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ABSTRACT
 

Introduction: The aim of this study was to investigate the success of a deep learning 
model in detecting kidney stones in different planes according to stone size on une-
nhanced computed tomography (CT) images.
Materials and Methods: This retrospective study included 455 patients who underwent 
CT scanning for kidney stones between January 2016 and January 2020; of them, 405 
were diagnosed with kidney stones and 50 were not. Patients with renal stones of 0–1 
cm, 1–2 cm, and >2 cm in size were classified into groups 1, 2, and 3, respectively. Two 
radiologists reviewed 2,959 CT images of 455 patients in three planes. Subsequently, 
these CT images were evaluated using a deep learning model. The accuracy rate, sen-
sitivity, specificity, and positive and negative predictive values of the deep learning 
model were determined.
Results: The training group accuracy rates of the deep learning model were 98.2%, 
99.1%, and 97.3% in the axial plane; 99.1%, 98.2%, and 97.3% in the coronal plane; 
and 98.2%, 98.2%, and 98.2% in the sagittal plane, respectively. The testing group 
accuracy rates of the deep learning model were 78%, 68% and 70% in the axial pla-
ne; 63%, 72%, and 64% in the coronal plane; and 85%, 89%, and 93% in the sagittal 
plane, respectively.
Conclusions: The use of deep learning algorithms for the detection of kidney stones 
is reliable and effective. Additionally, these algorithms can reduce the reporting time 
and cost of CT-dependent urolithiasis detection, leading to early diagnosis and mana-
gement.
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INTRODUCTION

 Urolithiasis is a common health problem, 
with a worldwide prevalence of 1.7-14.8% (1). 
Multiple factors contribute to the increase in its 
prevalence, including lifestyle changes, nutritio-

nal habits, obesity, diabetes mellitus, metabolic 
syndrome, and hypertension. In the United States, 
more than 2 million people with renal colic are 
admitted to the emergency departments each year, 
and approximately half of these patients under-
go unenhanced computed tomography (CT). From 
1992 to 2009, the use of CT was estimated to triple 
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in the United States, with a corresponding increase 
in its cost of use (2, 3). The cost of nephrolithiasis 
management is high for both individuals and the 
society. The choice of the most appropriate treat-
ment for kidney stones is challenging because it 
depends on several factors such as the type, shape, 
size, and location of the stones (4).

Deep learning is a type of machine lear-
ning termed artificial neural networks and is ins-
pired by the structure and function of the brain 
(5). Nowadays, with the successful use of computer 
vision with deep learning algorithms, deploying 
these algorithms to study medical images has be-
come popular (6). Artificial intelligence (AI)-based 
systems for the evaluation of unenhanced CT ima-
ges may be used to develop reliable and accurate 
anatomical models for operational support, as well 
as for predicting the success rate and outcomes of 
the treatment (7, 8). These systems assist medical 
decision-making and minimize iatrogenic errors 
in clinical practice. AI models employ synergis-
tic working methods where learning abilities and 
performance are developed rather than a priori co-
ded. Therefore, these models can fulfil their tasks 
with high speed, functionality, and efficiency (9). 
We hypothesized that AI can be efficiently used to 
diagnose and detect kidney stones. In the present 
study, we aimed to investigate the success of a 
deep learning model for the diagnosis of kidney 
stones.

MATERIALS AND METHODS 

Study population
This study was approved by the ethics 

committee of our institution (permission number: 
378/358; dated: 10/11/2021). For this retrospective 
study, we selected 455 patients, between January 
2016 and January 2020, of whom 405 bore kidney 
stones diagnosed via CT while the remaining 50 
did not. A total of 2,959 unenhanced CT images, 
including 2,709 with kidney stones and 250 wi-
thout, were evaluated by two experienced abdomi-
nal radiologists (X.X. with 12 years of experience 
and Y.Y. with 8 years of experience) based on con-
sensus and using a dedicated workstation. Kidney 
stone diagnoses were based on their observation 
in the renal collecting system and on the mea-

surement of Hounsfield units on unenhanced CT 
images. The final diagnosis of kidney stones was 
made by a radiologist. The patients were divided 
into three groups as follows: group 1 contained 
patients with renal stone sizes of 0–1 cm, group 2 
had sizes of 1-2 cm, and group 3 had sizes grea-
ter than 2 cm. When multiple kidney stones were 
present, the largest stone size was included in the 
study. The results of the AI algorithm for the de-
tection of kidney stones were compared with the 
radiologists’ diagnoses to determine the efficiency 
of the AI model.

Patients with solitary kidneys, atrophic kid-
neys, renal anomalies, calcified renal masses, reno-
vascular calcifications, regional lymph node calcifi-
cations, metallic implants, pigtail ureteral catheters, 
percutaneous nephrostomy catheters, and CT images 
with artefacts were excluded from the study.

CT image acquisition
The anatomical area between the dia-

phragm and the symphysis pubis was scanned 
using a CT scanner (Optima CT 660, GE Health-
care System, Milwaukee, USA). During the scan, 
the gantry angle was set to 0°; the matrix size, 
512×512 pixels; the voltage, 120 kV; the tube cur-
rent; 100-200 mAs; the collimation, 64×0.5; and 
the slice thickness, ≤1.25 mm on a 128-slice CT 
device. All images were reconstructed in the axial, 
coronal, and sagittal planes with a 2-mm section 
thickness using the medical imaging program, AW 
Server 3.2 Ext. 1.2 by GE Healthcare.

Artificial Intelligence Algorithm
ResNet is a convolution-based deep re-

sidual network architecture. ResNet consists of 
several residual blocks (composed of a convolu-
tional layer), a batch normalization layer, and 
a shortcut that connects the original input to 
the output of the residual block (8). We used the 
xResNet50 convolutional neural network archi-
tecture in our study. The xResNet architecture 
was derived from the convolution-based deep 
residual network architecture ResNet with a few 
minor changes (7). The layer organization of the 
model is shown in Figure-1.

The number of patients and CT images with 
and without kidney stones in the three groups ac-
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cording to the sizes of kidney stones evaluated 
using the deep learning algorithm are presented 
in Table-1.

First, training of the CT images of pa-
tients with and without kidney stones was per-
formed using the AI model, followed by model 
testing. Training and testing were performed 
in the three planes and among the three stu-
dy groups using the Fastai (v2) library and the 

Google Collaboratory platform. We used the 
Adam algorithm as the optimization algorithm 
(10). Cross-entropy loss was utilized as the loss 
function. During model training, we selected 
the learning rate to be 0.01 and achieved the 
best validation scores after an average of the 
35th epoch. The images used for training the 
model were not preprocessed or augmented in 
any way (7-10).

Figure 1 - Layer organization of the xResNet50 deep learning model. xResNet50 architecture consists of an input stem, four 
xResNet50 blocks, and an output stem. Images are put in from the input stem, then processed in the model, and classified in 
the output stem; finally, they are returned as a percentage of kidney stone presence or absence.

Table 1 - Number of patients and CT images with and without kidney stones of 3 groups evaluated with the deep learning 
algorithm and the training group accuracy rates of the deep learning model of the CT images.

 

Group 1 (0-1 cm) Group 2 (1-2 cm) Group 3 (>2 cm)

Patient 
n, %

Image
n, %

Patient
n, %

Image
n, %

Patient
n, %

Image
n, %

AI training

Normal 40 (30.5%) 200 (21%) 40 (26.8%) 200 (21%) 40 (24.1%) 200 (21%)

Stone 91 (69.5%) 753 (79%) 109 (73.2%) 753 (79%) 126 (75.9%) 753 (79%)

Accuracy

Axial 98.2% 99.1% 97.3%

Coronal 99.1% 98.2% 97.3%

Sagittal 98.2% 98.2% 98.2%

AI testing

Normal 10 (18.5%)  50 (25%) 10 (27.7%) 50 (25%) 10 (52.6%) 50 (25%)

Stone 44 (81.5%) 150 (75%) 26 (72.3%) 150 (75%) 9 (47.4%) 150 (75%)

Accuracy

Axial 78.0% 68.0% 70.0%

Coronal 63.0% 72.0% 64.0%

Sagittal 85.0% 89.0% 93.0%

AI = Artificial Intelligence
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Statistical Analysis

All statistical analyses were conducted 
using SPSS Statistics version 26.0 (IBM Inc., Chi-
cago, IL, USA). The demographic characteristics 
of the patients are presented as mean±standard 
deviation for continuous variables and as median 
and percentage for categorical variables. The sen-
sitivity, specificity, and positive and negative pre-
dictive values of the results for all planes were 
calculated using receiver operating characteristic 
(ROC) curve analysis for each group.

RESULTS

The mean age of patients in our study was 
42.54±14.76 (range: 23-77) years. Two hundred 
ninety-two (65.2%) patients were male and 163 
(35.8%) were female. We used the Grad-CAM te-
chnique, which is deployed to produce “visual 
explanations” for convolutional neural networks, 
to identify the areas where our models were con-
centrated (11). CT images of the patients in the 
three study groups visualized with the Grad-CAM 
technique are demonstrated in Figures 2, 3, and 4. 

The accuracy rates of the deep learning 
model in the training group are presented in Ta-
ble-1. The success rates were as follows: 98.2% in 
the axial section, 99.1% in the coronal section, and 
98.2% in the sagittal section in group 1; 99.1% in 
the axial section, 98.2% in the coronal section, 
and 98.2% in sagittal section in group 2; 97.3% 
in the axial section, 97.3% in the coronal section, 
and 98.2% in the sagittal section in group 3.

The AI accuracy rates for the three planes 
in the three groups are presented in Table-2. The 
success rates obtained by verifying the trained 
deep learning model in the test group were: 78% 
in the axial section, 63% in the coronal section, 
and 85% in the sagittal section in group 1; 68% in 
the axial section, 72% in coronal section and 89% 
in sagittal section in group 2; and 70% in the axial 
section, 64% in the coronal section, and 93% in 
the sagittal section in group 3.

The sensitivity, specificity, and positive 
and negative predictive values of the AI algori-
thm for the planes in the three groups are pre-
sented in Table-2.

DISCUSSION

In our study, we investigated the success 
rate of AI methodologies in the diagnosis of kid-
ney stones and found that the AI-based system 
we used provided accurate results. The sensitivity 
and specificity of diagnosis based on sagittal pla-
ne images were found to be higher than those of 
the other planes. This study is the first study in the 
literature to use an artificial intelligence model in 
the diagnosis of urinary system stone disease by 
classifying both in 3 different imaging axes and 
according to different stone sizes.

In a study by Imamura et al., choosing an 
appropriate imaging modality for the diagnosis of 
stones resulted in a high stone-free rate, low mor-
bidity, high probability of survival, fast recovery, 
and low treatment cost (12). The guidelines pro-
vided by the American College of Radiology, the 
American Urological Association, and the Euro-
pean Association of Urology differ in the optimal 
initial imaging modality being used for evalua-
ting patients with suspected obstructive nephroli-
thiasis. Although CTs of the abdomen and pelvis 
provide the most accurate diagnosis, they expose 
patients to harmful ionizing radiations. Ultraso-
nography has lower sensitivity and specificity 
than CT but does not require the use of radiation. 
Radiography of the kidney, ureter, and bladder is 
very helpful in the periodic evaluation of stone 
growth in patients with known stone disease but 
has limited utility in the diagnosis of acute stones. 
Of all the imaging modalities available currently, 
CT is the most sensitive technique for detecting 
kidney stones with a sensitivity of approximately 
95% (13).

Cost and reimbursement issues among CT 
stakeholders, including hospitals, insurance com-
panies, and patients, often complicate the choice 
of CT as an imaging modality. A review of Medi-
care data revealed that the cost of performing a 
CT scan is approximately double that of a renal 
ultrasound scan and approximately one third that 
of an MRI. This has caused AI models to come to 
the forefront in terms of cost, efficiency, and ima-
ging preference (14, 15).

Recently, artificial neural network-based 
AI has attracted significant attention in medical 
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imaging. An artificial neural network (ANN) cal-
culates the output value from multiple input va-
lues using a simple mathematical neuron model. 
ANN systems are composed of a large number of 
neurons arranged in interconnected layers that 
can be trained to predict results based on the input 
of the first layer. In contrast, conventional neu-
ral networks have convolutional layers that are 
suitable for image analysis. Conventional neural 

networks can be fed with annotated images and 
can learn classification with automatic iterative 
adjustments of weighted neural functions (16, 17).

Computer-aided detection/diagnosis 
(CADe/CADx) is a successful research area in me-
dical image processing. Recent developments have 
revealed the importance of applying conventional 
neural network-based deep learning algorithm ap-
proaches, although they require a large amount of 

KIDNEY STONE NORMAL

Figure 2 - Axial, sagittal, and coronal CT images of patients bearing 0–1-cm-sized kidney stones and without kidney stones, 
demonstrated with the Grad-CAM technique. Percentages refer to the estimates of the AI model.

A) Kidney stone original axial CT image; B) Kidney stone axial CT image with GRAD-CAM technique; C) Normal kidney original axial CT 
image; D) Normal kidney axial CT image with GRAD-CAM technique; E) Kidney stone original coronal CT image; F) Kidney stone coronal 
CT image with GRAD-CAM technique; G) Normal kidney original coronal CT image; H) Normal kidney coronal CT image with GRAD-CAM 
technique; I) Kidney stone original sagittal CT image; J) Kidney stone sagittal CT image with GRAD-CAM technique; K) Normal kidney 
original sagittal CT image; L) Normal kidney sagittal CT image with GRAD-CAM technique.
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A) Kidney stone original axial CT image; B) Kidney stone axial CT image with GRAD-CAM technique; C) Normal kidney original axial CT 
image; D) Normal kidney axial CT image with GRAD-CAM technique; E. Kidney stone original coronal CT image; F) Kidney stone coronal 
CT image with GRAD-CAM technique; G) Normal kidney original coronal CT image; H) Normal kidney coronal CT image with GRAD-CAM 
technique; I) Kidney stone original sagittal CT image; J) Kidney stone sagittal CT image with GRAD-CAM technique; K) Normal kidney 
original sagittal CT image; L) Normal kidney sagittal CT image with GRAD-CAM technique.

Figure 3 - Axial, sagittal, and coronal CT images of the patients bearing 1–2 cm-sized kidney stones and without kidney 
stones, demonstrated with the Grad-CAM technique. Percentages refer to the estimates of the AI model.

KIDNEY STONE NORMAL

training data (16, 18). Yan et al. developed a uni-
versal lesion detector (DeepLesion) that can detect 
any lesion with a single unified frame (19).

The use of AI in urology has considera-
bly increased in recent years. In particular, studies 
comparing AI models with imaging methods in 
diagnosis and patient selection have been repor-
ted. Recently, there has been an increase in the de-
mand for CT in the diagnosis of kidney stones due 

to an increase in the number of patients suffering 
from this condition. This has led to a prolongation 
of the radiological evaluation period owing to the 
relatively less number of radiologists available to 
evaluate the images (20). Furthermore, during the 
coronavirus disease pandemic, reporting processes 
have become even more problematic due to the 
increased workload of radiologists. This worklo-
ad also resulted in reducing surgery volumes and 
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Figure 4 - Axial, sagittal, and coronal CT images of the patients bearing kidney stones greater than 2 cm in size and without 
kidney stones, demonstrated with the Grad-CAM technique. Percentages refer to the estimates of the AI model.

KIDNEY STONE NORMAL

A) Kidney stone original axial CT image; B) Kidney stone axial CT image with GRAD-CAM technique; C) Normal kidney original axial CT 
image; D) Normal kidney axial CT image with GRAD-CAM technique; E) Kidney stone original coronal CT image; F) Kidney stone coronal 
CT image with GRAD-CAM technique; G) Normal kidney original coronal CT image; H) Normal kidney coronal CT image with GRAD-CAM 
technique; I) Kidney stone original sagittal CT image; J) Kidney stone sagittal CT image with GRAD-CAM technique; K) Normal kidney 
original sagittal CT image; L) Normal kidney sagittal CT image with GRAD-CAM technique.

urology residency programs (21, 22). In such a 
scenario, using computer-assisted AI methods to 
diagnose urolithiasis can ensure a fast and accu-
rate diagnosis, leading to early management in 
urological clinical practice.

Längkvist et al. developed a conventional 
neural-network method to detect ureteral stones 
in thin-section CT scans and showed that CT ima-

ges can be read primarily with an automated de-
tection algorithm (23). Sokolovskaya et al. found a 
significant positive relationship between the fast-
-reading speed of tomography and the number of 
interpretation errors. Furthermore, several studies 
reported that diagnostic errors due to radiological 
diagnosis maybe due to perceptual and cognitive 
interpretation errors of radiologists and that stra-
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Table 2 - Accuracy rates, sensitivity, specificity, positive predictive, and negative predictive values of the deep learning 
model for the planes among 3 groups of kidney stones.

Classification Reports (Test Set)
Axial Coronal Sagittal

normal stone normal stone normal stone

Group 1 (0-1 cm)

Precision 76.0 % 80.0 % 69.0 % 60.0 % 83.0 % 87.0 %

Recall 82.0 % 74.0 % 48.0 % 78.0 % 88.0 % 82.0 %

f1-score 79.0 % 77.0 % 56.0 % 68.0 % 85.0 % 85.0 %

Accuracy 78.0 % 63.0 % 85.0 %

Positive Predictive Value 75.0 % 78.0 % 82.0 %

Negative Predictive Value 82.0 % 48.0 % 88.0 %

Sensivity 80.4 % 60.0 % 87.2 %

Specificity 75.9 % 68.5 % 80.0 %

Group 2 (1-2 cm)

Precision 70.0 % 66.0 % 76.0 % 69.0 % 91.0 % 87.0 %

Recall 62.0 % 74.0 % 64.0 % 80.0 % 86.0 % 92.0 %

f1-score 66.0 % 70.0 % 70.0 % 74.0 % 89.0 % 89.0 %

Accuracy 68.0 % 72.0 % 89.0 %

Positive Predictive Value 74.0 % 80.0 % 92.0 %

Negative Predictive Value 62.0 % 64.0 % 86.0 %

Sensivity 66.1 % 68.9 % 86.7 %

Specificity 70.4 % 76.1 % 91.4 %

Group 3 (>2 cm)

Precision 73.0 % 68.0 % 85.0 % 59.0 % 94.0 % 92.0 %

Recall 64.0 % 76.0 % 34.0 % 94.0 % 92.0 % 94.0 %

f1-Score 68.0 % 72.0 % 49.0 % 72.0 % 93.0 % 93.0 %

Accuracy 70.0 % 64.0 % 93.0 %

Positive Predictive Value 76.0 % 94.0 % 94.0 %

Negative Predictive Value 64.0 % 34.0 % 92.0 %

Sensivity 67.8 % 58.7 % 92.1 %

Specificity 72.7 % 85.0 % 93.8 %

tegies to improve the performance of radiologists 
should be developed (12, 24, 25). Another study 
revealed that developing a machine learning-ba-
sed system can assist urologists in managing large 
kidney stones (26). Recent technological advan-
ces have demonstrated high sensitivity, specificity, 
and positive predictive value in detecting urinary 
tract stones ≥3 mm with an average radiation dose 
of 1-1.5 mSv, allowing for dose reduction with the 
advent of low-dose CT techniques (27).

Our study bears several limitations. The 
major limitation of this study was the lack of con-
sideration of the stone composition, which is one 
of the most important parameters in the manage-

ment of kidney stones. Another limitation was the 
lack of testing of the effect of the AI algorithm in 
predicting the success of the treatment.

CONCLUSIONS

Deep learning models are reliable and 
effective for the detection of kidney stones. The 
sagittal-plane images on CT had higher diag-
nostic accuracy rates than those of other pla-
nes. Using these methods, the waiting time for 
results and cost of diagnosis can be reduced, 
and early diagnosis can be achieved, resulting 
in prompt management. 
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