculated by the ΔΔCt method [19].

The raw data files with miRNA expression (Nanostring) and copy number (array-CGH)

data are provided as supplementary material (S1, S2 and S3 Files, respectively)

Results

DNA copy number analysis

Genome-wide copy number analysis was performed by array-CGH in all the six established

breast cancer CRCs and their corresponding PBTs analyzed. Copy number alterations (CNAs)

were observed in all the CRCs profiled. The average number of CNAs observed in these cells

was 25.50±14.79, which was not significantly different from the average number of the CNAs

observed in the PBT group (29.33±18.01) (unpaired t test; t = 0.696, P>0.05) (Fig 2, Table 1).

The comparison of the array-CGH profile of each CRC with its corresponding PBT showed

a similar pattern of CNAs (Fig 2). The affected cytobands and the type of CNAs observed

(gain/amplifications and/or loss/deletions) between each paired CRC/PBT presented 72–100%

of overlapping levels, as reported by the common interval analysis (Agilent Cytogenomics

v.2.9.2.4 software). For the cytobands most commonly affected by CNAs (based on the highest

P values of CNAs), such as gains at 1p36-p12, 1q21-q44, 6p25-p12, 6q13-q24, 7q11-q36,
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8q12-q24, 11q11-q23 and 17q21-q25, more than 95% of overlap was observed between each

CRC and corresponding PBT (Table 1).

The CRC of case 6 (Fig 3A), originated from a patient with triple negative breast cancer

(TNBC), similar to its corresponding PBT (Fig 3E and 3F) presented the highest number of

CNAs (total of 52 and 57, respectively) (Fig 3D and 3G). This case presented a high percentage

of epithelial cells (56.1% of EpCAM gated cells) and a DNA index level of 3.01 in relation to

the diploid control as verified by flow cytometry analysis (Fig 3B and 3C). In the other CRCs,

the content of epithelial cells and DNA index levels ranged from 25.6% (case 3) to 76.3% (case

4) and 3.09 (case 2) to 3.64 (case 3) (Fig 4A and 4B)

Targeted next-generation sequencing

Targeted next-generation sequencing was performed on three pairs of CRCs and correspond-

ing PBTs (cases 2, 4 and 6) and in one unpaired CRC line (case 3) using the MiSeq platform

Fig 2. Genomic profile plots of the CRCs and corresponding original PBT of five cases analyzed. Vertical lines represent chromosome numbers

and blue and red peaks cytobands with gains/amplifications and loss/deletions, respectively. Plots obtained from Agilent Cytogenomics v.2.9.2.4, using

the algorithm ADM2 and the threshold value of 6.0.

https://doi.org/10.1371/journal.pone.0186190.g002
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and the NEBNext Direct Cancer Hotspot Panel. The MiSeq run yielded 1.15 gigabases (Gbp)

of data with 96%>Q30 (1.11 Gbp), and 8.1 million reads. One sample (PBT of case 6) had a

low library concentration and did not produce as many reads (14,480 reads) compared to the

other samples. Although the read depth was low in this sample, the variants called presented a

>35% allelic frequency and were cleanly visualized in the Integrative Genomics Viewer (IGV)

(Broad Institute, MA) (Fig 3H). Common somatic variants to the CRCs and PBTs were found

affecting the Cyclin Dependent Kinase Inhibitor 2A (CDKN2A), FMS Related Tyrosine Kinase

(FLT3), Janus Kinase 3 (JAK3), Kinase Insert Domain Receptor (KDR, alias VEGFR2), Phos-

phatidulinositol- 4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA), and Tumor

Protein P53 (TP53) genes (S2 Table). Except for the FLT3 gene, which presented a splice region

mutation type, the other genes were affected by missense mutations. For case 3, where only the

CRC culture was sequenced, missense somatic mutations were present in the CDKN2A,KDR,

KIT Proto-Oncogene, Receptor Tyrosine Kinase (KIT), JAK3, MET Proto-Oncogene, Receptor

Tyrosine Kinase (MET) and TP53 genes.

MiRNA profiling analysis

Global MiRNA profiling was performed in five breast cancer CRC cultures and corresponding

PBTs (except case 4, where only the CRC line presented sufficient quantity and quality of RNA

for this analysis). The comparison of the miRNA profiling (of a total of 800 miRNA probes dis-

tributed throughout the genome) of the CRCs and their corresponding PBT, as for the array-

CGH analysis, also showed an overall concordance of the expression levels of the miRNAs ana-

lyzed. Eighteen miRNAs differentially expressed among these cases (P<0.05), clustered the

CRCs with their corresponding PBTs (Supervised Hierarchical Clustering (SHC), Pearson

Correlation Analysis, Anova P<0.05) (Fig 5A). Gene Distance Matrix (GDM) analysis based

Table 1. Total number of copy number alterations (CNAs) observed between the CRCs and corresponding PBTs of each pair analyzed and their

respective common cytobands and range of overlap (in bold CNAs with overlap >95%).

Case #

a

Total # CNAs Common Cytobands with CNAs Range of

overlap

Case 1 CRC = 17

PBT = 11

+1q23.3-q25.3, +1q31.3-q42.2, +3q25.31-q29, +7p22.1-p12.2, +8p12-p11.21, +8q11.21-q24.3,

-9q22.33-q34.13, -16q13-q24.1, +17q21.33-q25.3

82–100%

Case 2 CRC = 29

PBT = 40

+1p36.23-p12, +1q21.1-q44, +2p24.2-p11.2, +2q21.2-q37.3, +3q11.1-q29, +5p13.3-p12, -5q11.1-q23.3, +

+6p22.3, +6p22.3-p12.2, +6q16.1-q21, +6q23.3, +7q11.23-q36.3, +8q12.1-q23.3, +9p24.1-p13.3,

+10p15.2-p11.21, ++10q26.12-q26.13, +11p15.4-p11.12, +11q11-q23.2, ++12p13.2, +12q12-q24.31,

-15q11.1-q21.3, +15q21.3-q26.2, +18q11.2-q23, +19p13.2-p12

74–100%

Case 3 CRC = 28

PBT = 33

+1p35.3-p12, +1q21.1-q44, +2p24.1-p11.2, +2q24.1-q37.3, +3q11.1-q29, +6p23-p12.3, +6q13-q24.3,

+7p22.1-p11.2, +7q11.23-q33, +8q12.3-q24.3, +8q13.1-q22.1, +8q24.12-q24.23, +10p15.2-p11.21,

+10q11.22-q23.31, +11q11-q23.3, +14q11.2-q12, +15q25.2-q26.3, +16p13.3-p13.12, +17q24.2-q25.3,

+18q11.2-q23, +20p13-p11.22, -Xp22.33-p22.31, +Xp11.23-p11.21, +Xq21.1-q28

72–100%

Case 4 CRC = 11

PBT = 10

+6p25.3-p12.3, ++8p12-p11.21, +8q11.21-q22.2, +8q23.1-q24.3,+11q14.2-q25, -16q12.1-q24.3 92–100%

Case 5 CRC = 16

PBT = 25

+6p23-p22.3, +6p22.3-p22.2, +6p22.2, 6q16.1, —8p11.22, +8p11,21-p11.1, +15q21.2-q22.2, +17q11.2,

+17q25.1, -21p11.2, +22q12.1-q12.3, -22q13.2–13.32

76–100%

Case 6 CRC = 52

PBT = 57

+1p32.3-p21.1, +1q21.1-q44, +1q32.1-q44, -2p25.3-p24.1, -2q13-q23.3, +2q23.3-q32.2, -3p24.1-p12.3,

-3q28-q29, -4p16.3-p13, +4q12-q21.21, -4q21.21-q28.3, -5p14.1-p12, -5q11.1-q35.3, -5q11.1-q13.2,

+6p25.3-p22.1, -6q23.3-q27, -7p22.3-p11.2, +7p21.2-p15.3, —7q11.21-q22.1, +7q34-q36.3,

+8q12.1-q24.3, +8q22.1-q21.21, +8q24.21-q24.3, +9p24.3-p22.3, -10q23.32-q24.1, +11q14.1-q22.1,

+11q22.3-q25, +12p13.33-p11.21, -13q14.2-q22.1, +13q32.1-q34, -14q11.2-q32.33, -15q11.1-q26.3,

-15q26.2-q26.3, -16p13.3-p11.1, —16p11.2, -16q12.1-q24.2, -17p13.3-p11.2, +17q24.1-q25.3,

+18q11.1-q12.1, -18q21.1-q23, -19p13.3-p13.2, +19p13.2-p12, -19q13.32-q13.43, -20p13-p11.23,

+20q11.21- q13.33, -22q11.1-q13.31

82–100%

https://doi.org/10.1371/journal.pone.0186190.t001
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Fig 3. Primary breast tumor (PBT) and corresponding CRC of case 6, representative of the TNBC subtype. A: Phase

contrast image of CRC co-culture, showing the feeder cells (short arrows) and an epithelial cell colony (cobblestone cell

morphology) (40x); B: Flow cytometry histogram showing CRC cells stained for PE/CD326 (EpCAM) (red peaks); unlabeled

control (black peaks). Number of gated cells >10,000; C: Ploidy analysis showing a DNA index of 3.01(G1 aneuploidy yellow

peak) in relation to the diploid control (Peripheral Blood Lymphocyte (PBL)—G1 diploid red peak); E: FFPE tissue section (40x)
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on these differentially expressed miRNAs showed a high correlation score (>0.6) for most of

the pairs of CRCs and PBTs analyzed (Fig 5B).

Individual analysis of four miRNAs (miR-125b-5p, miR-423-5p, miR-661 and miR-3934-

5p), chosen alleatorily, performed by qRT-PCR in a subset of CRCs and corresponding PBTs

(cases 2, 3, 5 and 6), showed no statistical difference of their expression levels among the pairs

(P<0.05) (Fig 6). (The cases 1 and 4 were not included in the analysis, due to inconsistent trip-

licate Ct values observed in the expression analysis of their PBTs (of FFPE material) in repeti-

tive qRT-PCR reactions).

Interestingly, based on the global miRNA profiling the CRCs clustered together according

to their “IHC subtype”. A number of 28 miRNAs were observed differentially expressed

among the CRCs representative of the hormone receptor (HR)+/HER2- (cases 1, 2, 4 and 5),

HER2+ (case 3) and TNBC (case 6) subtypes (Pearson Correlation Analysis, t test P<0.05)

(Fig 7).

Discussion

In this study we assessed the genomic composition of six individual conditionally repro-

grammed cells (CRCs) cultures directly established from the tumor tissue of six patients with

invasive breast cancer. Our findings showed that the CRCs resemble and maintain the overall

genomic signatures of the original primary breast tumor (PBT) from which they derived. A

similar level and pattern of copy number alterations (CNAs) was observed by array-CGH in

the CRCs and corresponding PBTs analyzed, with a level of overlap ranging from 72 to 100%.

For the cytobands most commonly affected by CNAs, more than 95% of overlap level was

observed between each CRC and their corresponding PBT. In addition, the copy number pro-

files of these CRCs, presented the non-random and recurrent CNAs commonly described for

and F: tumor area microdissected for the molecular analysis (400x); D and G: Genomic profile plots of the PBT and

corresponding CRC, respectively; H. Next generation sequencing analysis of CRCs and corresponding PBTs showing the

retention of specific somatic variants on the TP53, KDR, PIK3CA, CDKN2 and JAK3 genes in the CRCs.

https://doi.org/10.1371/journal.pone.0186190.g003

Fig 4. A. Flow cytometry histogram of CRCs from cases 2–5, showing CRC cells stained for PE/CD326 (EpCAM) (red

peaks); unlabeled control (black peaks). Number of gated cells >10,000. B. Ploidy plots and corresponding DNA index of

the CRCs (G1 aneuploidy yellow peak) in relation to the diploid control (Peripheral Blood Lymphocyte (PBL)—G1 diploid

red peak) (FACSAria system).

https://doi.org/10.1371/journal.pone.0186190.g004
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Fig 5. Global miRNA profiling of five pairs of CRCs and corresponding PBTs. A: Supervised Hierarchical

Clustering (SHC) analysis (Pearson Correlation, Anova P<0.05) showing close clustering for most of the paired

cases based on 18 miRNAs differentially expressed (miRNAs up-and down-regulated in yellow and blue colors,

respectively). B: Gene Distance Matrix (GDM) correlation analysis, respectively (MeV 4.9.0).

https://doi.org/10.1371/journal.pone.0186190.g005

Fig 6. QRT-PCR analysis of a subset of paired cases of CRCs and corresponding PBTs for miRs125-5p and 423-5p

(A), 661 and 3494-5p (B). No statistical difference at P value <0.05 was observed in the individual expression of these

miRNAs in each of the pairs analyzed.

https://doi.org/10.1371/journal.pone.0186190.g006
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the intrinsic breast cancer subtypes [20–23] and DNA index of aneuploidy cells. Interestingly,

case 3, the only case with positivity for HER2 protein expression, did not show amplification

of the 17q21 cytoband, where this gene is located. This finding however, does not imply the

absence of a focal amplification in the HER2/NEU gene or in genomic segments of smaller

sizes that include HER2/NEU, which in this case should be verified by more specific copy

number assays, such as FISH analysis [24]. In any event, although in most of the breast cancer

cases overexpression of HER2 is due to gene amplification [25], other mechanisms can be

involved, including aneuploidies of chromosome 17 [26,27], and/or epigenetic or

Fig 7. Supervised Hierarchical Clustering (SHC) analysis of the six CRCs profiled for global miRNA

expression and representative of HR+/HER2- cases (cases 1, 2, 4 and 5), HER2+ (case 3) and TNBC

(case 6) subtypes. Twenty-eight miRNAs were observed differentially expressed among these breast cancer

subtypes (Pearson Correlation, tTest P<0.05). MiRNAs up- and down-regulated (blue) represented in yellow

and blue colors, respectively.

https://doi.org/10.1371/journal.pone.0186190.g007
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posttranscriptional events [28,29]. The CRC established from the TNBC subtype (case 6) pre-

sented among the most frequent CNAs, gains at 1q21-q44, 8q24.21-q24.3, 20q11.21-q13.33

and losses at 7q11.21-q22.1 and 16p13.3-p11.1 chromosome regions, which are recurrent

CNAs described in other cytogenetic studies in TNBC cases [16,30,31]. On the other hand, the

CRCs of hormone receptor (HR)+/HER2- tumors, presented lower number of CNAs and less

complexes array-CGH profiles (except case 2), compatible to what is reported in the intrinsic

molecular luminal A breast cancer subtype [20–23]. These findings indicate the representative-

ness and specificity of the CNAs observed in the CRCs studied in relation to the genome of

their original tumors and to the distinct molecular breast cancer subtypes.

It is relevant to point out that these analyses were performed at early CRCs’ cell passages

(>P5<P10). It is of note, however, that in our previous CRC study in mouse mammary tissues

we showed that the genomic (array-CGH) profiling of the CRCs resembled the ones from the

non-CRC cultures at P<38 [13]. Interestingly, cytogenetic analysis of human cells immortal-

ized by other methods of somatic reprograming, such as the ones applied for the generation of

human pluripotent stem cells (hPSCs) [32–37], have shown a higher number of CNAs in early

cell passages when compared to the late passage cells. These studies suggested that CNAs are

either introduced during the reprogramming process or represent a sub-clone of aberrant

parental cell that rapidly grows in vitro [32,33]. In fact, higher resolution analysis, such as

whole-genome sequencing applied to hPSCs have suggested the later, considering that the

CNAs observed could already be detected at low frequencies in the parental somatic cells

[34,35]. Overall these studies indicate that these CNAs are effects of passages number and not

of the reprogramming process per se. Supporting these observations, the abnormal karyotypes

and CNAs that are reported in the hPSCs, occur non-randomly, affecting most commonly the

chromosomes 1, 12, 17, 20 and X [32–37]. In our cases we did identify CNAs affecting some of

these chromosomes, but in most cases these CNAs were also observed in the original corre-

sponding (and uncultured) PBTs.

The targeted next generation sequencing analysis also showed that the established CRCs

retained the specific gene mutations that were present in their original tumors. An analysis of

three paired CRCs and PBTs (Cases 2, 4 and 6) showed that they share the same type of variants

affecting the TP53, FLT3, JAK3, KDR, PIK3CA and CDKN2A genes. In the unpaired CRC (case

3) sequenced, variants in the TP53, JAK3, KDR and CDKN2A genes were observed. The same

variant in the TP53 gene that led to a codon (cCc/cGc) and aminoacid change (P72R) was

observed in this CRC compared to the others CRCs and corresponding PBTs. This specific var-

iant (COSM45985) is one of the most common polymorphisms in the TP53 gene and was pre-

viously reported in cancer cases [38–43], although its association with cancer risk is unknown.

Missense mutations in the JAK3, KDR and CDKN2A genes in this CRC affected different

codons and led to different aminoacid changes than the ones observed in the paired CRCs and

PBTs sequenced. However, these variants were previously reported in other tumors, such as

skin [44], glioblastomas [45] and leukemias [46–48] (JAK 3/COSM 34213), colorectal [49],

prostate [50] and sarcomas [51] (KDR/COSM 149673). In addition, to these gene variants this

CRC line presented missense mutations affecting the MET (COSM 1286164) and KIT (COSM

28026) genes, not observed in the paired cases. As for the other variants, these mutations were

also reported to be present in other tumor tissues [52–54], including breast cancer [52], indi-

cating their tumor genome representativeness.

The overall similarity of genome-wide copy number and gene mutation patterns of paired

CRCs and PBTs, was also observed in our cases at the miRNA expression level. Experimental

studies have shown that both the biogenesis and expression levels of miRNAs are “susceptible”

to effects of cell culture conditions, including the ones that affect cellular density and contact,

replicated passages and senescence [55–59]. A recent study utilized miRNA expression to
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compare the effects of different cell reprogramming methods in cultured cells and medium

[60]. By measuring miRNA levels in the cell culture medium of pluripotent stem cells in com-

parison to that in cells, it was shown a constant relative abundance of miRNA level between

them. Similarly, in this study we used miRNA profiling as an “epigenetic measurement” to

evaluate changes in miRNA expression levels that might have occurred in the breast cancer

cells cultured in the CRC system. Supervised Hierarchical Clustering (SHC) showed that the

five pairs of CRCs and corresponding PBTs profiled for this analysis clustered together with

high correlation coefficients, indicating the retention of the miRNA expression signature of

the original tumors. QRT-PCR analysis of individual four miRNAs chosen alleatorily con-

firmed the similar expression of these putative miRNAs within four of the CRCs and PBTs

pairs. Interestingly, despite the lower number of CRCs representative of each breast cancer

“IHC subtype”, we observed that they clustered distinctly according to their “IHC subtype”.

This analysis supported the suitable potential in classifying breast cancer into the molecular

subtypes based in miRNA expression, as previously shown for established breast cancer cell

lines and clinical cases [16,61,62].

Conclusion

In conclusion, we demonstrated that the breast cancer CRCs evaluated in this study, main-

tained the overall copy number, gene mutations and miRNA expression patterns of the corre-

sponding tumor tissue from which they derived. Considering that these CRC cultures were

established from breast cancer patients with distinct clinical and histopathological characteris-

tics, including age at onset, race, family history and hormonal status, they offer a unique and

representative model of the biological breast cancer heterogeneity. Additional analyses are

required to evaluate these cells at late cellular passages and to characterize them by other

molecular phenotypes, to further expand their utility for cancer research.
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