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THE NATURAL HISTORY OF MODEL ORGANISMS

Advancing biology through
a deeper understanding of
zebrafish ecology and
evolution
Abstract Over the last two decades, the zebrafish has joined the ranks of premier model organisms

for biomedical research, with a full suite of tools and genomic resources. Yet we still know

comparatively little about its natural history. Here I review what is known about the natural history of

the zebrafish, where significant gaps in our knowledge remain, and how a fuller appreciation of this

organism’s ecology and behavior, population genetics, and phylogeny can inform a variety of

research endeavors.
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Introduction
Like so many model organisms, the zebrafish

was chosen for its tractability and, especially,

its potential for genetic analysis and cellular

observation. The founder of ‘modern’ zebrafish

research, George Streisinger, had a passion for

fish but it seems unlikely that he chose this

particular minnow because of any prior insights

into its natural history or its phylogenetic

position within the teleosts (bony fishes).

Rather, the zebrafish was readily available, it

was easy to breed, and its lovely, transparent

embryo was quick to develop. Streisinger’s

efforts at the University of Oregon, and the

hard work of many early adopters of the

species, most notably other labs in Oregon,

Tübingen and Boston, propelled zebrafish into

the top tier of NIH-funded biomedical models

(Grunwald and Eisen, 2002; Kinth et al.,

2013). The zebrafish model ‘system’ now

comprises a sequenced genome, thousands of

mutants, transgenic tools, staging series, and

a wealth of know-how for imaging, embryolog-

ical manipulation, drug discovery and more.

Given all of these resources, one might

wonder how much is known about zebrafish as

an organism (rather than as a system), and

whether it matters. Here, I review briefly what

we do and don’t know about wild zebrafish, and

reflect upon the ways in which a deeper appre-

ciation of zebrafish in their natural habitat can

inform a range of biological enquiries.

Range and habitat
Zebrafish were described by a Scottish physi-

cian, Francis Hamilton, under the auspices of

the British East India Company (Hamilton,

1822). Hamilton’s “beautiful fish” with its

“several blue and silver stripes on each side”

has undergone a few changes to its Latin name

and is now correctly referred to as Danio rerio

(original and more recent synonyms include

Cyprinus and Brachydanio). Formally described

in the state of Bihar in northeastern India,

zebrafish have also been collected in the south

and west of peninsular India, past the city of

Bangalore, and beyond India, as far north as

Pakistan and Nepal, as well as east into

Bangladesh and possibly Myanmar (Figure 1)

(Engeszer et al., 2007b; Spence et al., 2008;

Arunachalam et al., 2013).
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Although found by Hamilton near the Ganges,

it seems unlikely that individual zebrafish ever

intentionally end up in such a large river. Rather,

their typical habitat consists of shallow, slow

moving streams, and, particularly, still pools that

form alongside streams during the monsoons. The

water in these streams and pools is typically clear,

but there can be mud, sand or gravel on the

bottom of the stream or pool, so the water often

becomes turbid in the rain. Some habitat complex-

ity is provided by aquatic vegetation, and cover is

sometimes available from overhanging vegetation

or from overhanging banks. Having co-occurred

with humans for thousands of years, zebrafish also

make themselves at home in rice paddies, drainage

ditches, stock ponds and the like, although they

certainly suffer the effects of pollution and habitat

loss as well (Figure 2A–F). Zebrafish have been

reported at elevations of ∼8–1576 m and in a range

of water conditions, including temperatures be-

tween 12–39˚C, pH levels of 5.9–9.8, and salinities

of ∼0.01–0.8 (Spence et al., 2006; Engeszer et al.,

2007b; Arunachalam et al., 2013).

Zebrafish are omnivores, consuming larval and

adult insects, as well as small crustaceans and

other zooplankton, but also partaking of algae,

plant material and assorted detritus (McClure

et al., 2006; Spence et al., 2007b; Arunachalam

et al., 2013). Interestingly, recently caught wild

zebrafish and domesticated lab strains have

similar intestinal bacteria, suggesting a core gut

microbiota (Roeselers et al., 2011) important for

growth and development (Cheesman et al.,

2011; Semova et al., 2012).

Potential competitors for food, and perhaps

other resources as well, include other minnows,

like Esomus and Puntius, and similar small

fishes (Figure 2G,I–K). Zebrafish can also be

found with larger Danio species (Figure 2H);

although adults may occupy distinct micro-

habitats, competition among larvae is conceiv-

able. Of course, zebrafish are certainly on the

menu themselves: snakehead fish (Channa),

knifefish (Notopterus) and catfish, birds such

as kingfishers and herons, and even dragonfly

larvae, are all likely predators of adults, and

a great many species probably eat zebrafish

eggs and larvae (Figure 2L–O; Engeszer et al.,

2007b). Nevertheless, the impact of competi-

tion and predation on the survival and re-

production of wild zebrafish remain entirely

unknown.

Figure 1. Zebrafish and their geographic range. (A) Historic and more recent sites where zebrafish have been

reported in India, Nepal, Bangladesh and possibly Myanmar (Spence et al., 2006; Engeszer et al., 2007b; Spence

et al., 2008; Whiteley et al., 2011; Arunachalam et al., 2013). (B) Zebrafish from several populations in

northeastern India (Engeszer et al., 2007b). The upper two fish are males and the lower two fish are females; males

tend to have a slightly yellow cast ventrally. (C) A group of zebrafish (a single fish is highlighted with the arrow) in

a stream-side pool in Meghalaya, India, north of Bangladesh. Scale bar: 5 mm (B). Image credits: D Parichy.

DOI: 10.7554/eLife.05635.002
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Behavioral interactions and
syndromes

Field observations of zebrafish behavior are few

and anecdotal, and so much of what zebrafish do

in nature has to be inferred from their behavior in

the lab. One behavior that has received consider-

able attention is the formation of loose social

aggregations, or shoals, which have been ob-

served in the field (see Figure 1C) and studied in

the lab (Engeszer et al., 2007b; Gerlai, 2014).

This behavior might provide protection from

predators, improved foraging success, or access

to mates. Shoaling increases steadily from early

larval stages, and individuals ‘imprint’ on a par-

ticular visual phenotype, showing a preference

for this phenotype by the time they are juveniles

(Engeszer et al., 2004, 2007a; Spence and

Smith, 2007; Mahabir et al., 2013). Interest-

ingly, wild-caught and lab fish (both previously

imprinted on the ‘wild type’) have similar prefer-

ences for prospective shoaling partners when

presented with fish that have different pigment

patterns and other phenotypes, although the

specifics differ between sexes: female preferen-

ces appear to be complex, whereas males show

strong preferences that correlate with stripe

quality and species identity (Engeszer et al.,

2008). Many additional factors might also in-

fluence whether or not zebrafish shoal together

in the wild, including fish size, group size, sex

ratio, olfactory stimuli, kin recognition, predation

risk and light regime (e.g., Pritchard et al., 2001;

Gerlach and Lysiak, 2006; Ruhl et al., 2009).

Lab strains of zebrafish spawn all year round,

but breeding in the wild occurs primarily during

the summer monsoons, when ephemeral pools

appear; these presumably offer plenty to eat and

some shelter from currents and predators. Still

waters might also facilitate pheromonal commu-

nication relevant to oogenesis and courtship

(Bloom and Perlmutter, 1977; van den Hurk

and Lambert, 1983; van den Hurk et al., 1987;

Gerlach, 2006). Spawning tends to occur near

daybreak, and can involve male territoriality, as

well as female preferences for oviposition

Figure 2. Zebrafish habitat and co-occurring species. (A–F) Zebrafish are found in streams both pristine (A) and shared with people (B, D, E), in ephemeral

pools at stream margins (F; a close-up of Figure 1C), and in man-made bodies of water (C). (G–K) Many fish might compete with zebrafish at one or more

of its life stages, including E. danricus (G), D. dangila (juvenile; H), Oryzias (I), Aplocheilus panchax (J), and P. shalynius (K). (L–O) Among potential

predators areMastecembalus (L), Channa (M), Xenentodon (top) and Barilius (N), and Notopterus (O). For details see Engeszer et al. (2007b). Scale bars:

5 mm (G–M); 5 cm (N, O). Image credits: D Parichy.

DOI: 10.7554/eLife.05635.003
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(egg-laying) sites (Spence et al., 2007a, 2008).

Lab studies indicate that courtship and mating

behaviors are stereotypic, although some of the

details may depend on the conditions in which

observations have been made. Behaviors include

the initial approach; chasing by the male and

touching of the male’s nose to the female’s side

or tail; male circling and quivering; the female

leading the male to an oviposition site, or the

male pinning the female against an object; and

oviposition itself (Darrow and Harris, 2004;

Sessa et al., 2008; Kang et al., 2013). Females

can lay up to several hundred eggs at once, or

smaller numbers every few days, but the actual

number of offspring from any given spawning is

highly variable. Indeed, males can differ in the

clutch sizes they elicit from females, (Spence and

Smith, 2006), possibly owing to differences in

body size (Skinner and Watt, 2007); dominance

hierarchies can also influence reproductive suc-

cess (Paull et al., 2010). Although reproductive

maturity can be reached in as little as 4–6 weeks

in the lab, where zebrafish are known to live for

up to several years, we don’t as yet know about

the timing of their maturation or their longevity in

the wild. A deeper understanding of courtship

and breeding preferences, as well as life history

in nature, will be interesting, and may facilitate

research in the lab through improvements in

spawning and rearing efficiencies (Sessa et al.,

2008; Adatto et al., 2011; Nasiadka and Clark,

2012).

Recently, wild zebrafish brought to the lab

have provided new insights into behavioral

syndromes, in which behaviors co-vary, as in

a continuum of boldness and aggression, or

correlated changes that occur during domestica-

tion (for example, changes in both fearfulness

and activity patterns) that likely derive from

intentional selection on some traits and relaxed

selection on others (Moretz et al., 2007; Norton

et al., 2011). Including wild zebrafish in such

studies dramatically expands the range of varia-

tion. Indeed, comparisons of zebrafish isolated

from different geographic regions, and different

lab strains, have revealed striking differences in

behavioral syndromes among populations (Robi-

son and Rowland, 2005; Oswald and Robison,

2008; Drew et al., 2012; Martins and Bhat,

2014). That such differences can be heritable

(Wright et al., 2006; Oswald et al., 2013)

suggests that the genetic bases for natural

variation in behavioral syndromes, and the

evolution of behavioral traits more generally,

can be studied using this species. Of critical

importance to all of these endeavors are

additional observations and experiments in the

field, in order to better understand the zebrafish

behavioral repertoire and its significance for

individual fitness, and also to determine the

extent to which habitat differences between field

and lab might impact our ability to generalize

results from one context to the other.

Population genetics and sex
determination
Genomics is another arena in which wild zebrafish

are providing valuable insights. Most lab zebra-

fish represent any of several commonly used

strains initiated with founders obtained from the

pet trade or, in some cases, from collections in

the wild. Some strains have been maintained to

preserve allelic variation, others to intentionally

minimize genetic diversity, to facilitate genetic

mapping and genome editing, and to control

genetic background effects on mutant and other

phenotypes (Haffter et al., 1996; Rauch et al.,

1997; Trevarrow and Robison, 2004; LaFave

et al., 2014). One theme to emerge is that

laboratory strains differ substantially from one

another, and even some of the more ‘inbred’

strains maintain remarkably high levels of genetic

diversity, as measured by microsatellite variation,

single nucleotide polymorphisms (SNPs), and

gene copy number variants (Nechiporuk et al.,

1999; Guryev et al., 2006; Coe et al., 2009;

Whiteley et al., 2011; Brown et al., 2012).

When samples from wild populations are

analyzed, it becomes clear that even the exten-

sive variation in lab strains represents but a tiny

fraction of total zebrafish genetic diversity (Coe

et al., 2009; Whiteley et al., 2011; Brown et al.,

2012; Patowary et al., 2013). Moreover, despite

the predilection of zebrafish to occupy flood

plains—which might suggest extensive gene

flow—analyses of wild fish across the species’

range indicate this is not always the case: several

populations in the Ganges/Brahmaputra River

basins form a genetic group (into which also fall

three lab strains), but two other, deeply di-

vergent groups have been identified as well

(Whiteley et al., 2011). It seems likely that

further population-level sampling will reveal

additional, genetically differentiated populations,

which could provide outstanding opportunities

to understand local adaptation.

The considerable genetic diversity of zebrafish

is put into perspective by comparisons with the

human genome. For instance, complete genomic

sequences of just two gynogenetic (’double

haploid‘; Streisinger et al., 1981) zebrafish of
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different lab strains revealed ~7 million SNPs

between them; a single, wild zebrafish harbored

over 5 million SNPs within its own genome

(Howe et al., 2013; Patowary et al., 2013). By

contrast, more than a thousand sequenced

human genomes have yielded a ‘mere’ 38 million

SNPs in total and an average of only 3.6 million

SNPs per diploid individual (1000 Genomes

Project Consortium et al., 2012). If the above

zebrafish results are typical of this species, this

works out to SNPs being ∼four-fold more

frequent in zebrafish than they are in humans,

after correcting for genome size. Copy number

variants are likewise ∼1.5-fold more prevalent in

zebrafish than in human genomes (Brown et al.,

2012). It remains unclear why zebrafish are so

diverse genetically; wild zebrafish do not seem to

carry an excess of lethal mutations as compared

to other vertebrates (McCune et al., 2002, 2004).

This level of genetic variation in zebrafish

poses some challenges, such as the added

complexity of assembling genomic sequence

and the need to control rigorously for genetic

background in experiments. It also provides

opportunities: to study genome evolution at

a fine scale, and gene effects that are relevant to

complex traits and genetic disease in admixed

human genomes. Benefitting recently from this

diversity is our understanding of sex determination.

In comparison to so many species—biomedical

models and otherwise—the lack of a demon-

strated sex-determining system had long been

perplexing, and just a bit embarrassing, to

researchers using zebrafish (though presumably

not to the fish themselves). Genetic analyses of

lab strains have identified chromosomal regions

associated with sex determination, yet, surpris-

ingly, these differed between studies (Bradley

et al., 2011; Anderson et al., 2012; Liew et al.,

2012; Howe et al., 2013). Analyses of wild

zebrafish suggest a reason for the discrepancies:

these fish have a major sex determinant (WZ/ZZ)

on chromosome 4—which has features similar to

sex chromosomes in other species—yet this

determinant has been lost from lab strains

(Wilson et al., 2014). This suggests that founder

effects, or domestication itself, led to seemingly

ad hoc systems employing multiple sex determi-

nants, probably of small original effect in the

wild. Thus, comparison of wild and lab zebrafish

has revealed a serendipitous example of how

sex-determining mechanisms can evolve.

Whether this discovery has implications for un-

derstanding reproductive behavior or physiology

in lab strains relative to wild fish has yet to be

explored.

Zebrafish relatives and their
phylogeny
Because every organism is a mix of shared and

derived traits, even the biomedical ‘models’

sometimes differ markedly from other species in

their broader phylogenetic group. Comparisons

with ‘non-model’ relatives can thus provide

important insights into the generality of infer-

ences about development, genetics, and behav-

ior (Parichy, 2005; Harris et al., 2014). Of

course, diversity of form and the evolution of

underlying mechanisms can be interesting in their

own right. Although zebrafish of disparate

populations are not grossly dissimilar morpho-

logically (Arunachalam et al., 2013) (see for

example, Figure 1B), other species in the large

zebrafish family Cyprinidae differ dramatically in

size, shape and other traits (Tang et al., 2010).

Indeed, the subfamily Danioninae includes not

only zebrafish, which grows to 4–5 cm, but also

Danio dangila (Figure 2H), which grows to ∼13
cm, and some of the world’s smallest vertebrates,

like Danionella (Figure 3B) and Paedocypris,

which mature in a larval-like form at only ∼1–1.5
cm (Roberts, 1986; Britz et al., 2009; Mayden

and Chen, 2010).

One trait that differs among Danio and that

has received attention is the pigment patterns of

adult fish. In contrast to the distinct stripes of

zebrafish, other danios have vertical bars, spots,

reduced numbers of stripes, uniform arrange-

ments of pigment cells, and other patterns

(Figure 3A) (McClure, 1999; Parichy and John-

son, 2001; Quigley et al., 2004, 2005; Parichy,

2006). When zebrafish are crossed to other

Danio species in the lab, the hybrid progeny’s

pigmentation patterns often resemble that of

zebrafish, indicating that zebrafish pigmentation

alleles are frequently dominant to those of other

species (Parichy and Johnson, 2001; Quigley

et al., 2005). A pattern consisting initially of two

stripes is likely to be ancestral in Danio, and

vestiges of these stripes occur in many species,

even ones that ultimately develop very different

patterns (Quigley et al., 2004; Mills et al.,

2007). In zebrafish, adult stripes comprise pig-

ment cells of several lineages (Parichy and

Spiewak, 2015) and the formation of this pattern

depends on thyroid hormone (McMenamin

et al., 2014), positional cues, and interactions

among the pigment cells themselves (Nakamasu

et al., 2009; Frohnhofer et al., 2013; Patterson

and Parichy, 2013; Watanabe and Kondo,

2015). Across Danio, the contributions of pig-

ment cell classes to adult patterns differ, as do
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the genetic requirements of the cells (Quigley

et al., 2004; McMenamin et al., 2014) and

probably the nature of pigment cell interactions

as well (Quigley et al., 2005). A recent study

identified cis regulatory changes in gene expres-

sion—and associated alterations in the timing of

pigment cell differentiation—that have likely

contributed to the evolution of a uniform pattern

in D. albolineatus (Patterson et al., 2014).

Although the molecular and cellular mecha-

nisms that underlie pattern development and

evolution are becoming better understood, the

behavioral and ecological significance of Danio

pigment patterns remain largely unknown. By

extension, it remains unclear whether species

differences in patterns are themselves adaptive;

alternative phenotypes might simply represent

independent and equally good ‘solutions’ to

similar selective factors. Adult pigment patterns

of other teleosts can function in species recog-

nition, mate choice, and predation avoidance

(Price et al., 2008), and stripes of adult zebrafish

seem likely to influence shoaling (Engeszer et al.,

2008). A fuller understanding of pattern signifi-

cance will require not only more experiments, but

also more information about the differences in

species’ habitats, including factors both biotic

(such as predation regimes) and abiotic (such as

light quality).

In contrast to the diversity of adult patterns,

early larval patterns of different Danio species are

nearly indistinguishable from one another (Quig-

ley et al., 2004) (Figure 3C). Because larvae

develop in shallow water, and larval pigmentation

covers the central nervous system and developing

gonads, protection from UV exposure (eg.Mueller

and Neuhauss, 2014) is an attractive, albeit

untested, functional hypothesis to explain the

evolutionary conservation of this pattern.

Analyses of trait evolution and mechanisms of

speciation are greatly facilitated by a robust

understanding of species relationships. To date,

studies of the subfamily Danioninae have arrived

at somewhat different interpretations of the

group (Fang, 2003; Rüber et al., 2007; Fang

et al., 2009; Mayden and Chen, 2010; Liao

et al., 2011), although these differences are likely

to be resolved with sampling of additional Danio

species and more sequence within species. A

recent phylogenetic analysis suggests the exis-

tence of two large ‘tribes’ within Danioninae,

Rasborini and Danionini (Figure 3E), the latter

including Danio and Danionella, as well as

Esomus and Devario (such as the ‘giant danio’

Devario aequipinnatus, common in the pet trade)

(Tang et al., 2010). Interestingly, this phyloge-

netic analysis also suggests that extreme minia-

turization may have evolved independently in

Danionella and Paedocypris.

Within Danio itself, 20 species are considered

valid taxonomically (Froese and Binohlan, 2014)

but several have yet to be included in

Figure 3. Zebrafish relatives and phylogeny. (A) Examples of Danio pigment patterns, including spotted and striped morphs of D. kyathit. (B) Adult male

of the miniaturized species Danionella dracula. (C) Larval D. tinwini (3 days post-fertilization), illustrating a typical Danio early larval pigment pattern.

(D) Relationships within Danio (redrawn from: McCluskey and Postlethwait, 2015). (E) Relationships within Danioninae (simplified and redrawn from:

Tang et al., 2010). Branch lengths in D and E are arbitrary. Scale bars: 5 mm (A, B); 0.5 mm (C). Image credits: D Parichy.

DOI: 10.7554/eLife.05635.004
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phylogenetic reconstructions [e.g., (Fang, 1997a,

1997b, 2000; Fang and Kottelat, 1999; Kul-

lander et al., 2009; Kullander, 2012)]. Many

species also likely await discovery, particularly in

Myanmar and nearby countries, which seem to

be the center of Danio diversity.

Phylogenetic reconstructions of Danio mostly

agree that two larger species, D. dangila and D.

feegradei, split early from the other, smaller

species, indicating dramatic evolutionary

changes in body size even within this genus.

Phylogenies also agree on several internal group-

ings, although the precise ordering of species

closest to zebrafish has been unclear (Fang,

2003; Quigley et al., 2005; Mayden et al.,

2007; Fang et al., 2009). A recent study using

extensive genomic sampling (McCluskey and

Postlethwait, 2015) to examine relationships

within a ‘D. rerio species group’ identified the

poorly known D. aesculapii (Kullander and Fang,

2009) as a candidate sister species to zebrafish

(Figure 3A,D). Interestingly, most of these

species are restricted to one or two hydrologic

basins; the two species with the broadest ranges,

D. rerio and D. albolineatus, are non-

overlapping, whereas D. rerio shares a basin in

the east of its range with D. aesculapii. This

same study also revealed instances of gene flow

during the origin of these species, including the

transfer of alleles between D. kyathit and

zebrafish lineages, and between D. aesculapii

and D. kerri/D. albolineatus lineages. Such

‘horizontal’ movements of alleles complicate

the assessment of species relationships: indeed,

analyses that allowed for different gene trees

across loci (reflecting ancestral instances of

hybridization and genetic introgression) pro-

vided only weak support for the sister

relationship between D. rerio and D. aesculapii.

It will be exciting to further unravel how

speciation is proceeding in this group as new

Danio are discovered and new sequences

gathered for analysis, and as roles for hybrid-

ization, as well as for geography and other

potential isolating mechanisms, are defined.

Future directions
Recent studies illustrate how wild zebrafish and

its relatives can contribute to research programs

spanning ecology and behavior, genetics and

genomics, and development and evolution.

Some specific topics that would benefit from

more attention have been cited already and

some particularly compelling open questions are

listed in Box 1. An additional fruitful area will be

the development of genomic resources, includ-

ing fully sequenced genomes for other species of

Danio and for more distant cyprinids. These

additional genomes will greatly facilitate the

identification of gene regulatory domains and

how they evolve (Müller et al., 2002; Camp

et al., 2012; Patterson et al., 2014) and will

provide new insights into the evolution of genes,

genomes and phenotypes more broadly.

The differences between wild and lab zebra-

fish cited above also serve as a cautionary tale

about generalizing from particular populations

to the species as whole. For example, given

their range and genetic variability, a single set of

optimal conditions for the growth and develop-

ment of wild zebrafish is unlikely, let alone for

lab strains that have experienced very different

selective regimes. Likewise, it remains unclear

whether environmental enrichment, to mimic

the habitat complexity that wild fish can

Box 1. Outstanding questions about the natural history of
the zebrafish

c What are the selective factors (biotic and abiotic) that impinge upon zebrafish survival and
reproduction in the wild?

c Are there subtle—or not so subtle—differences in morphology, physiology or behavior
among natural populations, and are such differences adaptive?

c Do female zebrafish choose their mates in nature, and if so, what criteria do they use?
c What are the specific genetic changes underlying the evolution of divergent sex
determination mechanisms between wild fish and lab strains?

c How many more Danio species are there, what are their evolutionary relationships and what
factors have influenced speciation and morphological diversification in the genus?

DOI: 10.7554/eLife.05635.005
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experience, also benefits lab strains, particularly

when such interventions are balanced against

costs, such as the increased difficulty of observ-

ing fish and the increased accumulation of

detritus, which themselves can lead to morbidity

and mortality. What is clear is that a deeper

understanding of zebrafish natural history will

benefit the health and well being of fish in the

lab, as well as research productivity, when

combined with a holistic view of variation in

behavior, genetics, and the broader goals of lab

research. The promise of integrating a deeper

understanding of zebrafish ‘the organism’ with

zebrafish ‘the system’ suggests exciting times to

come for the devotees of Hamilton’s beautiful

fish.
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