Terbium-149 production: a focus on yield and quality improvement towards preclinical application

Supplementary information

C. Favaretto^{1,2}, P. V. Grundler², Z. Talip², U. Köster^{3,4}, K. Johnston⁴, S. D. Busslinger², P. Sprung⁵, C. C. Hillhouse⁶, R. Eichler^{6,7}, R. Schibli^{2,8}, C. Müller^{2,8}, N. P. van der Meulen^{2,6*}

¹ Nuclear Medicine Department, Universtiätsspital Basel, Basel, Switzerland
² Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
³ Institute Laue-Langevin, Grenoble, France

⁴ Physics Department, ISOLDE/CERN, Geneva, Switzerland

⁵ Department Hot Laboratory, Paul Scherrer Institute, Villigen-PSI, Switzerland

⁶ Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland

⁷ Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland

⁸ Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland

†Dedicated to the memory of Gerd-Jürgen Beyer, the "Godfather of terbium-149"

*Corresponding Author: Dr. Nicholas P. van der Meulen

Laboratory of Radiochemistry/Center for Radiopharmaceutical Sciences

Paul Scherrer Institute

5232 Villigen-PSI

Switzerland

Tel: +41 56 310 50 87

email: nick.vandermeulen@psi.ch

Supplementary Notes and Methods

Terbium-149 coproduced isobars and pseudo-isobars

Supplementary Table S1 Decay properties of terbium-149 and its isobars or decay products dysprosium-149, gadolinium-149 (decay product), europium-149 and europium-145 (decay product).^{1,2}

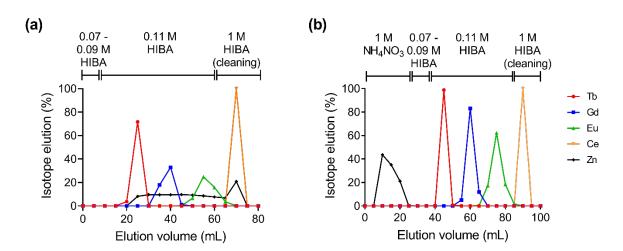
	Tb-149	Dy-149	Gd-149	Eu-149	Eu-145
Half-life	4.1 h	4.2 min	9.3 d	93.1 d	5.9 d
Main	$EC + \alpha + \beta^+$	$EC + \beta^+$	$EC + \beta^+$	EC	β^+
decay					
mode					
Eγ (keV)	352.2 (29.8)	100.7 (15.3)	149.7 (48.4)	327.5 (4.75)	893.7 (66)
(Iy [%])	165.0 (26.7)	789.4 (11.6)	298.6 (27.9)	277.1 (4.18)	653.5 (15.0)
	388.6 (18.6)	1776.2 (11.7)	346.7 (23.7)		1658.5 (15)
	652.1 (16.5)	653.6 (9.1)	748.6 (8.3)		1997.0 (7.2)
	853.4 (15.7)	106.2 (8.30)	788.9 (7.3)		
	817.1 (11.8)	1805.8 (7.7)			
	861.9 (7.60)	253.6 (6.78)			
	464.9 (5.73)	775.1 (2.7)			

Only the lines with $I\gamma > 5\%$ are reported (except for europium-149).

Supplementary Table S2 Decay properties of terbium-149 pseudo-isobars praseodymium-133, cerium-133 and lanthanum-133.³

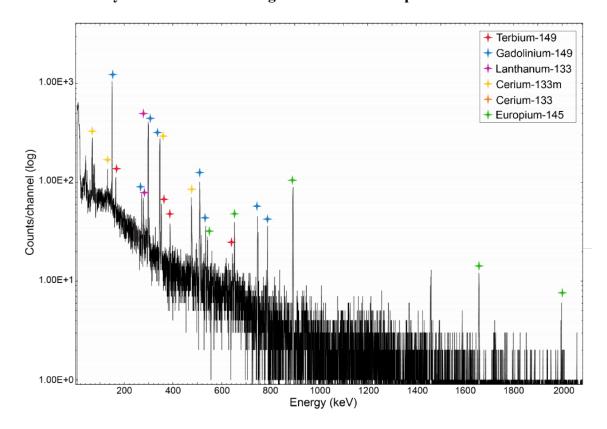
	Pr-133	Ce-133	Ce-133m	La-133
Half-life	6.5 min	97 min	5.1 h	3.9 h
Main decay mode	$EC + \beta^+$	$EC + \beta^+$	$EC + \beta^+$	$EC + \beta^+$
Eγ (keV)	134.3 (100)	97.3 (46)	477.2 (39.3)	278.8 (2.4)
(Ιγ [%])	315.6 (88)	76.9 (15.9)	510.4 (20.8)	302.4 (1.6)
	465.2 (62)	557.7 (11.4)	58.4 (19.3)	290.1 (1.4)
	330.9 (51)		130.8 (18.0)	
	241.9 (42)		784.6 (9.7)	
	362.5 (13.6)		87.9 (5.2)	
	645.2 (11.8)			
	183.8 (9.6)			
	303.0 (8.0)			
	318.0 (7.4)			
	496.4 (7.4)			
	149.6 (6.4)			
	537.3 (6.1)			
	223.2 (5.4)			

Only the lines with $I\gamma > 5\%$ are reported (except for lanthanum-133).


Preclinical PET/CT scan

Five-week-old female, athymic CD1 nude mice were obtained from Charles River Laboratories (Sulzfeld, Germany). After an acclimatization period of at least 7 days, mice were subcutaneously

inoculated with AR42J tumor cells, a rat pancreatic tumor cell line, (5×10^6 cells in 100 µL phosphate-buffered saline (PBS)) on the right shoulder as previously reported.⁴ PET/CT scans were acquired 10-14 days after tumor cell inoculation. [149Tb]Tb-DOTATATE (5 MBq, 0.5 nmol, prepared as described above and diluted in PBS with 0.05% bovine serum albumin) was injected into a lateral tail vein of the mouse. During the scan, the mouse was anesthetized with a mixture of isoflurane and oxygen. The scans were performed using a small-animal bench-top PET/CT scanner (G8, Perkin Elmer, Massachusetts, U.S.A.⁵), as previously reported,⁶ with a set energy window ranging from 150 keV to 650 keV. Static whole-body PET scans of 10 min duration were performed at 2 h after injection of the radiopeptide, followed by a CT scan of ~1.5 min. The acquisition reconstruction of the images was performed using the G8 PET/CT scanner software (version 2.0.0.10). All images were prepared using VivoQuant post-processing software (version 3.5, inviCRO Imaging Services and Software, Boston U.S.). A Gaussian post-reconstruction filter (full width at half maximum = 1 mm) was applied to the images and the scale adjusted by cutting 10% off the lower signal intensity.


Supplementary Data

Improved zinc separation achieved by introducing a column rinse step with 1 M NH₄NO₃

Supplementary Figure S1 (a) Representative elution profile of zinc, terbium, gadolinium, europium and cerium from Sykam resin column (1.4 mL) by gradient elution of 0.07-1.0 M α -HIBA. (b) Representative elution profile of zinc, terbium, gadolinium, europium and cerium from Sykam resin column (1.4 mL) using 20 mL 1.0 M NH4NO3 followed by gradient elution 0.07-1.0 M α -HIBA.

Residual activity measurement on the gold foil at end of separation

Supplementary Figure S2 γ -spectrum of the gold foil after the dissolution of the Zn layer (90 min measurement time starting 22 hours after EOS; 1 m distance from the detector). Red star = terbium-149 peaks, blue star = gadolinium-149 peaks, violet star = lanthanum-133 peaks, yellow star = cerium-133 m peaks, orange star = cerium-133 peaks, green star = europium-145 peaks.

Metals quantification via ICP-MS in [149Tb]TbCl3 samples at EOS

Supplementary Table S3 Zinc, copper, iron and lead contents in 5 samples of [149Tb]TbCl₃ at EOS.

Campaign	Production	Zinc (ppb)	Copper (ppb)	Iron (ppb)	Lead (ppb)
	2 – Fraction 1	$120 \pm 2.5\%$	$6.40 \pm 13.4\%$	$449\pm1.9\%$	$10.6 \pm 20.6\%$
November 2021	2 – Fraction 2	$263 \pm 2.1\%$	$22.3 \pm 6.5\%$	184 ± 5.7%	$814 \pm 1.6\%$
November 2021	3 – Fraction 1	$73.0 \pm 1.9\%$	2.20 ± 12.7%	$31.9 \pm 5.7\%$	$22.0 \pm 4.1\%$
	4 – Fraction 1	$153 \pm 2.4\%$	< LOQ (5.7)	$225 \pm 5.6\%$	$422\pm1.8\%$
March 2022	4 – Fraction 2	96.4 ± 1.9%	6.90 ± 6.2%	48.5 ± 5.6%	$4.87 \pm 4.9\%$

LOD= limit of detection

References

- 1. Singh, B. & Chen, J. Nuclear Structure and Decay Data for A=149 Isobars. *Nucl. Data Sheets* **185**, 2–559 (2022).
- 2. Browne, E. & Tuli, J. K. Nuclear Data Sheets for A = 145. *Nucl. Data Sheets* **110**, 507–680 (2009).
- 3. Khazov, Y., Rodionov, A. & Kondev, F. G. Nuclear Data Sheets for A = 133. *Nucl. Data Sheets* **112**, 855–1113 (2011).
- 4. Borgna, F. *et al.* Simultaneous visualization of ¹⁶¹Tb-and ¹⁷⁷Lu-Labeled somatostatin analogues using dual-isotope SPECT imaging. *Pharmaceutics* **13**, 1–13 (2021).
- 5. Gu, Z. *et al.* Performance evaluation of G8, a high-sensitivity benchtop preclinical PET/CT tomograph. *J. Nucl. Med.* **60**, 142–149 (2019).
- 6. Umbricht, C. A. *et al.* Alpha-PET for Prostate Cancer: Preclinical investigation using ¹⁴⁹Tb-PSMA-617. *Sci. Rep.* **9**, 1–10 (2019).