
Article

Dynamic control of endogenous metabolism with
combinatorial logic circuits
Felix Moser, Amin Espah Borujeni, Amar N. Ghodasara, Ewen Cameron, Yongjin Park & Christopher A.

Voigt*

Abstract

Controlling gene expression during a bioprocess enables real-time
metabolic control, coordinated cellular responses, and staging
order-of-operations. Achieving this with small molecule inducers is
impractical at scale and dynamic circuits are difficult to design.
Here, we show that the same set of sensors can be integrated by
different combinatorial logic circuits to vary when genes are
turned on and off during growth. Three Escherichia coli sensors
that respond to the consumption of feedstock (glucose), dissolved
oxygen, and by-product accumulation (acetate) are constructed
and optimized. By integrating these sensors, logic circuits imple-
ment temporal control over an 18-h period. The circuit outputs are
used to regulate endogenous enzymes at the transcriptional and
post-translational level using CRISPRi and targeted proteolysis,
respectively. As a demonstration, two circuits are designed to
control acetate production by matching their dynamics to when
endogenous genes are expressed (pta or poxB) and respond by
turning off the corresponding gene. This work demonstrates how
simple circuits can be implemented to enable customizable
dynamic gene regulation.
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Introduction

Genetic modifications made to an organism to optimize the produc-

tion of a chemical or biologic are typically static (Holtz & Keasling,

2010; Brockman & Prather, 2015b). For example, knocking out a

gene to redirect metabolic flux implements its impact permanently

and continuously (Schellenberger et al, 2011). Similarly, introduced

pathways are often under unchanging constitutive control (Zhang

et al, 2002; Burgard et al, 2003; Price et al, 2004; Schellenberger

et al, 2011; Morse & Alper, 2016; Deparis et al, 2017). While these

changes are required to make the product and optimize yield, they

can have a detrimental effect when activated at the wrong time,

such as early in growth when resources need to be dedicated to

building biomass (San & Stephanopoulos, 1984; Park et al, 2007;

Michener et al, 2012; Brockman & Prather, 2015a; Ceroni et al,

2016). Static functions contrast with natural cellular systems that

continuously monitor environmental conditions and respond by

adjusting gene expression as needed (Shen-Orr et al, 2002; Zaslaver

et al, 2004; Cho et al, 2014). Implementing flexible synthetic

versions of this regulation would be valuable in engineering

projects. For instance, product yields could be optimized by re-

balancing enzyme expression to respond to growth phase, the

buildup of precursor metabolites, or feedstock concentration

(Farmer & Liao, 2000; Liu et al, 2015; Zhang et al, 2015; Morse &

Alper, 2016). Additionally, less external intervention would be

required if cells could be pre-programmed to undergo a series of

steps during a bioprocess or respond as autonomous agents to

bioreactor-borne stresses.

Dynamic gene expression has begun to be implemented in

academic metabolic engineering projects (Liu et al, 2016; Qian &

Cirino, 2016; Min et al, 2017; Liu & Zhang, 2018; Zhou et al, 2018).

These projects depend on genetically encoded sensors that respond

to external environmental signals (O2, temperature, pH), the inter-

nal cell state (metabolites, growth phase, stress response, redox),

the depletion of carbon feedstock (glucose), cell density, or the

accumulation of products and by-products (acetate) (Farmer & Liao,

2000; Bayly et al, 2002; March & Bentley, 2004; Boccazzi et al,

2006; Nevoigt et al, 2007; Kang et al, 2008; Tsao et al, 2010; Liang

et al, 2011; Michener et al, 2012; Zhang et al, 2012; Anesiadis et al,

2013; Siedler et al, 2014; Afroz et al, 2015; Liu & Lu, 2015; Soma &

Hanai, 2015; Xie et al, 2015; Guan et al, 2016; Immethun et al,

2016; Lo et al, 2016; Qian & Cirino, 2016; Rajkumar et al, 2016;

preprint: Borkowski et al, 2017; Bothfeld et al, 2017; Gupta et al,

2017; He et al, 2017; Juarez et al, 2017; Klamt et al, 2017; Pham

et al, 2017; Kasey et al, 2018). The information transmitted by these

sensors can be used to implement feedback control or switch the

carbon flux through alternative pathways at the opportune time (Xu

et al, 2014; Brockman & Prather, 2015b; Liu et al, 2015; Ceroni

et al, 2016). For many products, this approach has been shown to

increase yields by maintaining a toxic intermediate below a critical

level or separating growth and production phases (Farmer & Liao,

2000; Michener et al, 2012; Zhang et al, 2012, 2015; Xu et al, 2014;
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Brockman & Prather, 2015b; Liu et al, 2015; Soma & Hanai, 2015;

Xie et al, 2015; Ceroni et al, 2016; Morse & Alper, 2016).

Several strategies can be taken to build such sensors. The ideal

sensors consist of a regulator that directly binds to a known signal,

such as the metabolite, and then strongly regulates the activity of

a promoter (Tang & Cirino, 2011; Zhang et al, 2012; Rogers et al,

2015; Albanesi & de Mendoza, 2016; Libis et al, 2016; Morgan

et al, 2016; Rogers & Church, 2016). When a sensor for a specific

metabolite is unavailable, native promoters that respond to a given

stimulus have also been co-opted as sensors (Dahl et al, 2013;

Yuan & Ching, 2015). However, many native promoters integrate

multiple signals, making them respond to alternative or unknown

stimuli (Kang et al, 2008; Dahl et al, 2013; Boyarskiy et al, 2016;

Rajkumar et al, 2016; preprint: Borkowski et al, 2017; Hoynes-

O’Connor et al, 2017; Kasey et al, 2018; Siu et al, 2018). One

approach to address this is to put the operators for a transcription

factor into the “clean” background of a constitutive promoter (Cox

et al, 2007).

A sensor can be genetically modified to change the threshold of

signal required to activate it. For example, increasing the expression

level of the regulator can make the sensor turn on earlier and muta-

tions can tune the binding constant to the ligand (Nevoigt et al,

2007; Moser et al, 2013; Afroz et al, 2015; Feher et al, 2015; Wang

et al, 2015; Gupta et al, 2017; Mannan et al, 2017; Landry et al,

2018). However, an individual sensor can only implement a switch

at a one defined cell state and cannot be used to drive a series of

events (Wang et al, 2015; Gupta et al, 2017). An alternative

approach to modifying the sensors is to select a set of sensors that

turn on at different times during a bioprocess and then use a genetic

circuit that responds to a pattern of sensor activities to turn on at a

defined point. During a bioprocess, many conditions change dynam-

ically inside the reactor and inside of individual cells. Therefore, the

same set of sensors can be integrated in different ways to generate

different dynamic responses.

There is precedent for using genetic circuits to alter a sensor’s

response (Karig & Weiss, 2005; Slusarczyk et al, 2012; Brophy &

Voigt, 2014; Hoynes-O’Connor & Moon, 2015). Connecting a sensor

to a circuit is simplified when both are transcriptional; that is, when

the output of the sensor is a promoter and the inputs/outputs of a

circuit are promoters. Circuits have been used to integrate multiple

sensors, change their threshold, amplify the response, convert a

transient input to a permanent response, and toggle between

outputs (Chen & Bailey, 1994; Kobayashi et al, 2004; Bennett et al,

2008; Moon et al, 2011; Wang et al, 2011; Moser et al, 2012;

Solomon et al, 2012; Soma et al, 2014; Soma & Hanai, 2015;

Rantasalo et al, 2016; preprint: Borkowski et al, 2017; Bothfeld

et al, 2017; He et al, 2017; Ryo et al, 2017; Kasey et al, 2018).

One way to respond to a pattern of sensor activities is to use

genetic circuits that implement logic operations. Combinatorial logic

is defined as a relationship in steady state in which the circuit

outputs are a function of only the inputs. While circuits themselves

do not implement dynamics, when the inputs (sensors) are chang-

ing over time, the output of the circuit will also change. Integrating

more sensors makes the response more specific to a set of condi-

tions or period of time during growth (Immethun et al, 2016; He

et al, 2017). Larger logic gates can simultaneously integrate many

sensors and control multiple output promoters, each turning on in

response to a different pattern of sensor activities (Callura et al,

2012; Moon et al, 2012; Guan et al, 2016; Nielsen et al, 2016; Green

et al, 2017).

There are a number of genetic tools to connect the output

promoters of a circuit to the control of endogenous or recombinant

genes. The output promoter could be used to directly express

enzymes (Temme et al, 2012; Immethun et al, 2016) or orthogonal

RNA polymerases that transcribe multi-gene pathways (Temme

et al, 2012; Segall-Shapiro et al, 2014; Bonde et al, 2015; Song et al,

2017; Harder et al, 2018). The output promoter can also be used to

turn genes off using CRISPRi or sRNA/RNAi (Drinnenberg et al,

2009; Qi et al, 2013). These methods have been used to optimize

titers by knocking down enzymes of central metabolism at an

opportune time or to redirect flux through a heterologous pathway

(Callura et al, 2012; Solomon et al, 2012; Anesiadis et al, 2013; Na

et al, 2013; Oyarzun & Stan, 2013; Soma et al, 2014; Brockman &

Prather, 2015a; Lv et al, 2015; Wu et al, 2015; Zalatan et al, 2015;

Deaner & Alper, 2017; Harder et al, 2018; Kasey et al, 2018).

Proteases have also been developed that target a tag that can be

added to an enzyme, though this requires modification of the target

enzyme (Cameron & Collins, 2014). The ability to degrade the

enzyme pool is critical for rapidly eliminating its activity, particu-

larly when the growth rate is low and proteins are only slowly

diluted (Soma et al, 2014; Brockman & Prather, 2015a).

In this manuscript, we develop three sensors that respond to

generic signals that change over the course of bioproduction and are

agnostic to a particular product pathway. Oxygen and glucose

sensors are constructed by placing FNR/CRP operators into a consti-

tutive promoter and optimizing for dynamic range using oligonu-

cleotide arrays (Kosuri et al, 2010) and fluorescence-assisted cell

sorting (FACS). A third sensor that responds to acetate was selected

from the literature (Bulter et al, 2004) and modified to improve its

response. Each of these signals responds at a different time during

growth: The low oxygen sensor turns on first, followed by the turning

off of the glucose sensor, and finally the acetate sensor turns on.

Simulations of many genetic circuits implementing these sensors’

signals into different logic operations show that diverse responses are

possible. From these, we select several based on layered AND and

ANDN gates, construct them, and verify their temporal response. As

a proof-of-principle, we design two genetic circuits to respond during

periods of endogenous poxB and pta expression, respectively, as

determined using RNA-seq. The circuit controlling poxB is turned on

during the transition to stationary phase, and the circuit controlling

pta is turned on early in growth. When the circuits are on, they

repress the native genes using a combination of CRISPRi and

proteases. The resulting circuits are able to control the appropriate

genes at early and late stages of growth, thus reducing acetate accu-

mulation. This demonstrates how different configurations of sensors

and gates can be used to generate responses at different times and

thereby control carbon flux through endogenous metabolism.

Results

Design of glucose, oxygen, and acetate sensors

The simultaneous use of multiple sensors requires that they respond

to independent stimuli and do not interfere with each other’s

response. Further, they require a large dynamic range to facilitate
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their connection to circuits. For oxygen and glucose, we and others

have built sensors based on native promoters and heterologous

transcription factors (Anderson et al, 2007; Garcia et al, 2009;

Immethun et al, 2016). However, we were concerned that these

would either respond to additional unwanted cellular signals or that

their reported dynamic ranges were insufficient. Initially, a number

of natural Escherichia coli promoters were gleaned from the litera-

ture and tested, but their dynamic range proved to be too low

(Appendix Fig S1). Therefore, synthetic promoters were designed to

respond only to select regulatory proteins and screened variations to

identify those that produced a large dynamic range.

The approach to build the glucose and oxygen sensors utilizes a

previously published method to generate large libraries of constitu-

tive promoters (Kosuri et al, 2013). A library of 11,964 synthetic

promoters was computationally designed by varying the promoter

backbone and the placement of operators for E. coli transcription

factors that respond to each signal (Fig 1A). First, twelve constitu-

tive promoter variations were generated, each made up of one of

four r70-associated promoter sequences (�35 to +1) and one of

three randomly generated spacer sequences for the �60 to �35 and

+1 to +50 (Fig 1B). Within these sequences, the operators for the

glucose- and oxygen-sensing transcription factors were placed at all

possible locations (Cox et al, 2007; Stanton et al, 2014b). For

glucose, the operators bind to either the global regulators cAMP

receptor protein (CRP; Lawson et al, 2004) or FruR (Kochanowski

et al, 2013), although no promoters with the latter operator ulti-

mately emerged from the screen. For oxygen, the operator is for the

fumarate and nitrate reductase (FNR) transcriptional activator,

which is directly modified by oxygen via a Fe-S cluster (Constan-

tinidou et al, 2006). The full set of promoters was synthesized using

a CustomArray oligo array and cloned into a reporter plasmid (p15A

origin) upstream of green fluorescent protein (gfp). Constitutive

expression of a red fluorescent protein (rfp) enabled us to correct

for variation in copy number of the plasmid (Materials and Meth-

ods). RiboJ was included upstream of gfp in order to insulate against

genetic context effects that occur when it is transcribed from dif-

ferent promoters (Lou et al, 2012).

The promoter library was then transformed into E. coli MG1655,

and FACS sorting was used to screen for activity. For the glucose

sensor, cells were grown in the presence of 0.4% glucose and then

sorted using a threshold for high GFP:RFP fluorescence (Fig 1A).

The recovered variants were then grown in the absence of glucose

and re-sorted, this time recovering cells below a threshold GFP:RFP

fluorescence. This was repeated for three cycles, after which 95

promoter variants were recovered and tested for their on/off

response. The same approach was applied to identify oxygen

sensors, where the three FACS cycles were performed by iterating

between aerobic and anaerobic growth (Materials and Methods).

The top glucose- and oxygen-responsive promoters to emerge from

these screens were PgluA7 and PfnrF8, respectively. Their responses

were compared to native promoters and the strong constitutive

promoter BBa_J23101 (Fig 1C and D; 2016; Kelly et al, 2009). The

replacement of each sensor’s operator with a random sequence

eliminated its response (Fig 1C and D). The promoters only respond

to their corresponding signal (Fig 1E).

To characterize the promoters as sensors, their response was

measured as a function of inducer concentration under conditions

that approximate steady state (Materials and Methods). The best

glucose sensor (PgluA7) shows a maximum 18-fold dynamic range

and achieves half-maximum induction at 0.1% glucose (Fig 1F). The

best oxygen sensor (PfnrF8) produces a 25-fold induction and

achieves its half-maximum output at a dissolved oxygen (DO) concen-

tration of 36 lmol/l (Fig 1G). For both promoters, the transition

between the off and on states occurs uniformly throughout the popu-

lation of cells (Appendix Fig S2). The responses of both the glucose

and oxygen promoters are rapid, achieving 8-fold and 7-fold activa-

tion, respectively, after 1 h (Fig 1F and G, and Appendix Fig S3).

For the acetate sensor, we tested one previously designed by Liao

and co-workers based on the PglnAP2 promoter, which responds to

phosphorylated NtrC (glnG) in a glnL knockout stain (Fig 1H; Bulter

et al, 2004). In our hands, this promoter produces a 16-fold induc-

tion in E. coli MG1655, but requires knocking out the receptor NtrB

(DglnL; Materials and Methods), which limits its use to strains in

which this gene is deleted or repressed. We found that truncating

the promoter at the +1 start site (PglnAP2s) improved the dynamic

range to 250-fold by reducing the leakiness of the off state (Fig 1H).

The half-maximum response occurs at 13.8 mM acetate, and the

response to intermediate concentrations is bimodal (Appendix Fig

S2). In addition, the response is slower than the other two sensors.

It should be noted that the response is sensitive to the pH of the

media and changes when other genes are knocked out

(Appendix Fig S4; Bulter et al, 2004). Because DglnL knockout

mutation interferes with the nitrogen starvation response, we used a

nitrogen-rich media and did not observe any growth defects due to

this mutation (Appendix Table S1).

The three sensors (PfnrF8, PgluA7, PglnAPs) were tested for

orthogonality to each other’s signals (low oxygen, glucose, acetate;

Fig 1E). The three sensors are activated by their cognate stimuli,

with minimal measurable cross-reactivity between the acetate and

glucose sensors (Appendix Fig S5). Thus, they can all be used

together within one circuit, although some care needs to be taken to

avoid crosstalk.

The three sensors were then evaluated in shake flask experiments

where cells were seeded into a defined glucose-based media common

in industry (Moser et al, 2012) and grown for over 24 h (Materials

and Methods). For these experiments, GFP was fused to a degrada-

tion tag to better measure off-times (McGinness et al, 2006).

Glucose, dissolved oxygen (DO), and acetate were monitored

throughout growth by offline liquid chromatography and an oxygen

sensor probe (Materials and Methods). Glucose and DO decrease

over time due to cell growth and metabolism (Fig 2A and B,

Appendix Fig S6). The inoculum culture is first grown without

glucose, but when cells are added to glucose-containing media

(t = 0 h), the glucose sensor rapidly turns on and remains on until

glucose is consumed after 15 h (Fig 2A). The DO sensor turns on to

the absence of oxygen, which is consumed during growth, causing

the sensor to turn on after 8 h (Fig 2B). Acetate accumulates late in

growth and the sensor turns on when the acetate concentration

passes the 15 mM threshold after 14 h (Fig 2C and Appendix Fig

S7).

Sensor integration with combinatorial logic circuits

Over the course of a growth experiment, the output of the three sensor

promoters is continuously changing. These promoters can be

connected as inputs to a logic circuit that responds only when each
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Figure 1. Design and optimization of glucose, acetate, and oxygen sensors.

A Scheme for sensor design including (left to right): computational design and DNA chip oligo library synthesis, insertion into a plasmid reporter, FACS enrichment,
and screening of select mutants in the presence (black) and absence (white) of stimulus. All three sensors were synthesized on a single chip (indicated by the
colors).

B Design of the promoter library. The location, number, and name of promoter elements are shown. The permutations included different constitutive core promoters
(blue) flanked by random spacers (orange). Single operators (colored bars) were varied across the ranges shown with single nucleotide resolution. When two
operators were included, they were inserted at multiple sites and the distance between them was varied by up to 6 bp from each site.

C Shown are the responses of the glucose sensor promoter (PgluA7), a negative control lacking the CRP operator (PgluA7*), and a constitutive promoter (BBa_J23101)
to the presence (+) and absence (�) of glucose.

D Shown are the responses of the oxygen sensor promoter (PfnrF8), a negative control lacking the FNR operator (PfnrF8*), and a constitutive promoter (BBa_J23101)
to the presence (+) and absence (�) of oxygen.

E The orthogonality of the sensors is shown. The averages and standard deviations for these data are provided in Appendix Fig S5.
F–H Shown are the schematics and responses for the glucose, oxygen, and acetate sensors, respectively. The response functions (center) are shown for each sensor

(black circles) compared to promoter variants where the operators are removed (PgluA7*, PfnrF8*; open circles). Horizontal error bars in the PfnrF8 response reflect
one standard deviation of three dissolved oxygen (DO) measurements. For the acetate sensor, the response of the sensor is shown in unmodified Escherichia coli
MG1655 with glnL intact (open diamonds). The dynamics of induction are shown (right graph) where cells are induced at the time indicated by the dashed line (see
text). Representative cytometry florescence distributions for Fig 1F–H are shown in Appendix Fig S2.

Data information: Error bars represent one standard deviation of three independent experiments done on different days.
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sensor is at the correct level. Thus, by connecting the sensors to

circuits that implement different logic operations (truth tables), the

circuits will produce different responses over time. Because the

circuits are based on the layered expression of regulators (a cascade),

different circuits that encode the same truth table can result in dif-

ferent dynamics due to delays in signal propagation. To determine the

range of possible dynamics, simulations were run for all possible

3-input logic circuits designed based on layered AND, ANDN, and

NOR gates (Moon et al, 2012; Nielsen et al, 2016; Appendix Fig S8).

The inputs to the circuit are the empirically measured output promoter

activities of the three sensors over time (Fig 2A–C). The circuit

response is simulated using a simple set of ordinary differential equa-

tions (ODEs) to model the on- and off-times of each gate (Materials

and Methods). The simulation results for the full set of circuits are

shown in Appendix Fig S8, of which a subset of characteristic

responses are shown in Fig 2D. Circuits are predicted to yield a

diverse range of dynamic behaviors with varying on- and off-times.

Two modeled circuits were built and tested experimentally

(Fig 2E and H). The circuits are built using AND gates that utilize an

activator (InvF) that requires the expression of a second protein

(SicA) to turn on an output promoter (PsicA; Appendix Fig S9). In

addition, the repressor PhlF is used to build ANDN gates (Stanton

et al, 2014a). The first circuit (Fig 2E–G) has three inputs and two

outputs, where each output is designed to respond to a different

combination of signals, and thus, each will turn on and off at dif-

ferent times. In this circuit, the glucose and acetate sensors drive the

SicA/InvF system to compose an AND gate. The oxygen sensor

drives the repressor PhlF to turn off a second copy of the glucose-

inducible promoter to compose AND NOT (ANDN) logic that acti-

vates in the presence of glucose AND NOT low oxygen. The second

circuit (Fig 2H–J) is based on a three-input, one-output logic gate

that implements (A and B) AND NOT (C) logic, where the C signal

(low O2) turns off the gate by expressing PhlF, which represses the

expression of both InvF and SicA. These gate designs were selected

to reduce delays that can occur due to layering and the likelihood of

a transiently incorrect response (fault) occurring (Hooshangi et al,

2005; Mangan et al, 2006; Moon et al, 2012).

The circuits were constructed and their responses measured over

time. For the first circuit, outputs 1 and 2 were measured using a

degradation-tagged GFP and RFP, respectively (Fig 2E and F). Their

responses to changes in the sensor activities are in accordance with

the encoded logic (Fig 2G). As predicted, Output 2 turns on early in

growth and Output 1 turns on late in growth (after an initial tran-

sient response around t = 0 due to the shift from glycerol to

glucose). This demonstrates that a single circuit can encode multiple

responses by integrating the same set of input sensors; for example,

to turn one process off and another on at defined times during

growth. The second circuit shows strong induction under the correct

conditions and produces a temporal pulse in the activity of the

output promoter (Fig 2H–J). The fluorescence distributions from

cytometry show that the circuit responses are monotonic

(Appendix Fig S10).

Dual transcription/translation control over output genes

The output promoter can be used to drive the expression of a gene.

It is more complicated when the goal is to turn a gene off. Tools

such as CRISPRi can be used to repress the transcription of a gene

by expressing a sgRNA that targets dCas9 to block its transcription

(Qi et al, 2013). However, it does not rid the cell of mRNA/protein

that has already been expressed, which will continue to be active

until they slowly degrade. This will be problematic when a rapid

response is required (e.g., to eliminate an enzyme to redirect meta-

bolic flux). Methods to induce the degradation of mRNA and

proteins include the transcription of sRNA and targeted proteolysis

(Na et al, 2013; Ghodasara & Voigt, 2017). Here, we evaluated

different combinations of CRISPRi/sRNA/proteases in order to eval-

uate their impact on the magnitude and timing of the knockdown of

a gene (Fig 3A).

First, the three methods were evaluated for their ability to reduce

the expression of RFP encoded on a plasmid (Materials and Meth-

ods). For CRISPRi, dCas9 was expressed from a weak constitutive

promoter and sgRNA was expressed from a DAPG-inducible PphlF

promoter encoded on plasmid (p15a origin). The sgRNA encodes a

previously published 20 bp targeting sequence that binds to the

non-template strand early in the mRFP1 CDS (Qi et al, 2013). This

system represses RFP expression by 69-fold (Fig 3B). The sRNA

sequence is designed to bind a “barcode” sequence (Ghodasara &

Voigt, 2017) adjacent to the rfp ribosome binding site (RBS). The

sRNA transcript is expressed from an IPTG-inducible promoter, and

◀ Figure 2. Response of sensors and circuits during growth in batch experiments.
All of the temporal responses shown on the left-hand side of this figure were measured under identical experimental conditions (Materials and Methods).

A–C The responses of the glucose, oxygen, and acetate sensors during growth in shake flasks are shown. The colored lines (right axes) correspond to the measured
changes in the stimuli (Materials and Methods). The colored bars under (C) show the times when the output promoter of each sensor should be on, based on the
response functions shown in Fig 1.

D Simulations of circuit dynamics. Examples of different characteristic responses are shown, selected from the full set of simulated circuits (Appendix Fig S8). The
lines shown in bold blue colors correspond to those circuits experimentally tested. The simulated output promoter activities are in relative promoter units (RPU;
Nielsen et al, 2016).

E The responses of a 3-input, 2-output circuit are shown.
F Shown are the circuit (left) and genetic diagram (right) of the circuit corresponding to (E). In the genetic diagram, the dashed line and * indicates a second copy of

the PgluA7 promoter that drives rfp expression and is repressed by PhlF via an immediately downstream PhlF operator.
G The response of the circuit in (E, F) to different combinations of stimuli under the same conditions as Fig 1 (Materials and Methods). The (+) and (�) indicate

whether the output promoter of each sensor is active under those conditions. Bars where the circuit is predicted to be on are shown in gray and white when
predicted to be off.

H The response of a 3-input 1-output circuit is shown.
I Shown are the circuit (left) and genetic diagram (right) of the circuit corresponding to (H).
J The response of the circuit in (H, I) to different combinations of stimuli under the same conditions as Fig 1 (Materials and Methods).

Data information: Representative cytometry florescence distributions for (A–C and E–J) are shown in Appendix Figs S7 and S10, respectively. Error bars represent one
standard deviation of three independent experiments done on different days.

▸
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Figure 3. Eliminating protein activity using a combination of CRISPRi, sRNA, and proteases.

A Schematic showing three levels of repression. A small guide RNA (sgRNA) directs deactivated Cas9 (dCas9) to block transcription from a promoter. sRNA binds to the
mRNA and promotes degradation by recruiting Hfq. The mf-Lon protease targets a tag (blue) added to the protein. The protease is also targeted to itself to reduce
toxicity (Materials and Methods).

B Reduction of fluorescence of RFP by the different mechanisms of repression after 18 h of growth (Materials and Methods). The inducers are either 1 mM IPTG (sRNA)
or 25 lM DAPG (sgRNA, mf-LON). sgRNA and mf-LON are co-transcribed on a single transcript that is processed by ribozymes (Appendix Fig S13).

C The dynamics of repression by each of the mechanisms is shown. Empty circles are uninduced and black circles are induced (1 mM IPTG or 25 lM DAPG) at the 2-h
time point (dashed line; Materials and Methods).

D Metabolic pathways to acetate in Escherichia coli are shown along with the targeted enzymes. The impact of either knocking out these enzymes or knocking them
down by the various mechanisms after 20 h is shown. On the left of the graph are shown empty strains containing either no acetate pathway modifications (WT;
MG1655ΔglnL), a double deletion (ΔptaΔpoxB), or single knockouts and protease tag modifications (ΔpoxB pta::pdt3, Δpta poxB::E170). On the right are shown
knockdowns of pta (blue) and poxB (red), tested in strains ΔpoxB pta::pdt3 and Δpta poxB::E170, respectively. Knockdowns are generated by expression of sgRNA,
proteases, or both mechanisms encoded on a single transcript.

E Design of a PoxB mutant that can be targeted by the SuMMV protease. The structure of PoxB is shown (PDB: 3ey9; Neumann et al, 2008), highlighting the amino acid
sites selected for degron insertion (in red). The impact on acetate production of different acetate pathway mutants is shown on the left of the graph. On the right of
the graph, a double knockout mutant (DptaDpoxB) contains variants of poxB expressed from a BAC. Note that complementation of unmodified poxB (WT) from the
BAC does not fully reconstitute acetate production. N-ter and E170 refer to the location of the SuMMV degron tag in poxB. A plasmid expressing protease SuMMV
from a DAPG-inducible promoter was also introduced into strains containing poxB variants WT and E170 complemented on a BAC and a strain poxB with an E170
site replacement on the genome (poxB::E170). The graph shows the acetate produced in these strains when either no inducer (white) or 25 lM DAPG (grey) is added
to the culture.

Data information: Representative cytometry fluorescence distributions for (B, C) are shown in Appendix Fig S11. Error bars represent one standard deviation of three
biological replicates done on different days. Bars with single (*) and double (**) asterisks indicate a statistically significant difference with P-values < 0.01 and 0.001,
respectively, as assessed by an unpaired t-test.
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a ribozyme is inserted immediately after the promoter to cleave the

50-UTR to ensure it is active (Ghodasara & Voigt, 2017). This sRNA

system represses RFP expression by 10-fold in the presence of IPTG

(Fig 3B). Because sRNA is less effective in our hands than CRISPRi

and showed no improvement in dynamics (Fig 3C and Appendix Fig

S11), we selected CRISPRi to combine with proteolysis.

The Mesoplasma florum LON (mf-LON) protease was tested for

its ability to degrade a target protein containing the corresponding

27-amino acid C-terminal tag (Materials and Methods; Cameron &

Collins, 2014). This tag was fused to RFP and mf-LON is expressed

from an IPTG-inducible promoter. Some toxicity was observed in

the initial designs, which could be mollified by using a weak RBS

and fusing the protease to its own degradation tag to enable auto-

proteolysis (Appendix Fig S12). The expression of mf-LON is less

effective than CRISPRi (Fig 3B), but its impact occurs rapidly with a

significant reduction in the first hour (Fig 3C).

We then tested if co-expression of CRISPRi and protease could

behave synergistically to enable more rapid and potent knockdown

of RFP. To co-express both from the same output promoter, a tran-

script was designed that contains the sgRNA and the protease, sepa-

rated by a ribozyme (RiboJ; Fig 3A, and Appendix Figs S11 and

S13). Although we could not detect greater potency of the knock-

down compared to sgRNA alone, we observed a rapid knockdown

that matched the speed of the mf-LON knockdown (Fig 3B and C).

Targeting genome-encoded enzymes for repression

Core metabolic enzymes involved in acetate production were then

targeted using the dual CRISPRi/mf-LON system. Acetate overpro-

duction late in growth reduces product yield and can be toxic at

concentrations above 1 g/l (Wolfe, 2005; Eiteman & Altman, 2006;

De Mey et al, 2007). However, it is beneficial to the cell when

glucose is plentiful because it facilitates the recycling of coenzyme A

and balances the redox state; thus, knocking out the producing genes

can be detrimental under these conditions (De Mey et al, 2007). The

primary route to acetate production is pta and ackA, which are

expressed constitutively and have been reported to be upregulated in

low oxygen conditions (Shalel-Levanon et al, 2005). Pyruvate dehy-

drogenase (poxB) can also make acetate directly through pyruvate

decarboxylation and FAD reduction and is expressed in stationary

phase (Chang et al, 1994). Therefore, we selected pta and poxB as

the genes to target with dual CRISPRi/protease control.

When E. coli MG1655DglnL is grown for 20 h in 1.6% glucose,

the resulting culture contains ~ 70 mM acetate (Fig 3D; Materials

and Methods). Knocking out either pta or poxB reduces the rate of

acetate accumulation during growth but has little effect on the final

acetate concentration (Appendix Fig S15). The dual knockout of pta

and poxB results in 10-fold less acetate (Fig 3D and Appendix Fig

S15). Deletion of ackA is severely detrimental to growth

(Appendix Table S1).

We tested the impact of knocking down pta and poxBwith CRISPRi

on acetate production. For this, pta and poxB knockdowns were tested

in E. coli MG1655DglnLDpoxB and E. coli MG1655DglnLDpta, respec-
tively (Fig 3D; Materials and Methods). Three sgRNAs were designed

to target the non-template strand near the beginning of each gene and

were found to have approximately the same effect. One of these

sgRNA sequences was selected for each gene, and the corresponding

acetate reductions are shown in Fig 3D.

The genes for pta and poxB were then tagged such that different

proteases could be used to target their degradation. The N-terminal of

Pta is critical for function, but its C-terminus can be functionally

tagged (Campos-Bermudez et al, 2010). Therefore, mf-LON pdt3 tag

was fused to the C-terminus of pta in its native context in the genome,

generating the strain E. coli MG1655DglnLDpoxB pta::pdt3. The

method by which the tag is introduced into the genome leaves only a

short FLP recombinase scar after the tag, as previously described

(Cameron & Collins, 2014). Escherichia coli MG1655DglnL pta::pdt3

showed no change in growth rate or acetate productivity compared to

the wild-type strain (Appendix Table S1). However, the expression of

mf-LON in this strain reduces acetate production (Fig 3D).

Both the N- and C-terminal ends of PoxB are critical for function,

making it ineligible for mf-LON degradation (Neumann et al, 2008;

Weidner et al, 2008). Therefore, the Potyvirus SuMMV protease was

selected, which cleaves peptide bonds immediately after the

sequence EEIHLQ (Fig 3E; Fernandez-Rodriguez & Voigt, 2016).

Cleavage of this sequence can be used to expose the N-terminal

degron sequence FLFVQ (Bachmair et al, 1986; Tasaki et al, 2012;

Fernandez-Rodriguez & Voigt, 2016). A screen was developed to

identify an internal site that could accommodate replacement of the

native sequence with EEIHLQFLFVQ without disrupting function.

PoxB variants were made that replaced the sequence at positions

E170–180, E325–335, E347–357, and E469–479 (Fig 3E, Appendix

Figure S14). These four internal poxB variants as well as an

N-terminal fusion variant were expressed from their native

promoter from a bacterial artificial chromosome (BAC) in E. coli

MG1655DglnLDptaDpoxB (Materials and Methods). As expected,

the N-terminal fusion of the tag eliminated PoxB activity

(Fig 3E). A maltose binding protein (MBP)-SuMMV fusion was

expressed from a DAPG-inducible promoter on a separate plas-

mid (Materials and Methods). One variant (E170–180) showed a

reduction in acetate that is both protease- and tag-dependent

(Appendix Fig S14). We then modified the genomic copy of

poxB in E. coli MG1655DglnLDpta with the integrated SuMMV

cleavage site and N-degron, generating the strain E. coli

MG1655DglnLDpta poxB::E170 (Materials and Methods). When

SuMMV was expressed in this strain, there is a similar decline

in acetate production (Fig 3E).

Design of circuits that target pta and poxB when they
are transcribed

Two circuits were designed that integrate environmental signals and

subsequently knock down genomically encoded poxB and pta to

reduce acetate (Fig 4). Previously, it has been reported that pta

contributes the most to acetate production during exponential

growth and that poxB contributed only after entry into stationary

phase (Chang et al, 1994; Wolfe, 2005). To confirm this, we

performed transcriptomic studies with E. coli MG1655DglnL. We

grew this strain in shake flasks in minimal media containing 1.6%

glucose for 27 h and assessed the pta and poxB transcript abun-

dance using RNA-seq at six time points (Materials and Methods).

These data confirmed that poxB expression peaks during the transi-

tion from exponential to stationary phase, whereas pta expression is

higher during exponential growth (Fig 4B and E; Appendix Fig S15).

A circuit was selected to regulate poxB by integrating the glucose

and acetate sensors using an AND gate (Fig 4A). The predicted
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response matches when poxB is transcribed (Fig 4B). Note that this

circuit implements closed loop feedback control as acetate produc-

tion is downregulated when sensed. The output of the circuit is used

to drive the expression of the sgRNA targeting poxB as well as the

SuMMV protease that degrades the tagged enzyme. The background

transcription from PsicA was initially too high when the circuit was

off, which necessitated its mutation to reduce activity (Materials

and Methods). When parent cells lacking the circuit (E. coli

MG1655DglnLDpta poxB::E170) are grown, 70 mM acetate accumu-

lated after a day of growth in media containing 1.6% glucose

(Fig 4C; Materials and Methods). When the circuit is included, the

acetate accumulates normally until the time in which the circuit is

expected to become active and then slows its accumulation, subse-

quently reducing the final acetate concentration by half. A control

was constructed in which the sgRNA is targeted to RFP and was

tested in a strain in which no protease tag was fused to poxB (E. coli
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Figure 4. Dynamic control of acetate production.

A The genetic circuit designed to control poxB is shown. The strain genotype is shown, including the positions targeted by the sgRNA and the SuMMV protease.
B The transcription of poxB over time (Escherichia coli MG1655ΔglnL), as calculated from RNA-seq data (Materials and Methods). The colored bars indicate the times at

which the glucose/acetate sensors will be on based on metabolite measurements. It should be noted that these are right-shifted compared to Fig 2 due to slower
growth of the tested strains.

C The production of acetate is shown over time for E. coli MG1655ΔglnLΔpta poxB::E170 (black) as compared to the same strain containing the complete circuit (green).
A version of the circuit in which the sgRNA is targeted to rfp (not present in the system) and is tested in MG1655ΔglnLΔpta (containing an untagged poxB) is shown
as a control (red). Empty circles connected by the dashed line represent MG1655ΔglnLΔptaΔpoxB.

D The genetic circuit design to control pta is shown.
E The transcription of pta over time (E. coli MG1655ΔglnL), as calculated from RNA-seq data (Materials and Methods). The colored bars indicate the times at which the

glucose/oxygen sensors will be on based on metabolite measurements.
F The production of acetate is shown over time for E. coli MG1655ΔglnLΔpoxB pta::pdt3 as compared to a strain containing the complete circuit (green) tested in same

strain. A version of the circuit in which the sgRNA is targeted to rfp (not present in the system) and is tested in MG1655ΔglnLΔpoxB (containing an untagged pta) is
shown as a control (red). Empty circles connected by the dashed line represent MG1655DglnLDptaDpoxB.

Data information: In (C, F), three experiments were performed and all individual data points are plotted. The lines are fit to averages of these data. Growth curves for
each strain are shown in Appendix Fig S16. The corresponding plasmid maps and parts sequences for (A, D) are provided in Appendix Fig S17 and Table S2.
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MG1655DglnLDpta). This control yielded the same amount of

acetate as the empty control strain (Fig 4C).

To control pta, a different circuit was chosen that responds in

the presence of glucose AND NOT low oxygen (Fig 4D). This is

predicted to be on during exponential phase and to turn off as

cells transition to stationary phase, which mimics when pta is

transcribed (Fig 4E). The circuit was constructed by using PfnrF8

to drive the expression of PhlF, which then blocks transcription

from the PgluA7 promoter. This promoter serves as the output of

the circuit and is connected to the transcription of sgRNA targeting

pta and the protease mf-LON. The output promoter initially

showed too much basal transcription, which had to be reduced by

mutation (Materials and Methods). When the parent strain lacking

the circuit (E. coli MG1655DglnLDpoxB pta::pdt3) is grown in

1.6% glucose for 27 h, it produces 70 mM acetate under the same

growth conditions as described above. The same strain containing

the circuit greatly reduces acetate accumulation during exponential

growth, yielding a 4-fold reduction in acetate after 27 h (Fig 4F).

As a control, we tested a circuit in which sgRNA targets RFP and

tested it in a strain in which no protease tag is fused to pta (E. coli

MG1655DglnLDpoxB). This control produced the same amount of

acetate as the empty control strain, indicating that the reduction in

acetate we observed in the pta-targeting circuit is due to circuit

outputs.

Discussion

Digital logic, defined where the signals exist in either a low (0) or

high (1) state, is a powerful abstraction because it enables computer

algorithms to design the circuit. When applied to genetic circuits,

this sometimes invokes criticism that controlling gene expression

requires intermediate levels and dynamic control (Zaslaver et al,

2004; Young et al, 2018), neither of which are embedded within a

combinatorial logic circuit itself. However, these circuits can imple-

ment dynamic responses by continuously monitoring and respond-

ing to changes in the sensor inputs. Further, while the logic

minimization algorithms generate a wiring diagram based on

Boolean logic, the implementation of the circuit with repressors is in

practice fuzzy logic, where the gate responses are intermediate

levels that can be tuned through the selection of parts.

In this manuscript, we have demonstrated how combinatorial

logic circuits can be used to respond to signals that change over the

course of growth and can be used to execute a temporal response.

Further, it can be used to implement feedback control, where the

signal that forms the closed loop (in this case, acetate) is external to

the circuit. Extending the logic diagram to include multiple outputs

enables the same sensors to be used to implement varied control

over different genes. Here, we chose three generic signals that

change over the course of production and a greater degree of control

could be achieved by expanding this to include additional sensors

(metals, ammonia, pH, redox, toxins), light control, and promoters

that respond to stress (Brekasis & Paget, 2003; Dixon & Kahn, 2004;

Weber et al, 2005; Krulwich et al, 2011; Moser et al, 2013; Wang

et al, 2013; Fernandez-Rodriguez et al, 2017). As the circuits get

larger, one can imagine implementing complex control over a meta-

bolic pathway by turning on different portions of the pathway at dif-

ferent times, coordinating stress responses, and staging a process to

including steps before (seeding and growth) and after (biomass recy-

cling or disposal) the production phase. Examples of advanced

approaches include the following: (i) only expressing oxygen-sensi-

tive enzymes under anaerobic conditions (Burgard et al, 2012;

Immethun et al, 2016), (ii) transiently responding to localized

stresses within larger bioreactors (Bylund et al, 1998; Enfors et al,

2001), (iii) lysis system for product recovery (Borrero-de Acuna

et al, 2017), (iv) flocculation for sedimentation for biomass

removal and inhibition of cell growth (You et al, 2004; Izard et al,

2015), and (iv) elimination of synthetic DNA before disposal

(Caliando & Voigt, 2015; Chan et al, 2016). Such approaches have

been implemented individually, but one can envision linking many

together into one large system. Thus, the advantages of the result-

ing synthetic regulatory control encompass far more than the

simplistic, albeit important, concepts of improving titer and yield.

There are some key challenges that must be addressed before

large synthetic regulatory networks can be practically implemented.

Foremost is the problem of toxicity and stability. Even medium-

sized synthetic circuits (≥4 regulators) can slow growth (Sleight

et al, 2010; Chen et al, 2013; Xu et al, 2014; Ceroni et al, 2018).

This can cause instability in the form of plasmid loss or mutations

to the genome (Fernandez-Rodriguez et al, 2015). Further, the

slowing of growth can be devastating for bioproduction. Even

when genes only have a slight impact individually, these impacts

are additive and quickly compound. This limited the size of the

complete systems that we could build to the relatively small

circuits shown in Fig 4. Larger circuits that integrated all three

sensors, multiple AND/NOT gates, and CRISPRi/protease control

of both PoxB/Pta proved to be unstable and significantly slow

growth (not shown). Addressing this challenge will require under-

standing the mechanisms underlying regulator toxicity, quantita-

tive metrics for the resource utilization of regulatory circuitry (e.g.,

ATP consumption), encoding the circuits in the genome, and

redesigning gates to minimize their impact.

Materials and Methods

Strains

All cloning and plasmid propagation was carried out in E. coli

NEB10 (F– mcrA D(mrr-hsdRMS-mcrBC) Φ80lacZDM15 DlacX74

recA1 endA1 araD139 D(ara leu) 7697galU galKrpsLnupG k–; NEB
#C3019). Promoter measurement plasmids were built on the back-

bone of pSB3K3, containing a p15A origin of replication and kana-

mycin resistance marker (2016; Shetty et al, 2008). Genomic

modifications were generated in E. coli MG1655 using the technique

of Datsenko and Wanner (Datsenko & Wanner, 2000). For gene

knockouts, only the translated CDS (ATG..TAA) of each gene was

removed. Fusion of the mf-LON pdt3 tag to genome-encoded pta

was performed as previously described (Cameron & Collins, 2014).

Briefly, a PCR product containing the protease tag, a kanamycin

resistance marker, and 50 bp of sequence homologous to the target

site were integrated into the genome by lambda red recombination.

Following identification of a successful modification by PCR, this

cassette was transduced by bacteriophage P1 into E. coli

MG1655DglnLDpoxB. The kanamycin resistance marker was then

removed by FLP recombinase expressed from pCP20 (Datsenko &

10 of 18 Molecular Systems Biology 14: e8605 | 2018 ª 2018 The Authors

Molecular Systems Biology Dynamic control of endogenous metabolism Felix Moser et al



Wanner, 2000), which left a 46 bp FLP recombinase scar sequence

downstream of pta. For the poxB modification, we modified pKD4

(Datsenko & Wanner, 2000) with the SuMMV-targeted poxB

sequence (E170) inserted downstream of a chloramphenicol resis-

tance marker flanked by two FLP recombinase sites (pFM1165;

Appendix Figure S17). Using this plasmid, we generated an ampli-

con by PCR that contained the chloramphenicol marker, part of the

poxB sequence containing the modification, and 50 bp of sequence

homologous to the target site upstream of the native poxB. This

amplicon was transformed into an E. coli MG1655 strain expressing

lambda red recombinase (Datsenko & Wanner, 2000). Following

screening by PCR of a successful insertion, this cassette was trans-

duced into E. coli MG1655DglnLDpta with bacteriophage P1. The

chloramphenicol resistance marker was then removed by FLP

recombinase expressed from pCP20 (Datsenko & Wanner, 2000),

leaving a 46 bp scar site immediately upstream of the native poxB

promoter. All modified genomic loci were verified by PCR and

subsequent Sanger sequencing (Quintara).

Media

Cultures were grown in LB-Miller broth (BD #2020-05-31) for

cloning and plasmid propagation. For all other experiments,

cultures were grown on a defined industrial minimal medium

(MM) containing the following: 5 g/l (NH4)2SO4 (Millipore

#AX1385-1), 5 g/l K2HPO4 (VWR #0705), 30 g/l 2-(N-morpholino)

ethanesulfonic acid (MES; Sigma #M2933), a carbon source as indi-

cated, and a proprietary mixture of micronutrients as previously

described (Moser et al, 2012). Carbon sources included glycerol

(VWR #97062-832) or glucose (BDH #8005-500g). Concentrations

of glycerol and glucose here are given as % mass (g/g). Following

preparation, the pH of the minimal media was adjusted to 6.8 with

NaOH and HCl and the media was filtered through a 0.2 lm filter

(Corning #430049). The inducers anhydrotetracycline (aTc; Sigma

#37919), 2,4-diacetylphloroglucinol (DAPG; Santa Cruz Biotechnol-

ogy #12161-86-6), sodium acetate (Sigma #127-09-3), and isopropyl

b-D-1-thiogalactopyranoside (IPTG; Sigma #367-93-1) were added

to the concentrations indicated. Antibiotics were added at the

following concentrations to maintain plasmids in all liquid cultures

and plates unless otherwise indicated: 50 lg/ml kanamycin

(GoldBio #25389-94-0), 50 lg/ml spectinomycin (GoldBio #22189-

32-8), 50 lg/ml ampicillin (GoldBio #69-52-3), and 35 lg/ml chlor-

amphenicol (GoldBio #25-75-7).

Sensor library design and construction

We automated the design of a library of 11,964 unique 150 bp

promoter sequences using a program written in MATLAB (Math-

works). The program concatenates sequences of four different

promoters (BBa_J23150, BBa_J23119, apFAB46, apFAB342; 2016;

Mutalik et al, 2013) with consensus operators of FruR (GCTGA

AACGTTTCAAG; Saier & Ramseier, 1996), CRP (AAATGTGATC

TAGATCACATTT; Lawson et al, 2004), and FNR (TTGATTTACA

TCAA; Constantinidou et al, 2006), flanking randomized spacer

sequences (Appendix Table S2), and 20 bp sequences at each end

for amplification (Lawson et al, 2004; Kochanowski et al, 2013).

Individual operator sequences were inserted at every position of

each promoter, and multiple operator sequences were inserted at

either the +1 site, the 17 bp spacer between the �10 and �35 sites,

or immediately upstream of the �35 site. The completed library

sequences were screened for > 5 bp repeats, �10 and �35 near-

consensus sequences, and BsaI sites. The library was synthesized as

single-stranded oligonucleotides on a microarray chip, cleaved from

the chip, and delivered as a desiccated sample (CustomArray).

Library oligonucleotides were rehydrated and amplified by PCR for

20 cycles with Phusion DNA polymerase (NEB, #M0530) using the

primers oFM1004 (GATTACAGGTCTCTCAGGAAACTCAACTCCT

GTGGCGTG) and oFM1005 (GATTACAGGTCTCTCTGCTTTCGCAC

GTATACGTGAGTGG) to generate BsaI cut sites with unique 4 bp

overhangs on the ends of the product strands. The plasmid pFM436

was amplified with the primers oFM974 (GATTACAGGTCTCA

GCAGAAGCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTCC) and

oFM976 (GATTACAGGTCTCTCCTGATGCCACCTGACGTCTAAGAA

ACCATTATTATCATGACATTAAC) to generate a linear fragment

with two BsaI cut sites at each with unique 4 bp overhangs. The

PCR products was then gel purified (Zymo #D4001), and library

inserts were cloned into pFM436 using the MoClo assembly protocol

(Werner et al, 2012) such that library promoters were directionally

inserted immediately upstream of sfGFP. The resulting promoter

library in pFM436 was then transformed into electrocompetent

E. coli MG1655 for screening. To assess the library quality, we

sequenced the inserts of 89 different colonies by Sanger sequencing

and found that 35 (39%) contained inserts exactly matching

members of the library.

Sensor FACS screening

To enrich for promoters with the largest dynamic range in

response to inducing conditions, we performed repeated cycles of

positive and negative screening using fluorescence-assisted cell

sorting (FACS). For this, we scraped ~ 150,000 individual colonies

from library transformation plates and grew the pooled cells in

MM containing 0.4% glycerol for 18 h. Cells were then diluted 1/

1,000 into fresh MM containing either 0.4% glucose or 0.4% glyc-

erol for the glucose sensors. For oxygen sensors, cells were grown

in MM containing 0.4% glycerol in either aerated tubes or tubes

from which oxygen had been removed (see below). Cells were

grown for 3 h in these conditions before diluting them to an OD600

of 0.01 in phosphate-buffered saline (PBS; VWR # EM-6505). FACS

screening was performed on a FACSAria 2 (Becton Dickinson) at

the Koch Institute Swanson Biotechnology Center Cytometry Core

facility (Cambridge, MA). Cells were sorted based on gates drawn

diagonally in the GFP versus RFP plot to correct for variation in

plasmid copy number (Elowitz et al, 2002). Briefly, a positive

screening was performed by collecting at least 1 million cells

showing the greatest 5% of GFP to RFP ratio following growth on

MM containing 0.4% glucose or no oxygen. Negative screening

was performed for all sensors by collecting at least 106 cells show-

ing the lowest 20% of GFP to RFP ratio following growth on MM

containing 0.4% glycerol and grown under aerobic conditions. In

both positive and negative screening rounds, cells were sorted into

1 ml of LB broth to recover for 3 h and were subsequently plated

on LB agar and diluted back 1/100 for overnight growth on MM

containing 0.4% glycerol. Each FACS screen was performed identi-

cally, excepting alternating growth on positive and negative

screening conditions.
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Sensor plate screening

After each round of positive and negative FACS screening, some of

the cells were diluted and plated on LB agar. Of the resulting colo-

nies, 95 were randomly selected and screened for GFP induction in

response to glucose or anaerobic conditions during growth in 96-

well deep-well plates. As a control, an identical construct containing

constitutive promoter BBa_J23101 was also tested to measure the

effect of induction conditions on constitutive r70 promoters. For

these assays, colonies were picked into 500 ll MM containing 0.4%

glycerol in a 2-ml deep-well 96-well plate and grown for 18 h at

37°C in a Microtron plate incubator (Infors) at 1,000 RPM. The

cultures were then diluted 1/100 in fresh 500 ll MM containing

0.4% glycerol in two separate 2-ml deep-well 96-well plates. Follow-

ing inoculation, each plate was covered with a transparent Breath-

eEasy membrane (USA Scientific #9123-6100) and cultures were

grown at 37°C in a Microtron plate incubator (Infors) at 1,000 RPM

for 6 h prior to induction. For the glucose sensor screen, one plate

was induced by adding 0.8% glucose to each well. For the oxygen

sensor, one plate was induced by placing it in a vinyl anaerobic

chamber (Coy Type C) containing 2% hydrogen, 98% nitrogen, and

a palladium catalyst and shaking it at 37°C in a shaker incubator

(VWR #12620-930) at 800 RPM to prevent settling. All plates were

grown for an additional 6 h prior to sampling the cultures for

cytometry to enable production of the GFP output (see below).

Sensor performance was evaluated based on the ratio between the

median GFP fluorescence of the uninduced cells compared to the

induced cells. The promoters that showed the strongest response

were sequenced, sub-cloned into pFM438 (Appendix Fig S17), and

further characterized in E. coli MG1655ΔglnL.

RBS and promoter library design and screening

RBS library sequences were computationally generated using the

RBS Library Calculator Version 1.2 (Salis Lab; Tian & Salis, 2015).

Each library contained at least 50 RBS sequences that evenly

spanned 2–3 orders of magnitude in calculated strength (arbitrary

units). For promoter libraries, base pairs were randomized at the

�10 and �35 sites as indicated. These sequences were then inte-

grated into primers for amplification of the target plasmid. Follow-

ing generation of the DNA library, electrocompetent cells were

transformed with the library and plated on LB agar containing

antibiotics. Individual colonies were then picked and screened by

fluorescence 96-well plate assays.

Fluorescence assays

The fluorescence responses of sensors and circuits were tested in

96-well deep-well plates (USA Scientific #1896-2000) or 14-ml

culture tubes (Falcon #352059) unless otherwise indicated. Fresh

cultures were inoculated from single colonies streaked on LB agar

from a glycerol stock frozen at �80°C. Inoculum cultures were

grown for 6 h in 3 ml of LB media at 37°C in 14-ml culture tubes

and then diluted into 3 ml of MM containing 0.8% glycerol in

14-ml culture tubes for 18 h of overnight growth. The initial OD600

of this overnight culture was calculated such that after 18 h of

growth, the OD600 of the culture would not exceed 0.5 to prevent

anaerobic induction of the oxygen sensor by a dense culture state

(Appendix Fig S6). The glucose and acetate sensor induction

curves were performed in 96-well deep-well plates. For characteri-

zation in plates, overnight cultures were diluted to OD600 = 0.01 in

500 ll MM containing 0.8% glycerol in a 2-ml deep-well 96-well

plate. Following inoculation, the plate was covered with a trans-

parent BreatheEasy membrane (USA Scientific #9123-6100) and

cultures were grown at 37°C in a Microtron plate incubator

(Infors) at 1,000 RPM for 6 h prior to induction. Oxygen sensors

and oxygen-modulated circuits were tested in 14-ml culture tubes,

unless otherwise noted, in order to maintain anaerobic conditions

following initial removal of oxygen by vacuum and nitrogen

cycling as described below. RFP knockdown time courses (Fig 3)

were also performed in tubes. For characterization in tubes, over-

night cultures were diluted to OD600 = 0.01 in 3 ml of MM contain-

ing 0.8% glycerol in 14-ml culture tubes. Cultures were then

grown in an Innova 44 shaking incubator (New Brunswick) at 250

RPM and 37°C for 6 h prior to induction. Acetate and glucose

sensors were induced with glucose and acetate dissolved in MM as

indicated. Oxygen sensor cultures were induced by sealing the

culture tubes with rubber stoppers (Fisher Scientific #FB57879)

and using a vacuum manifold to remove the air from the tube and

replace it with nitrogen to ambient pressure. Vacuum and nitrogen

cycling was done three times to maximize the removal of oxygen

from the headspace. Following induction, cells were sampled at

the indicated time points for cytometry analysis, using syringes to

penetrate the rubber stoppers for the anaerobic oxygen sensor

cultures. Sampled cells were diluted to an OD600 of 0.01 or below

in cold PBS containing 0.5 mg/ml of Kanamycin and were left at

4°C for at least 1 h prior to cytometry.

Acetate knockdown assays

CRISPRi, sRNA, and protease knockdown of targeted pta and poxB

were tested in 14-ml culture tubes. Knockdowns of pta and poxB

was tested in E. coli MG1655DglnLDpoxB pta::pdt3 and E. coli

MG1655DglnLDpta poxB::170, respectively. Inoculum cultures were

grown for 6 h in 3 ml of LB media at 37°C in 14-ml culture tubes.

Cultures were then diluted 1/1,000 into 3 ml of MM containing

0.8% glycerol in 14-ml culture tubes for 18 h of overnight growth.

Following overnight growth, inoculum cultures were diluted to an

OD600 of 0.01 in 4 ml of MM containing 1.6% glucose and either

inducers or no inducers. CRISPRi systems were induced with 25 lM
DAPG and 4 ng/ml aTc, sRNA systems were induced with 1 mM

IPTG, and proteases mf-LON and SuMMV were induced with 25 lM
DAPG. Cultures were then grown in an Innova 44 shaking incubator

(New Brunswick) at 250 RPM and 37°C. Following overnight

growth, 1 ml of each culture was added to a separate 1.5 ml tube

and centrifuged at 21,000 g for 5 min. This was repeated twice

more, keeping half the volume of supernatant after each spin. After

the third centrifugation, 100 ll of supernatant was pipetted into a U-

bottom 96-well plate (Corning #3797). This plate was covered with

an AluminaSeal (Diversified Biotech #ALUM-1000) and kept at 4°C

until analysis by liquid chromatography.

Shake flask cultures

We assessed sensor and circuit performance in shake flask cultures,

a common intermediate during industrial scale-up. For these
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experiments, we grew cultures of 30 ml MM in 250-ml unbaffled

shake flasks (Pyrex No. 4980) and used fluorescent protein repor-

ters fused to a weak ssrA degradation tag (AANDENYAASV). Fresh

cultures were grown from single colonies streaked on LB agar the

previous day from a glycerol stock frozen at �80°C. These inocu-

lum cultures were grown out for 6 h in 3 ml of LB media at 37°C in

14-ml culture tubes and then diluted into 3 ml of MM containing

0.8% glycerol in 14-ml culture tubes for 18 h of overnight growth.

The initial dilution of these overnight cultures was carefully set to a

sufficiently low OD600 so that the cell density after 18 h of growth

would be below an OD600 of 0.5 so as not to induce the oxygen

sensor. The overnight culture was diluted to an OD600 of 0.01 in

pre-warmed 30 ml of MM containing carbon sources as indicated.

Cultures were grown at 37°C at 250 RPM in an Innova 44 incubator

(New Brunswick) with a circular throw diameter of 1 inch. Samples

of 1 ml were removed at different time points and their OD600 was

immediately measured using a Cary 50 UV-vis spectrophotometer

(Varian) before freezing at �20°C in a 96-well deep-well plate for

later analysis.

Cytometry

Cells were analyzed by flow cytometry on a LSR Fortessa analyzer

(BD) with a 488-nm laser and 510/20-nm band pass filter to

collect GFP fluorescence and a 561-nm laser and 610/20-nm band

pass filter to collect RFP fluorescence. Cell samples were diluted

below OD600 of 0.01 in PBS to ensure separation of cell events.

Cell samples were analyzed by a High-Throughput Sampler at a

flow rate of 0.5 ll/s until 104–105 gated counts were collected.

FSC-H and SSC-H thresholds were set to exclude background

events. Data were analyzed using FlowJo software (Treestar). The

median of the fluorescence histogram of each gated population

was calculated and is reported here as the fluorescence value of a

sample in arbitrary units (a.u.).

Dissolved oxygen measurements

To measure dissolved oxygen (DO) during shake flask growth,

we used a FireStingO2 oxygen sensor (PyroScience) with an

OXF1100 needle. The sensor was calibrated to 100% DO

(210 lmol/l) with a single point calibration in MM heated to

37°C and vigorously shaken for 5 min prior to calibration. DO

measurements were taken by submerging the sensor needle in

the culture immediately after removing the culture flask from the

incubator. Sensor readings were recorded in real time in the Fire-

StingO2 software and were analyzed for equilibrium DO concen-

trations. Readings below 20 lmol/l could not be accurately

attained; therefore, lower readings are reported at this lower limit.

Following DO measurement, 1 ml of each culture was sampled to

measure cell density (OD600) on a Cary 50 UV-vis spectropho-

tometer (Varian).

Liquid chromatography

Culture samples frozen at �20°C in 96-well plates were thawed in

a 42°C water bath for 30 min. Sample plates were then centrifuged

at 4,255 g for 10 min three times, each time pipetting half the

supernatant into a clean plate. After the third centrifugation,

100 ll of supernatant was pipetted into a U-bottom 96-well plate

(Corning #3797). This plate was covered with an AluminaSeal

(Diversified Biotech #ALUM-1000) and kept at 4°C until analysis.

Supernatant analysis was performed using an Agilent 1260 Infinity

Liquid Chromatography system with an inline Aminex HPX-87H

column (#125-0140) and Micro-Guard Cation column (Bio-Rad

#125-0129) running a 5 mM sulfuric acid mobile phase at 0.6 ml/

min. Purified supernatant samples in 96-well plates were placed in

an autosampler cooled to 4°C. Following sampling of 10 ll, the

autosampler needle was cleaned with a 3-s rinse of 10% isopro-

panol. The peaks for glucose (9.2 min) and acetate (15.5 min)

were detected with a Refractive Index detector (RID; Agilent

#G1362A). Both the columns and the RID were heated to 35°C.

Standard curves of glucose (Sigma #049K6201) and acetate (Fluka

#57191) were run to enable quantification. Integration of the RID

peaks for glucose and acetate was done automatically in Chemsta-

tion software (Agilent).

Modeling

To generate circuit models, the sensors’ promoter activities were

first converted to relative promoter units (RPU) by multiplying the

background-subtracted fluorescence levels by a conversion factor

(10�3) estimated such that the units are comparable to a previously

published standard (Nielsen et al, 2016). The minimum and maxi-

mum values for each sensor’s output promoter are (in RPU) as

follows: glucose, 0.006–0.237; low oxygen, 0.020–1.346; and acetate

0.002 and 0.700. The output of each sensor was measured at

discrete 1-h time points over 27-h growth experiments. For the

purposes of the simulation, sensor outputs in between measure-

ments are determined using a linear interpolation. All possible

3-input, 1-output truth tables were designed by Cello (version 1.0

with Eco1C1G1T1 UCF) using the minimum and maximum RPU

values for the sensors (Nielsen et al, 2016). The output of Cello

includes a wiring diagram of NOR/NOT gates that produces the

desired truth table as well as the specific repressors assigned to

each gate. The circuits based on AND and ANDN gates were

designed by hand. Cello only predicts the steady-state behavior of

the circuit. Simple dynamic simulations were run to evaluate

how the circuits respond to changes in the sensors over time.

The steady-state response function for each NOR/NOT gate is

captured by

y ¼ ymin þ ðymax � yminÞ Kn

Kn þ xn
; (1)

where x is the activity of the input promoter (for a NOR gate, x is

the sum of the input promoters x = x1 + x2), y is the output of the

gate, and the parameters are dependent on the assigned repressor

and have been published previously (Nielsen et al, 2016). For the

AND gate, the response function is

y ¼ ymin þ ðymax � yminÞ x1 x2
2

K þ x1 x22
; (2)

where x1 and x2 are the outputs from glucose and acetate sensors,

respectively, and the parameters are estimated to be ymin = 0.001

RPU, ymax = 0.3 RPU, and K = 10�5 RPU. For the ANDN gate,
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y ¼ ymin þ ðx1 � yminÞ K

K þ x2
; (3)

where x1 and x2 are the outputs from glucose and oxygen sensors,

respectively, ymin = 0.001 RPU, and K = 0.0025 RPU. To simulate

the dynamic response of each circuit, a set of ordinary differential

equations (ODEs) is solved, where each ODE represents the change

in the output activity of a gate in the circuit according to

dy

dt
¼ a ðymax � yminÞ Kn

Kn þ xðtÞn � c yðtÞ � yminð Þ; (4)

where a and c are the rate constants for turning a gate ON and OFF,

respectively. Parameters ymin, ymax, K, and n are the same as equa-

tion (1), and a and c are estimated to be 1 per hour (Tabor et al,

2009; Moon et al, 2012). Equations (5–7) show the complete set of

equations for an example 3-input (x1, x2, x3) and 1-output (y3)

circuit (Circuit B in the top panel of Appendix Fig S8):

dy1
dt

¼ a ðymax;1 � ymin;1Þ K1
n1

K1
n1 þ x1 tð Þ þ x2ðtÞ½ �n1

� c y1ðtÞ � ymin;1

� �
;

(5)

dy2
dt

¼ a ðymax;2 � ymin;2Þ K2
n2

K2
n2 þ x3ðtÞn2

� c y2ðtÞ � ymin;2

� �
; (6)

dy3
dt

¼ a ðymax;3 � ymin;3Þ K3
n3

K3
n3 þ y1ðtÞ þ y2ðtÞ½ �n3

� c y3ðtÞ � ymin;3

� �

(7)

This system of ODEs is solved discretely in Python for an interval

of 27 h, using a time step size of 0.025 h. In each time step, the

corresponding empirical values for the output activity of glucose,

oxygen, and acetate sensors are assigned to the inputs x1, x2, and

x3, respectively. The initial conditions for y1, y2, and y3 are also

determined by solving the above system of ODEs at steady state

using the following sensor output activities: x1 = 1.294 RPU,

x2 = 0.006 RPU, and x3 = 0.028 RPU.

RNA-seq library preparation

RNA-seq library preparation and sequencing were performed

following the methods described in Gorochowski et al (2017).

Briefly, total RNA was harvested from E. coli MG1655 DglnL cells

at different time points specified above. Cells were grown in mini-

mal media containing 1.6% glucose. At least 2 million cells were

collected at each time point, as assessed by the culture’s OD600.

This was done by spinning down sufficient volume of each culture

at 4°C and 15,000 × g for 3 min, discarding the supernatant, and

flash freezing the cell pellets in liquid nitrogen for storage at

�80°C. After lysing the cells with 1 mg of lysozyme (Sigma-

Aldrich, MO, L6871) in 10 mM Tris–HCl (pH 8.0) with 0.1 mM

EDTA (USB 75825 and 15694, respectively), RNA was extracted

with PureLink RNA Mini Kit (Life Technologies, CA, 12183020).

RNA Clean & Concentrator-5 (Zymo Research, R1015) was used to

further purify and concentrate the RNA samples, verified by

Bioanalyzer (Agilent, CA). Next, ribosomal RNAs were depleted

from the samples using Ribo-Zero rRNA Removal Kit for bacteria

(Illumina, CA, MRZMB126). Only samples with RNA integrity

number (RIN) > 8.5 were considered for the subsequent library

preparation steps. Strand-specific RNAtag-seq libraries were

created by the Broad Technology Labs specialized service facility

(SSF) (Gorochowski et al, 2017). Each sample was tagged with a

unique barcode, and all samples were pooled together to run on

two separate lanes of an Illumina HiSeq 2500. Finally, sequencing

reads were generated by re-pooling the reads from the two lanes,

de-multiplexing them into the original samples, and trimming the

barcode tag from each read.

Processing of sequencing data

Alignment of raw reads and transcription profile generation were

performed following a previously developed in-house Python script

(Gorochowski et al, 2017). Briefly, raw reads were mapped to the

genome of E. coli MG1655 (NCBI RefSeq: NC_000913.3), with one

modification in which the relevant region around glnL gene was

deleted to yield E. coli MG1655DglnL. The alignment of raw reads

was done using BWA version 0.7.4 with default settings (Li &

Durbin, 2009), followed by generating the corresponding SAM files

and BAM files. Next, the sense and anti-sense transcription profiles

were generated by identifying the position of mapped reads in the

forward and reverse directions, respectively. To do that, the BAM

files were filtered using the “view” command of SAMtools and the

sense reads were selected using the filter codes 83 and 163, and

anti-sense reads were selected using filter codes 99 and 147. The

normalized FPKM values were calculated by averaging the height of

transcription profile along the length of each gene, normalized by

the total mapped nucleotides across the genome, and multiplied by

109. To account for potential variations introduced during library

preparation, between-sample normalization factors were calculated

using the trimmed mean of M-values approach (TMM; Robinson &

Oshlack, 2010), and were applied to the FPKM values in each

sample.

Data availability

Full annotated plasmid sequences, code for generating promoter

libraries, and detailed descriptions of promoter sequences are

provided in the authors’ Github repository (https://github.com/Voig

tLab/promoter-library-design-tool). Additional data is available

upon request.

Expanded View for this article is available online.
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