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Social engagement is a key indicator of an individual’s socio-emotional and cognitive

states. For a child with Autism Spectrum Disorder (ASD), this serves as an important

factor in assessing the quality of the interactions and interventions. So far, qualitative

measures of social engagement have been used extensively in research and in practice,

but a reliable, objective, and quantitative measure is yet to be widely accepted and

utilized. In this paper, we present our work on the development of a framework for the

automated measurement of social engagement in children with ASD that can be utilized

in real-world settings for the long-term clinical monitoring of a child’s social behaviors

as well as for the evaluation of the intervention methods being used. We present a

computational modeling approach to derive the social engagement metric based on a

user study with children between the ages of 4 and 12 years. The study was conducted

within a child-robot interaction setting that targets sensory processing skills in children.

We collected video, audio and motion-tracking data from the subjects and used them

to generate personalized models of social engagement by training a multi-channel and

multi-layer convolutional neural network. We then evaluated the performance of this

network by comparing it with traditional classifiers and assessed its limitations, followed

by discussions on the next steps toward finding a comprehensive and accurate metric

for social engagement in ASD.

Keywords: computational model, personalization, social engagement, autism spectrum disorder, convolutional

neural network

INTRODUCTION

Social engagement of a child is an indicator of his/her socioemotional and cognitive states. It is
the interaction of a child with the environment in a contextually appropriate manner and reflects
a complex internal state that signifies the occupation of the child with a person or a task. Much of
the research so far has relied on the perceptual evaluation of engagement, utilizing questionnaires
and behavioral assessments administered by trained professionals, which typically attempt to
identify key behavioral traits that serve as important indicators of social engagement. Automatic
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quantification of engagement is still limited but can allow not
only for an objective interpretation of engagement and the
contributing target behaviors, but also help to identify methods
to improve engagement in different settings, especially when
targeting a specific health condition. Therefore, it serves both as
an outcome measure and as an objective measure of the quality
of an activity, interaction, or intervention (Kishida and Kemp,
2006).

Social engagement has often been reported to be particularly
deficient in children with Autism Spectrum Disorder (ASD).
ASD is a neurodevelopmental disorder that causes significant
impairment in three broad areas of functioning: communication,
social interaction, and restricted and repetitive behaviors
(American Psychiatric Association., 2013). This means that
children interact with their peers infrequently, thus preventing
the formation of lasting and meaningful social relationships
and resulting in social withdrawal. These children often feel
isolated from or rejected by peers and are more likely to develop
behavioral problems (Ollendick et al., 1992) as well as anxiety and
depression (Tantam, 2000; Bellini, 2006).

Behavioral and physiological cues can provide insight into
the engagement state of a child, with gestures, subtle body
language changes, facial expressions, vocal behaviors, and various
physiological signals, all carrying significant indications of a
child’s level of interest and engagement in an interaction. Eye
gaze focus, smiling, vocalizations, joint-attention, imitation,
self-initiated interactions, and triadic interactions are among
the important behavioral cues that can be utilized to assess
engagement (Tiegerman and Primavera, 1982, 1984; Wimpory
et al., 2000; Nadel, 2002; Ingersoll, 2008; Stanton et al., 2008;
Katagiri et al., 2010; Sanefuji and Ohgami, 2011; Tapus et al.,
2012; Slaughter andOng, 2014; Dubey et al., 2015; Contaldo et al.,
2016). Heart rate, electrodermal activity, electrocardiography,
electromyography, blood pressure etc. are among the key
physiological indicators of engagement state (Kushki et al., 2012;
Lahiri et al., 2012; Hernandez et al., 2014). A combination of these
multi-modal behavioral and physiological features can present a
comprehensive feature set for effective engagement evaluation.

A major hurdle in the path toward automated measurement
of social engagement is of the identification and classification of
these key behaviors. While it may be a simple task for trained
professionals to identify these high-level behaviors and infer a
fairly accurate engagement state from real-time observations of
a child’s interactions, it remains a considerable challenge for the
state-of-the-art algorithms and machines. Instead, the current
technologies are better equipped to extract lower-level behaviors
that can be used as a rough estimation of the target behaviors.

This paper presents our first step toward an automated
quantifiable measure of social engagement derived from
behavioral data collected from two groups of children, one
typically developing (TD) and one with ASD. Research from our
team thus far has focused on child-robot interaction scenarios
that target several ASD symptoms, including sensory processing
(Javed et al., 2019), imitation (Bevill et al., 2017), emotion
recognition and emotion regulation skills (Javed et al., 2018).
In these studies, we collected multi-modal interaction data,
including video and audio recordings, as well as motion tracking

data. The overall goal of our work is to develop a framework
for personalized child-robot interactions for ASD. To this end,
our framework aims to (1) sense important features of a child’s
interaction with a robot, (2) interpret and derive meaningful
deductions about a child’s engagement in the interaction, (3)
identify target behaviors that may be lacking in the detected
interaction pattern, (4) reassess the current robot behavior
strategy and modulate it to elicit a higher level of engagement
from the child. This paper focuses on step 2 of the above approach
by processing the multimodal behavioral data collected from this
study through a deep learning-based multi-label classification
model in order to contribute toward deriving an automated
measure of social engagement.

This paper is organized as follows. Section Related Work
discusses the previous studies that have designed methods to
formulate an automated measure of social engagement. Section
Interaction Scenario Design describes the child-robot interaction
scenario we used in this study. Sections Multimodal Data
Collection and Extracting Ground Truth present the modalities
of the data we collected during our experiments and the methods
we employed to label these data. Sections Feature Extraction and
Network Architecture discuss our feature extraction methods
and design of our convolutional neural network for multi-label
classification. Sections User Study, Results, and Comparison with
Other Machine Learning Classifiersdescribe the user study, its
results and a comparison of the proposed network with other
classical algorithms. Section Discussion presents a discussion on
these findings while Section Conclusion concludes this paper
with comments on the future work.

RELATED WORK

Several studies in the past have contributed to this area of
research with each method typically varying in terms of the
feature set, number of engagement classes and computational
model that were used, as well as the demographics of the
participants from whom the data were collected. Rajagopalan
et al. (2015) showed the feasibility of utilizing low-level
behavioral features in the absence of accurate high-level features,
and used a two-stage approach to first find hidden structures in
the data (using Hidden Conditional Random Fields) and then
learn them through a Support Vector Machine (SVM). Only
head pose orientation estimates were used to assess engagement
and the approach was evaluated by conducting experiments
on labeled child interaction data from the Multimodal Dyadic
Behavior Dataset (Rehg et al., 2013), obtaining an accuracy of
around 70%.

Gupta et al. (2016) designed an engagement prediction system
that utilized only the prosodic features of a child’s speech as
observed during a structured interaction between a child and
a psychologist involving several tasks from the Rapid ABC
database. Three engagement classes and two levels of prosodic
features (local for short-term and global for task-wide patterns)
were defined. The system achieved an unweighted average recall
of 55.8%, where the best classification results were obtained
by using an SVM that utilized both categories of the prosodic
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features. Another study by Lala et al. (2017) used several verbal
and non-verbal behavioral features, including nodding, eye gaze,
laughing and verbal backchannels. The authors collected their
own dataset comprising audio and video recordings based on
conversational scenarios between a human user and a humanoid
robot, while human annotators provided labels to establish
ground truth. A Bayesian binary classifier was used to classify the
user as engaged or not engaged and obtained an AUC (area under
the precision-recall curve) score of 0.62.

A study from Castellano et al. (2009) used both behavioral
features from the user (gaze focus and smiling) and contextual
information from the activity in order to train a Bayesian
classifier to detect engagement in users for a child-robot
interaction scenario. The labels generated from human coding
were based only on the two user behaviors. The authors reported
only a slight improvement in the classifier recognition rate when
using both behavioral and contextual features (94.79%) vs. when
only behavioral features were utilized (93.75%), highlighting the
key importance of the behavioral information.

Kim et al. (2016) investigated the use of vocal/acoustic
features in determining child engagement in group interaction
scenarios. The annotation scheme involves the giving and
receiving of attention from other group members. They used
a combination of ordinal regression and ranking with SVM
to detect engagement in children and found this technique
to outperform classification, simple regression and rule-based
approaches. Such a system may be acceptable to use with
typically-developing children, but since children with ASD may
often be non-verbal and/or shy or unwilling to communicate
using speech/vocalizations, the exclusive use of acoustic features
may not be suited to research involving the ASD population.

Another study from Parekh et al. (2018) developed a video
system for measuring engagement in patients with dementia,
which uses deep-learning based computer vision algorithms to
evaluate their engagement in an activity to provide behavior
analytics based on facial expression and gaze analysis. Ground
truth was extracted through scoring performed by human
annotators by classifying engagement states in terms of attention
and attitude. The video system presented in this study was
exclusively tested with elderly patients with dementia who were
required to participate in a digital interaction while seated
directly in front of the camera. Additionally, since only facial
expressions and gaze features were utilized, the proximity of the
participants to the camera was important, hence, limiting their
physical movements.

Oertel and Salvi (2013) studied the relation between group
involvement and individual engagement using several features
of eye gaze patterns defined as presence, entropy, symmetry and
maxgaze. They utilized the Stockholm Werewolf Corpus, which
is a video dataset of participants engaging in a game that involved
the use of speech and eye gaze. Once again, since only eye gaze
patterns were used as features to train a classifier, participants
were required to remain seated in front of the cameras.

A study that specifically tested their system on the ASD
population was from Anzalone et al. (2015) that used a
combination of static (focus of attention, head stability and body
posture stability) and dynamic (joint attention, synchrony, and
imitation) metrics within two distinct use cases including one

where the robot attempts to learn the colors in its environment
with the help of a human, and another that elicits joint
attention from participating children with ASD. The features
were extracted using histogram heatmaps and clustered using the
K-means algorithm.

In Rudovic et al. (2018) also targeted the automated
measurement of engagement for ASD children with multimodal
data collection including features from video (facial expressions,
head movements, body movements, poses, and gestures), audio,
and physiological (heart rate, electrodermal activity, and heart
rate) data. The child-robot interaction setting involved an
emotion recognition activity with a humanoid robot that
required children to be seated in front of the robot (Rudovic et al.,
2017). Participating children belonged to one of two cultures
(Eatsern European and Asian) and the cultural differences were
also taken into account during engagement estimation. The
authors generated ground truth through expert human labelers
who marked changes in engagement on a 0–5 Likert scale that
is based on the different levels of prompting required from
the therapist during the interaction with the robot. In fact, in
this work, child engagement is considered to be a function of
task-driven behavioral engagement and affective engagement.

Despite the overlap, this approach is significantly different
from the one proposed in this paper in several ways. Firstly,
we define engagement as a function of several key behavioral
indicators that provide an insight into an individual’s internal
engagement state (Javed et al., 2019), which generates a novel
measure to estimate social engagement state i.e., the engagement
index. Additionally, our methods do not restrict the movement
of the subjects by requiring them to be seated in front of
a camera or a robot, and the interaction design allows for
free, naturalistic movement in order to closely resemble real-
world social settings as opposed to other restrictive experimental
approaches. Importantly, this approach toward engagement
estimation can be easily generalized to any child, with or without
ASD, and to a variety of different, interactive experimental
settings that may or may not involve a robot.

The work described in this paper presents a social engagement
prediction system for children. It utilizes a combination of
features extracted from facial expressions and upper bodymotion
tracking data to train a deep convolutional neural network that
can then classify the engagement state of a child.We intentionally
designed the experiments to not be strictly structured in order
to encourage naturalistic and unguided child-robot interactions
during data collection that impose no restrictions on the
movement of a child. The nature of the features used in our
approach allow for independence of interaction context and can
easily be extended to a variety of scenarios within laboratory
or home settings. In addition, a unique engagement model is
obtained for every individual participant to ensure personalized
interaction with the robot, giving it potential to be used as an
intervention tool for ASD.

INTERACTION SCENARIO DESIGN

For this work, we used socially assistive robots to design a
child-robot interaction that targeted the sensory processing
difficulties in ASD, as detailed in our previous work (Javed
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et al., 2019). In this pedagogical setting, two different mobile
robots were used to model socially acceptable responses to
potentially overwhelming sensory stimulation that a child is
likely to encounter in everyday experiences. The humanoid
robot, Robotis Mini (from Robotis) and the iPod-based robot,
Romo (from Romotive) both had their unique set of capabilities.
While Mini used gestures and speech to communicate, Romo
relied mostly on its large set of emotional expressions and
some movements.

A maze-like setup consisting of a station for each of the
visual, auditory, olfactory, gustatory, tactile and vestibular senses
was used, as shown in Figure 1. Though one of the goals
of the interaction was to leverage the relationship between a
robot and a child with ASD, as established by a plethora of
previous research (Dautenhahn and Werry, 2004; Scassellati,
2007; Diehl et al., 2012; Cabibihan et al., 2013), the focus
of this work (Javed et al., 2019) was to assess the potential
of this setup as a tool to socially engage children with ASD

and to use the collected data to contribute toward deriving
an automated measure of social engagement. Each sensory
station simulated an everyday experience, such as encountering
bright lights at the Seeing station, loud music at the Hearing
station, scented flowers at the Smelling station, different food
items at the Tasting station, materials with different textures
at the Touching station and summersaulting to celebrate at the
vestibular station (Figure 2). These scenarios were chosen to
incorporate everyday stimulation that all children experience
in uncontrolled environments like malls, playgrounds, cinemas
etc. and in the activities of daily living such as eating meals
and dressing. This interaction was designed to be highly
interactive and engaging, and required the child to participate
actively by answering questions from the robots, following
their instructions, and “helping” them complete the maze.
Details of this study, including the nature of interaction
between the children and the robots, can be found in
Javed et al. (2019).

FIGURE 1 | Station setup for the sensory maze game (the child’s photo rights reserved).

FIGURE 2 | The two robots at each sensory station, adapted from Javed et al. (2019).
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FIGURE 3 | Upper body and facial keypoints generated by OpenPose.

MULTIMODAL DATA COLLECTION

A high-quality measure for social engagement estimation must
take into account all behavioral and physiological cues that can
serve as quantifiers of social motivation and social interaction.
As discussed in Section Introduction, a number of behavioral
traits and physiological signals can be used effectively to this end.
However, when designing an interaction for autistic children,
their unique needs and sensitivities must be taken into account.
For this study, this meant that only non-contact sensors could
be used in order to limit tactile disturbances to the children and
enable free movement to allow for naturalistic interaction. The
combination of sensors also needed to provide a wholistic and
accurate representation of a child’s engagement changes over the
length of the interaction.

We collected video recordings of the child-robot interactions
with a camcorder placed in one corner of the room, which
was repositioned by an instructor as the child moved during
the interaction. From these recordings, we were able to extract
audio data as well as 2-D motion tracking data with the
OpenPose library (Cao et al., 2017). While OpenPose provides
full body motion tracking (Figure 3), we were only able to
utilize upper body data since the chosen experimental setting
meant that children were often standing in front of the
table that hosted the maze setup, preventing a full-body view
from being captured. In addition, OpenPose also allowed for
the extraction of facial expression datapoints from the same
video data.

EXTRACTING GROUND TRUTH

Unlike some of the previous studies described in Section Related
Work, we did not use any existing video datasets to test our
methods. Since our goal was to derive an engagement measure
specific to the interactions that we designed for children with
ASD, we opted to test our methods on the relatively limited
data available from our user study. To extract ground truth
for a child’s engagement in the interaction with the robots,
we defined six target behaviors that have been found to be
key behavioral indicators of social engagement (Tiegerman and
Primavera, 1982, 1984; Wimpory et al., 2000; Nadel, 2002;

Ingersoll, 2008; Stanton et al., 2008; Katagiri et al., 2010; Sanefuji
and Ohgami, 2011; Tapus et al., 2012; Slaughter and Ong, 2014;
Dubey et al., 2015; Contaldo et al., 2016). These included eye gaze
focus, vocalizations, smiling, self-initiated interactions, triadic
interactions and imitation.

Three raters then coded these videos using the Behavioral
Observation Research Interactive Software (BORIS) (Friard and
Gamba, 2016) to annotate the start and stop times of each target
behavior as it was identified in the video recordings. An inter-
coder correlation (ICC) score of 0.8752 ± 0.145 was achieved
for the 18 participants, which was used to evaluate the quality of
the annotations. Details of the evaluation criteria are reported in
Javed et al. (2019).

An eye gaze event was tagged each time the child’s gaze moved
to the robots or the setup and stopped when the gaze focus
was lost. Vocalizations comprised of any verbal expression from
the child, including but not limited to a shriek of excitement
while interacting with the robots or the utterance of words
to communicate sentiments or queries regarding the robots.
Smiling recorded all events where a child was observed to
visibly express joy in the form of a smile or laugh. Self-
initiated interactions involved all interactions with the robots
or setup that are initiated by the child. Triadic interactions
comprised of an interaction where a child voluntarily involved
a third entity in the interaction with the robot, such as sharing
their excitement with the parent. Lastly, imitations included
all events of voluntary imitation the robot’s actions by the
child. An in-depth report on the inclusion criteria of the target
behaviors, their significance and annotations in video data can be
found in Javed et al. (2019).

Based on these annotations, multiple analytics were derived
to quantify the social engagement with respect to each robot
and target behavior, and across stations to obtain a fine-grained
analysis of the child’s interaction preferences (Javed et al., 2019).
However, for the current work, we have only used the raw
time series data of every child’s changing engagement state
as determined by the chosen target behaviors. These overall
engagement changes are shown in Figure 4, along with the
subplots of each contributing key behavior.

Therefore, each instance of time was mapped to an
engagement state. Every behavior contributed a factor of 1/6
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FIGURE 4 | Plots depicting changes in the overall engagement level of a child during an interaction, along with subplots of the target behaviors contributing to this

engagement, adapted from Javed et al. (2019).

to the engagement value, thus resulting in a metric with seven
distinct values that ranged from 0 (no target behavior observed)
to 1 (all target behaviors observed).

FEATURE EXTRACTION

An ideal automated engagement measure in this case would
incorporate all of the above behaviors, but also necessitates the
automated classification of these behaviors. This is no trivial task,
and involves contributions from multiple disciplines including
computer vision, speech analysis and machine learning. As a
part of a more practical approach that is fitting of a first
step toward the derivation of an automated measure of social
engagement in ASD, we decided to extract low-level behavioral
components from our video data as indicators of engagement in
the interactions with the robots. For this purpose, we utilized
the 2D body tracking and facial expression data generated by
OpenPose (Cao et al., 2017).

Using the body tracking data, we derived three new features
based on Laban Movement Analysis (LMA), a method for
describing and interpreting all types of human movement (Groff,
1995) used frequently in a variety of fields including dance,

acting, music, and physical therapy etc. LMA categorizes all
body movements into the categories of body effort, space and
shape. Out of the four categories, effort represents the dynamics
of human movement and provides an insight into the subtle
characteristics of movements with respect to inner intention.
This makes it an important feature to use in studies involving
the estimation of affect, intention, and engagement states. Effort
itself is classified into space, weight and time, which are the
three features that we incorporated in our current work. Space
represents the area taken up over the course of a movement,
weight indicates the power or impact of movement, and time
conveys the speed of an action, including a sense of urgency or a
lack thereof in a movement. The equations (Masuda et al., 2009;
Wakayama et al., 2010) for each of these features are as shown
in Table 1.

OpenPose generates 50 keypoints for skeletal tracking as
described in Cao et al. (2017). In addition to the skeletal data,
we also recorded facial keypoints to incorporate the changes in
a child’s facial expressions in our feature set. Figure 5 [taken
from CMU Perceptual-Computing-Lab (2019)] depicts these
datapoints. While a total of 69 facial keypoints is available, we
only used the lip and eye keypoints shown on the right. Including
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the x and y coordinates for each of the 34 facial keypoints and
the three Laban features derived from the upper body skeletal
keypoints created a total of 71 features in the dataset. A moving
window of 1 s, i.e., 30 frames, was used to compute the Laban
features in order to incorporate the sequential nature of the
movement data. A 1 second interval was chosen to capture
meaningful, yet rapidly changing movement patterns in response
to the actions of the robot during the child-robot interaction.
The number of available datapoints per participant depended
on the length of interaction of each participant and ranged
between 9,300 and 30,508 datapoints. Further details are listed
in Table 3.

TABLE 1 | Equations for the derived Laban features adopted from Masuda et al.

(2009) and Wakayama et al. (2010).

Feature Equation

Space space =

(
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∣
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sin(θ2)
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where
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a = Position vector from left shoulder to left hand
⇀

b = Position vector from right shoulder to left shoulder
⇀

c = Position vector from right hand to right shoulder
⇀

d = Position vector from left hand to right hand

θ1 = Angle between
⇀

a&
⇀

d

θ2 = Angle between
⇀

c&
⇀

b

Weight Weight =
∑

i

τi (t)

where τi = L2ωi
2sin(θ) *mass

ωi =
dθ

dt

L = Distance between joints

i = Joint number

ω̇i = Angular velocity for joint i

Time Timei =
∑

i

ω̇i (t)

where i = Joint number

ω̇i= Angular velocity for joint i

NETWORK ARCHITECTURE

We used a multi-channel and multi-layer convolutional neural
network (CNN) for this temporal multi-label classification
problem. The network was composed of two Conv1D layers to
identify temporal data patterns (with 5 channels with 64 and 128
filters, respectively, and a kernel size of 3 with 20% dropout) and
three dense layers for classification [kernel sizes 256, 256, and
7 (number of output labels: value ranges of engagement level)].
This is illustrated in more detail in Figure 6. A 10-fold cross-
validation (train/test split of 0.8/0.2) was used for every subject’s
individual dataset and optimization was performed using the
Adam optimizer.

The two Conv1D layers are meant to extract high-level
features from the temporal data since the dataset being used
has a high input dimension and a relatively small number of
datapoints. Since the data have a non-linear structure, the first
two dense layers are used to spread the feature dimension,
whereas the last one generates the output dimension. The
dropout layers are used to avoid overfitting.

USER STUDY

We conducted a user study with a total of 18 children, 13 TD and
5 with ASD between the ages of 4 and 12 years who participated
in a one-time interaction with our robots within the setting of a
sensory maze game. The average age of the TD group was 7.07±
2.56 years and that of the ASD group was 8.2 ± 1.10 years. The
TD group consisted of 5 females and 8 males, whereas the ASD
group was composed of all male participants. These details are
presented in Table 2.

The participants were allowed to participate for the entire
course of the interaction as designed with the two robots, one
after another. The data presented in this study is for one-time
interactions between each subject and the robots. The length
of the interaction for each participant is listed in Table 2. The
average TD interaction length was 464.92 s whereas that of the

FIGURE 5 | Illustrations of the skeletal and facial keypoints extracted by OpenPose (CMU Perceptual-Computing-Lab, 2019) (permission acquired from the author for

using these images with citation).
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FIGURE 6 | Architecture of the CNN used for multi-label classification.

ASD group was 620 s. Individual engagement prediction models
were generated for each participant and their performances
were evaluated.

RESULTS

Table 3 presents the detailed results produced by training,
validation and testing our network for every subject in the study.
The length of interaction is important and provides an insight
into the number of video frames, and hence, the datapoints that
would be available to the network. The datapoint count is also
affected by the processing performed by OpenPose, which can
drop some frames where processing could not be completed. This
is particularly evident in the case of participant 6 and 12, where
the number of available datapoints are far fewer than expected.

Before presenting the results, it must be highlighted that the
metrics shown in this work are all weighted metrics, so as to
address the impact of the imbalance in engagement level samples
within the dataset. The network has an average accuracy of 0.7985
for the TD group and 0.8061 for the ASD group in the training
stage. For the test data, the performance remains steady with an
average accuracy of 0.7767 for the ASD group and 0.7918 for the
TD group. These details are shown in Table 4.

Figure 7 depicts the accuracy and loss plots for training and
validation data for a participant from each group illustrating
the changes in accuracy with respect to the number of
epochs. Figure 8 shows the timeseries plots of the changing
engagement states for the participants. The red line shows
the true engagement as determined by the annotations (Javed
et al., 2019). Predictions made by the network are marked
in blue. Since the dataset was randomly partitioned into test
and training data, the predictions on the test set appear as
a scatter plot.

In addition to the individual models described above, we
also trained a group model for each of the two groups by
using all the datapoints collected from the participants from
each group. The ASD classifier was able to achieve a training

TABLE 2 | Demographic details of the subjects.

ID Age Gender Group

1 10 M TD

2 4 F TD

3 5 F TD

4 11 F TD

5 9 M TD

6 10 F TD

7 9 M TD

8 5 M TD

9 5 F TD

10 5 M TD

11 5 M TD

12 5 M TD

13 9 M TD

14 7 M ASD

15 8 M ASD

16 10 M ASD

17 8 M ASD

18 8 M ASD

accuracy of 0.6389 and a test accuracy of 0.6524, while the
TD classifier achieved a slightly higher training accuracy of
0.6733 and a test accuracy of 0.6803. The slightly superior
performance of the classifiers on the test data as opposed to
the training data can be attributed to the use of regularization
techniques used when constructing the classifier structure, in
this case, the Dropout layers, which are only applied during the
training phase.

We also trained a combined classifier on the data collected
from all the participants. This model underperformed slightly
compared to the group-specific classifiers, indicating that a
group-specific classifier may be better suited for generalization
to all participants within the group rather than a single classifier
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TABLE 3 | Performance metrics for the individual classifiers (TD Group: ID1–ID13, ASD Group: ID14–ID18).

ID Interaction length (s) No. of datapoints (frames) Train Validation Test

Accuracy Loss Accuracy Loss Accuracy

1 315 9,444 0.8101 0.5028 0.7790 0.6681 0.7946

2 519 15,357 0.6499 0.7278 0.6398 0.7797 0.6393

3 540 16,412 0.6703 0.8723 0.6407 1.0095 0.6526

4 658 10,933 0.8302 0.4189 0.8131 0.4923 0.8240

5 797 22,996 0.9255 0.1903 0.9198 0.2484 0.9159

6 696 9,300 0.9200 0.2850 0.8925 0.3856 0.9124

7 316 9,388 0.7821 0.5423 0.7417 0.7946 0.7338

8 457 13,725 0.7561 0.6065 0.7418 0.6796 0.7483

9 574 10,463 0.6671 0.8486 0.6535 0.9333 0.6364

10 780 16,627 0.9104 0.2253 0.8831 0.3907 0.8698

11 726 12,726 0.8390 0.3843 0.8303 0.4039 0.8283

12 685 9,723 0.8118 0.5162 0.7715 0.6980 0.7720

13 540 12,879 0.8084 0.4296 0.7812 0.5858 0.7702

14 517 15,502 0.8163 0.4417 0.7952 0.5621 0.7907

15 578 14,624 0.9204 0.2276 0.8923 0.3390 0.9108

16 679 15,950 0.6810 0.7582 0.6501 0.9095 0.6398

17 610 16,401 0.8306 0.3946 0.8232 0.4923 0.8366

18 1058 30,508 0.7822 0.5467 0.7759 0.6323 0.7812

FIGURE 7 | Classifier accuracy and loss with respect to the number of epochs for two different participants.
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FIGURE 8 | Plots showing the ground truth labels in red and the classifier predictions in blue.

TABLE 4 | Average metrics to compare classifier performance.

ID Average interaction

length (s)

Train Validation Test

Accuracy Loss Accuracy Loss Accuracy

TD 584.8 0.7985 0.5038 0.7760 0.6207 0.7767

ASD 688.4 0.8061 0.4738 0.7873 0.5870 0.7918

for all participants (Table 5). Accuracy and loss plots for the
training and validating processes for all three grouped conditions
are shown in Figure 9.

COMPARISON WITH OTHER MACHINE
LEARNING CLASSIFIERS

A number of standard Machine Learning (ML) classifiers were
also trained for all the scenarios described above as a way to
situate the performance of the CNN, which included Support
Vector Classification (SVC), Random Forest (RF), Decision
Trees (DT), and K-Nearest Neighbors (KNN). The reported
metrics were also averaged across all participants to compare the
overall performance of the classifiers. As before, each classifier
was trained and tested on entire group datasets to compare
performance as a generalized group classifier. These results are
shown in Table 6.

After averaging over the metrics for all participants, RF is
seen to have the best performance followed by KNN and CNN,
respectively. A similar trend is seen for grouped classifiers, where
RF once again outperforms all other classifiers in terms of both
the accuracy and the F1 score, followed again by KNN and
CNN, respectively. All classifier performances drop slightly when

TABLE 5 | Performance metrics for group classifiers.

Classifier Train Validation Test

Accuracy Loss Accuracy Loss Accuracy

TD 0.6733 0.8472 0.6800 0.8263 0.6803

ASD 0.6389 0.9320 0.6512 0.8858 0.6524

Combined 0.6733 0.8472 0.6800 0.8263 0.6803

data from the two groups are combined, suggesting that a single
classifier may not be as useful for generalization as a group-
specific classifier.

DISCUSSION

In this work, we propose the use of a Deep Learning
Convolutional Neural Network to model and predict child social
engagement as a part of our larger goal to personalize child-robot
interactions. We utilized key social behaviors as indicators of
engagement in an interaction, which formed the criterion for the
human-generated labels that serves as the ground truth for this
engagement classification approach.

We found that the proposed CNN was able to achieve a
performance that was comparable to the highest performing
classical ML approaches in this work. The RF and KNN classifiers
only slightly outperform the CNN in the case of both individual
classifiers and grouped classifiers. The individual classifiers serve
as personalized engagement prediction networks for the unique
behavioral expressions of each individual participant, whereas the
grouped classifiers were used to evaluate the potential for a single
classifier to generalize the learnt patterns to all the participants
within a group.
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FIGURE 9 | Classifier accuracy and loss for training and test datasets for three grouped conditions.
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TABLE 6 | Performance metrics for all classifiers under individual and group conditions.

Classifier

CNN SVC RF DT KNN

ID Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

1 0.79 0.77 0.77 0.72 0.80 0.78 0.77 0.75 0.81 0.79

2 0.64 0.62 0.58 0.55 0.75 0.75 0.65 0.64 0.72 0.71

3 0.65 0.59 0.66 0.55 0.67 0.61 0.65 0.58 0.67 0.61

4 0.82 0.79 0.82 0.76 0.83 0.81 0.82 0.79 0.83 0.81

5 0.92 0.91 0.89 0.87 0.93 0.92 0.90 0.89 0.93 0.93

6 0.91 0.89 0.92 0.90 0.90 0.89 0.91 0.89 0.92 0.90

7 0.73 0.73 0.61 0.59 0.80 0.80 0.72 0.71 0.80 0.80

8 0.75 0.74 0.51 0.47 0.82 0.82 0.66 0.66 0.82 0.81

9 0.64 0.57 0.63 0.56 0.65 0.60 0.63 0.57 0.67 0.61

10 0.87 0.87 0.79 0.77 0.88 0.87 0.82 0.82 0.85 0.85

11 0.77 0.76 0.69 0.65 0.78 0.77 0.72 0.71 0.76 0.74

12 0.83 0.78 0.81 0.74 0.84 0.81 0.82 0.79 0.84 0.80

13 0.77 0.77 0.73 0.69 0.79 0.80 0.77 0.77 0.79 0.80

14 0.79 0.79 0.70 0.69 0.82 0.81 0.73 0.73 0.81 0.81

15 0.91 0.90 0.87 0.83 0.92 0.90 0.90 0.88 0.92 0.91

16 0.64 0.62 0.61 0.57 0.67 0.65 0.62 0.60 0.68 0.66

17 0.84 0.84 0.70 0.69 0.88 0.88 0.76 0.75 0.84 0.84

18 0.78 0.78 0.63 0.60 0.79 0.78 0.61 0.58 0.78 0.78

Average 0.78 0.76 0.72 0.68 0.81 0.79 0.75 0.73 0.80 0.79

TD 0.68 0.65 0.63 0.58 0.74 0.74 0.64 0.61 0.74 0.73

ASD 0.72 0.71 0.60 0.58 0.77 0.76 0.61 0.60 0.76 0.76

Combined 0.65 0.62 0.59 0.54 0.74 0.71 0.60 0.56 0.71 0.71

On the individual level, the CNN was able to attain a best
case accuracy of 0.92 (participant 5) and a worst case accuracy of
0.64 (participant 2). On the other hand, the RF classifier reached
a highest accuracy of 0.93 (participant 5) and lowest accuracy
of 0.65 (participant 9). For the averaged metrics as well as the
groupedmetrics, the RF accuracy is nomore than 2% higher than
that of the CNN.

The individual ASD and TD classifiers were generally found
to achieve a higher accuracy than the single classifier trained
on data from all the participants. This points the possibility
of a generalized group classifier that can be used effectively
to classify social engagement for all the children in each
group while providing a high level of personalization in
the interaction.

The CNN is a complex structure with a large number of
tunable parameters that generally requires much larger datasets
to fully exploit the potential of deep networks. Given the number
of input features, the number of output classes and the size of the
dataset (generated by single session child-robot interactions only)
used in this study, the CNN was able to achieve a performance
comparable to simpler ML classifiers but not exceed them. We
anticipate that as we continue to collect interaction data from
additional participants for a long-term study involving multiple
sessions, the proposed deep learning network will likely become
a more suitable choice for social engagement classification.

It must also be pointed out that in terms of deployment to
a robotic platform, a CNN may also be a more suitable option
since the traditional algorithms require expensive resources when
deployed to mobile platform in real-world applications, whereas
deep learning algorithms can fully take advantage of the scalable
computing platforms with GPUs that have low-cost modules (like
the NVidia Jetson Nano) while retaining the capacity to handle
much larger datasets.

The current work is limited in that it only utilizes single
session data for each participant based on which the classifiers are
trained. Classifier performance is likely to improve as subsequent
sessions are conducted and larger datasets are collected. Another
limitation of this work is that the datasets for the two groups
are unbalanced, with 13 participants in the TD group and only
five in the ASD group generating much larger training dataset for
the TD classifier than ASD. Conducting long-term studies with a
population such as ASD remains a considerable challenge for all
researchers in the field and explains the lack of open multi-modal
datasets to benefit the ASD research community.

Since our focus in this work was to evaluate social engagement
in a naturalistic interaction setting, the video recordings of the
sessions mainly focused on the participant but also included
other members of the research team and/or parent in several
segments of the videos as the child moved around the room
to interact with the robots. OpenPose was chosen to process
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the movements of the participants particularly because it offers
a feature to track multiple persons by assigning each a fixed
ID. In practice, however, this ID assignment was found to lack
reliability, which we discovered by visualizing the participant’s
skeletal tracking data. In addition, we also found that the number
of frames in the input video and the number of frames generated
as output by OpenPose were often inconsistent, contributing to
the loss of data.

It would be interesting to see how the classifier performance
changes over long-term interactions between the children and
robots. Child engagement is likely to vary with continued
exposure to the robots and inclusion of additional temporal
features in the dataset may become important. We also aim
to incorporate additional modalities to our dataset, including
physiological signals like heart rate, electrodermal activity, body
temperature and blood pressure, as well as audio features. For
this complex feature set, we foresee a deep learning network
to be a more suitable classifier choice capable of identifying
patterns relating to different levels of social engagement
in children.

CONCLUSION

In this paper, we presented a multi-label convolutional neural
network classifier to formulate an automated measure of social
engagement for children. To provide a personalized metric that
is the best representation of the unique expression of emotion,
interest and intention of each individual, we trained a separate
classifier for each subject and then evaluated its performance. We
designed the study to ensure the participants were not restricted
in their movements at all in order to closely mimic naturalistic
interactions in the real world. The use of this setting increases
the complexity of data collection and analysis but enables the
generalization of the presented analysis techniques to other
interaction scenarios and populations, which sets this work apart
from other research studies in this domain.
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