
sensors

Article

IoT-RECSM—Resource-Constrained Smart Service
Migration Framework for IoT Edge
Computing Environment

Zhongyi Zhai 1,2, Ke Xiang 1, Lingzhong Zhao 1,*, Bo Cheng 2, Junyan Qian 1 and
Jinsong Wu 3

1 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, GuiLin 541004,
China; zhaizhongyi@guet.edu.cn (Z.Z.); hisangke@gmail.com (K.X.); qjy2000@gmail.com (J.Q.)

2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China; chengbo@bupt.edu.cn

3 Department of Eletrical Engineering, Universidad de Chile, Santiago 1025000, Chile; wujs@ieee.org
* Correspondence: zhaolingzhong163@163.com

Received: 20 February 2020; Accepted: 14 April 2020; Published: 17 April 2020
����������
�������

Abstract: The edge-based computing paradigm (ECP) becomes one of the most innovative modes
of processing distributed Interneit of Things (IoT) sensor data. However, the edge nodes in ECP
are usually resource-constrained. When more services are executed on an edge node, the resources
required by these services may exceed the edge node’s, so as to fail to maintain the normal running
of the edge node. In order to solve this problem, this paper proposes a resource-constrained smart
service migration framework for edge computing environment in IoT (IoT-RECSM) and a dynamic
edge service migration algorithm. Based on this algorithm, the framework can dynamically migrate
services of resource-critical edge nodes to resource-rich nodes. In the framework, four abstract
models are presented to quantificationally evaluate the resource usage of edge nodes and the resource
consumption of edge service in real-time. Finally, an edge smart services migration prototype system
is implemented to simulate the edge service migration in IoT environment. Based on the system,
an IoT case including 10 edge nodes is simulated to evaluate the proposed approach. According
to the experiment results, service migration among edge nodes not only maintains the stability
of service execution on edge nodes, but also reduces the sensor data traffic between edge nodes
and cloud center.

Keywords: Internet of Things; edge computing; resource-constrained; smart service migration

1. Introduction

The edge-based computing paradigm (ECP) is one of the most innovative modes of processing
distributed Internet of Things (IoT) sensor data. In ECP, edge nodes form an intermediate layer
extending from the cloud, and it brings computing, network, and service provision closer to
the sensor-devices in IoT [1]. Therefore, ECP can overcome some defaults [2–4] in the cloud-based
computing paradigm (CCP), such as high transmission delay and bandwidth bottleneck. In ECP,
the edge layer is composed of many edge nodes, and it can provide supplementary capabilities for
cloud centers. Presently, the ECP has been used into some smart services [5–16], because it can
complete complex context-awareness and data analytics in real-time, and reduce the service latency
and the whole network traffic [17].

In ECP, every edge node can be allowed to host a certain amount of services, which can be local
services or offload services from cloud. The edge node determines the number of services according to
the real-time state of node resources and service consumption. Nevertheless, in the running cycle of

Sensors 2020, 20, 2294; doi:10.3390/s20082294 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4935-3993
https://orcid.org/0000-0002-1325-6975
https://orcid.org/0000-0003-4720-5946
http://dx.doi.org/10.3390/s20082294
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/8/2294?type=check_update&version=2

Sensors 2020, 20, 2294 2 of 15

service, resource consumption is dynamically changed. In this way, the edge node may shutdown if
the hosted services in it increase the required resources suddenly at some point and exceed the load
capacity of the node. Due to the restriction of the size and cost, the devices of edge nodes always have
limited resources and are hard to extend. In other words, the edge node is resource-constrained for
hosting the services. Presently, most of the research [18–20] focuses on the service offloading from
cloud to edge, without considering the resource constraint of edge devices.

To solve the above problem, this paper proposes a resource-constrained smart service migration
framework for edge computing environment in IoT (IoT-RECSM) and a dynamic edge service migration
algorithm. Based on this algorithm, the framework can dynamically migrate services of resource-critical
edge nodes to resource-rich nodes by evaluating the edge node resource usage and edge service
resource consumption. In the framework, a resource utilization model is presented to compute
the synthetical occupancy rate of all kinds of resources of each edge node. The synthetical occupancy
rate can be used to estimate whether the edge node needs to migrate some services to other nodes.
A resource usage model is presented to compute the migrating probability value of each edge service.
In addition, a migration service selection model is presented to determine which services would
migrate to another node. An edge node selection model is presented to estimate whether the edge
node can be selected as the destination of migration services by analyzing the edge node resource and
migration delay. Finally, a prototype system is implemented to simulate the edge service migration in
IoT environment. Based on the prototype system, an IoT case including 10 edge nodes is simulated to
evaluate the effectiveness and performance of the IoT-RECSM. According to the experiment results,
service migration among edge nodes not only maintains the stability of service execution on edge
nodes, but also reduces the sensor data traffic between edge nodes and cloud center.

The remainder of this paper is organized as follows. Section 2 discusses the related work about
smart service migration. Section 3 proposes the framework of IoT-RECSM, and describes the related
models and algorithm of smart service migration. Section 4 designs a prototype system and gives a
case. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Service Migration Framework

Scheepers [18] introduced the features of some virtualization technology, for example, Xen
hypervisor, Docker, Linux Containers (LXC), and presented the results of a comparison between the
Xen and LXC virtualization technologies. Both hypervisor-based and container-based virtualization
can provide portability, isolation and optimize the utilization of hardware resources. Le et al. [19]
proposed a Cloud Service Selection with Criteria Interactions framework (CSSCI) that applies a fuzzy
measure and Choquet integral to measure and aggregate non-linear relations between criteria. This
Framework solved these critical issues of modeling the interactions between cloud service selection
criteria, and designing indices to validate service selection methods. Kazzaz and Rychlý [20] proposed
a RESTful-based framework for Mobile Web service migration and provisioning on both Android-based
mobile devices and Java-based stationary devices in a P2P wireless network. This framework
enables deploying, publishing, discovering, provisioning and migrating Web services to satisfy
service providers’ and Web services’ preferences and improve Quality of Service (QoS) performance.
Jeong et al. [21] proposed the Crystal framework that implementation of MapReduce on Crystal shows
benefits of fog computing-fault-tolerant distributed processing over heterogeneous, unreliable, fog
nodes while reducing overall latency. Wang et al. [22] proposed the ENORM framework. This
framework can address the resource management problems of provisioning edge nodes for cloud
applications, deploying workloads on provisioned edge nodes, and dynamic resource allocation
on edge nodes. Happ and Wolisz [23] proposed a flexible IoT processing relocation framework.
The framework dynamically and automatically selects a suitable execution location for processing
tasks if those processing tasks should be computed on a Cloud server rather than the local gateway

Sensors 2020, 20, 2294 3 of 15

device. Ibrahiem et al. [24] proposed an architecture for transparent service continuity via
double-tier migration (ARNAB) that is based on container migration. When ARNAB migrates a
service (application), this architecture needs two tiers—the first tier migrates user connectivity, while
the second tier migrates user containerized service. Puliafito et al. [25] provided a comprehensive
summarization of both the existing virtualization techniques (e.g., Virtual Machine, Containers) and
migration techniques (e.g., Cold migration, Pre-copy migration, Post-copy migration, VM migration),
specifically examining their appropriateness for the network edge.

Most of the above frameworks focus on the service migration between cloud and edge nodes, such
as ENORM, Crystal and relocation framework. The RESTful-based framework can transfer service
between mobile devices and stationary devices to improve QoS, but this framework only considers
the Migration Process Time, Battery Consumption and CPU Usage Consumption of devices. Moreover,
container-based migration framework can effectively deal with the heterogeneity of different hosting
environments for services. The IoT-RECSM will focus on the service migration among edge nodes
to deal with the resource-constrained problem of edge devices. It also adopts the container-based
technology to facilitate the service migration smoothly.

2.2. Service Migration Algorithm

Tziritas et al. [26] proposed an algorithm based on hyper-graph partitioning to solve the problem
of simultaneously taking VM placement and replica placement decisions in tree-structured networks to
reduce the overall network overhead incurred due to the communication dependencies between VMs
and data. Bittencourt et al. [27] summarized two type migration strategies: non-live migration
and live migration, and analyzed the scheduling problem in the edge computing environment,
focusing on how user mobility can affect application performance and how three different scheduling
policies, namely concurrent, FCFS, and delay priority, can be used to improve execution based on
application characteristics. In addition, Zhao et al. [28] proposed the resource allocation scheme
named Two-Dimension allocation and correlation placement Scheme (TDACP). It can establish a
virtual machine placement strategy with high resource utilization efficiency and low time cost.

In the above algorithms, References [26,28] mainly focus on VM placement decisions for cloud
service. Reference [27] presented a non-live migration strategy and a live migration strategy, in
which the live strategy can effectively deal with the service termination, and non-live strategy can
reduce the computational complexity of migration. By following the non-live strategy, the IoT-RECSM
will design a distributed migration algorithm for the edge environment to dynamically manage the
service migration.

3. IoT-RECSM Smart Service Migration Framework

In IoT-RECSM, the Cloud Environment takes charge of managing the services. According to
the requirement of the application, the Cloud Environment may offload some services to edge nodes
to improve the QoS. The Cloud Environment connects with the edge network of IoT. If the migrating
service in edge network cannot choose a viable node, the Cloud Environment is also in charge of hosting
the service. The Edge Network is an abstract decentralized topology of the IoT environment, in which
each node ENi brings the computing, storage, and management for services, and follows the structure
of Edge Environment as shown in the lower right-hand of Figure 1. The Edge Environment includes 6
layers: Hardware layer, Operating System (OS) layer, Virtualization layer, Monitoring layer, Resource
Evaluation layer and Service Migration layer.

Sensors 2020, 20, 2294 4 of 15

Cloud Environment

Edge Network

Hardware Layer

E
d

g
e
 E

n
v
iro

n
m

e
n

t

Operating System (OS) Layer

Virtualization Layer

Edge Service Set

Monitoring Layer

Edge Node Monitoring Module Edge Service Monitoring Module

Resource Evaluation LayerR
e
so

u
rce

U
tiliz

a
tio

n

M
o

d
e
l

R
e
so

u
rce

U
s
a
g

e

M
o

d
el

Service Migration LayerE
d

g
e
 N

o
d
e

S
e
le

c
tio

n

M
o

d
e
l

M
ig

ra
tio

n

S
e
rv

ic
e

S
e
le

c
tio

n

M
o

d
e
l

Dynamic Service

Migration Algorithm

Service set Storage Service

Service Images Service Data

•••

•••ES1 ES2 ESnCS2 CSnCS1 •••

ES2 ESnES1 •••

},,,,,{ ,1,,1, KttKtt crcrrr },,,,,,{ ,,1,,,1,1,1, KNtNtKtt crcrcrcr

Edge Service setCloud Service set

t

EN2

Edge Service set

ES2 ESnES1 •••

EN2

Edge Service set

ES2 ESnES1 •••

EN1

Edge Service set

ES2 ESnES1 •••

B
a

sic p
a

ra
m

eters

o
f re

so
u

rc
es

(2) Migrate to Cloud

（1）Migration

between edges

Edge Node

Evaluation Module

Edge Service

Evaluation Module

Evaluation metric of EN, Evaluation metric of ES,

Evalua tion metrics o f resources related to EN Evalua tion metrics o f resources related to ES

Basic parameters of resources

IaaS PaaS SaaS

Figure 1. The framework of smart service migration.

The hardware layer is used to abstractly represent all kinds of resources, for example, central
processing units (CPUs), network adapter and memory, on the edge node (EN). Generally,
the hardware of edge node is referred to as the lightweight devices, for example, mobile phones,
network gateway. They have network communication, computation, storage, and intelligent auxiliary
capabilities. Here, an abstract technology is also adopted in the hardware layer. So, the hardware layer
can overcome the heterogeneity of resources on different edge nodes (ENs).

The Operating System (OS) layer is used to provide uniform hardware resource ports for
the Virtualization layer and Monitoring layer of Edge Environments. OS layer not only can charge
of monitoring the usage of all kinds of resources from the hardware layer, but also can manage
the Virtualization layer for service deployment, service migration, and so forth.

The Virtualization layer is used to provide portability and optimize the utilization of hardware
resources for edge services (ESs). This layer makes ESs easier to deploy, start, stop, and migrate.

The monitoring layer is used to collect resource consumption parameters from the OS layer
and Virtualization layer. The monitoring layer includes two parts: the edge node monitoring module
and the edge service monitoring module. The edge node monitoring module is used to collect
the metrics of EN resources by getting the basic parameters from the OS layer. The edge service
monitoring module takes charge of collecting the resource usage of each edge service by getting the
basic parameters from the Virtualization layer.

The resource evaluation layer is designed to evaluate consumption situation of ENs and ESs by
edge node evaluation module and edge service evaluation module. The edge node evaluation module
is implemented based on the resource utilization model and can provide a synthetical evaluation
metric of resource utilization for the edge node. The edge service evaluation module is implemented
based on the resource usage model and can also provide a synthetical evaluation metric of resource
usage for edge services.

The service migration layer is the core of the Edge Environment, which is used to migrate edge
services. It includes three parts: Edge Node Selection Model, Migration Service Selection Model
and Dynamic Service Migration Mechanism. The Edge Node Selection Model is presented to choose
the displaced service in the resource-critical EN. The Migration Service Selection Model is presented
to choose a well-resourced EN to adopt the displaced smart service. The Dynamic Service Migration
Mechanism is designed to take charge of the service migration. A smart service migration algorithm is
constructed for ENs. It can assist the EN to dynamically arrange the migration node when the EN is

Sensors 2020, 20, 2294 5 of 15

resource-critical. If none of EN is suited as the migration node, it migrates the service to Cloud. Table 1
lists some symbols that will be used in the next sections.

Table 1. Symbol descriptions for basic elements.

Symbol Description

V The set of edge nodes and ‖ V ‖ is the number of edge nodes.
vi, vt Edge node i and t and vi, vt ∈ V.
Svi The set of edge services of edge node vi.
‖ Svi ‖ The number of edge services of edge node vi.
S The set of edge services.
Svi ,j The j-th service of edge node vi.
TR The set of total resource of edge nodes.
TRvi ,k The total resource of k-th type of vi.
rvi The number of resource types of edge node vi.
TCR The set of total cost resource
TCRvi The set of total cost resource of vi edge nodes.
TCRvi ,k The cost resource of k-th type of vi.
SCR The set of total cost resource of edge services.
SCRsvi ,j,k

The cost resource of k-th type of vi’s j-th service.
exp(.) The exponential function.
size(Svi ,t) The storage size of t-th service of edge node vi.
℘vi The value of resource utilization of vi.
lSvi ,j The value of resource usage of vi’s j-th service.

3.1. Resource Utilization Model for Edge Node Resource

In this section, the resource utilization model is defined to describe the evaluation mode of EN’s
resources. Specifically, a synthetical occupancy rate is introduced as ℘vi as the evaluation metric. It can
be computed by Equation (1).

℘vi =

rvi

∑
k=1

exp(
TCRvi ,k
TRvi ,k

)

∑
rvi
k′=1

exp(
TCR

vi ,k′

TR
vi ,k′

)

TCRvi ,k

TRvi ,k
(1)

The ℘vi provides a normalization method for evaluating the utilization of the whole resources.
In IoT-RECSM, the ℘vi can be computed by the edge node evaluation module, and the TRvi ,k
and TCRvi ,k can be provided by the edge node monitoring module.

3.2. Resource Usage Model for Edge Service

The resource usage model is defined to describe the evaluation mode of edge services in
the resource-critical node. It introduces a migrating probability value Svi ,j as the evaluation metric.
It can be computed by Equation (2).

The lSvi ,j also provides a quantitative method for evaluating the resource usage of edge service
Svi ,j in the vi. In IoT-RECSM, the lSvi ,j can be computed by the edge service evaluation module,
and the SCRsvi ,j,k and TCRvi ,k can be provided by the edge node monitoring module.

lSvi ,j =

rvi

∑
k=1

exp(
SCRsvi ,j,k

TCRvi ,k
)

∑
rvi
k′=1

exp(
SCR

svi ,j,k′

TCR
vi ,k′

)

SCRsvi ,j,k

TCRvi ,k
(2)

3.3. Migration Service Selection Model

If vi is a resource-critical node, it should select an edge service Svi ,j to migrate to another node.
In this section, a service selection model is constructed to handle such tasks. This model tries to migrate

Sensors 2020, 20, 2294 6 of 15

a service to release enough resources for edge nodes, and takes into account the service delay to ensure
the service quality.

In the framework, the migrating probability value lSvi ,j of each service can be computed for
the vi. When an edge node is resource-critical, the resolution strategy is to choose the service that
consumes the most resources in the node. The lSvi ,j provides a synthetical evaluation metric of
resource consumption. According to above strategy, the selection model can be designed by choosing
the maximum value in the set l = {lSvi ,1 , lSvi ,2 , ..., lSvi ,‖Svi ‖

}. It can be computed by Equation (3).

ser = arg
s

max
1<s<‖Svi ‖

l (3)

3.4. Edge Node Selection Model

In this section, an edge node selection model is constructed to choose a proper node as the hosting
place for the migration service. This model tries to find a resource-rich node as the hosting place with
minimal migration delay.

To facilitate the construction of this model, edge nodes in the IoT environment are divided into
two categories: the migrating node set and the hosting node set. It introduces a utilization threshold
θmax to divide these two sets of nodes. If ℘vi > θmax, the edge node vi belongs to a migrating node,
otherwise, vi is a hosting node. The set of hosting node and set of migrating node are represented as
Eh = {vs, ..., vh} and Em = {vt, ..., vm}, respectively.

The model firstly uses Equation (4) to evaluate resource utilization of every node. And then,
the nodes are labeled in two sets, that is Eh or Em.

℘
′
vi
=

rvi

∑
k=1

exp(
TCRvi ,k+SCRsvi ,j,k+∆k

TRvi ,k
)

∑
rvi
k′=1

exp(

TCR
vi ,k′+SCR

svi ,j,k′
+∆
′
k

TR
vi ,k′

)

TCRvi ,k + SCRsvi ,j,k + ∆k

TRvi ,k
(4)

The Equation (4) introduces a resource increment mechanism that evaluation reserves an extra
space-∆k for the edge node. It can prevent the phenomenon of service jitter.

The ∆k can be computed by Equation (5)

∆k =

rvi

∑
k=1

exp(
SCRsvi ,j,k

TCRvi ,k
)

∑
rvi
k′=1

exp(
SCR

svi ,j,k′

TCR
vi ,k′

)

SCRsvi ,j,k (5)

By using the Equation (4), a set of hosting nodes Eh = {vs, ..., vh} can be constructed for
migrating service Svi ,j. And then, the model should choose an optimal node from Eh that can bring
minimum delay for the Svi ,j. Here, the network maximum flow (NMF) [29] is introduced to evaluate
the migration delay.

In the IoT edge environment, edge nodes are connected with each other in different
communication modes, to form a network. Figure 2 shows an edge network, including 10 nodes
and 3 communication modes. In the process of service migration, a non-live migration strategy is
adopted to reduce the complexity of service management. That is, the whole of migrating service
is transferred to node. Thus, the NMF method can precisely measure the migration delay based on
the edge network model.

Sensors 2020, 20, 2294 7 of 15

V5
V4

V3

V6

V1

V0

V2

V7

V8

V9

Bluetooth
Wi-Fi

Ethernet

Figure 2. An edge network.

An edge network (ENN) can be abstracted as a pair of sets (V, E), where V represents the set
of edge nodes and E represents the set of bandwidths on edge connections. The V is classified into
two parts: the source nodes and the sink nodes. The source node s, that is, migrating node in above,
needs to choose a service to migrate to another node. And the sink node t, that is, hosting node in
above, can be as a destination of migrating services. Based on the edge network model, the network
flow between two edge nodes can be defined as a function f that maps each bandwidth on edge
connection e to a nonnegative real number a. This function can be represented as f : E→ R+. The f
satisfies the following two conditions: (1) for each edge connection e, the f (e) follows the relation
0 ≤ f (e) ≤ ce, ce is the bandwidth on edge connection, (2) for each node v ∈ V, it follows the relation
∑e into v f (e) = ∑e out o f v f (e), the ∑e into v f (e) represents sum of communication traffic over all input
connections of node v, the ∑e out o f v f (e) represents sum of communication traffic over all output
connections of node v. For a node v, the network flow f = ∑e into v f (e)

NMF aims to compute the maximum transmission capacity from the migrating node to the hosting
node. The Algorithm 1 shows the primary process of NMF. It first constructs an abstract model of
edge network based on directed graph for the service migration. Then, it initializes f (e) = 0, for every
edge connection e in the network. Next, it searches all of paths from the source node s to the sink node
t. For each path p, it gradually increases the up to the limitation ce of every connection e, to find out
the threshold of communication capacity in the path p. Finally, the sum of thresholds in all paths is
returned as the maximum flow for the service migration.

Algorithm 1 Network Maximum Flow.

Require: ENN, s, t
Ensure: f

1: conversion the edge network into a directed edge network from s to t
2: initialize flow f to 0
3: while there exists a path p between s and t do
4: if all e ∈ p and f (e) < ce then
5: augment flow f (e) along p
6: end if
7: end while
8: return f

For a migrating service Svi ,j, the migration delay delayi,n of every candidate node vn ∈ Eh can be
predicted by the equation: size(Svi ,j)/NMF(ENN, vi, vn). The Node Selection Model will choose an
edge node with minimal delay as the destination dest for Svi ,j, by Equation (6).

dest = arg
t

min
t 6=i and 1≤t<‖Eh‖

{delayi,n} (6)

Sensors 2020, 20, 2294 8 of 15

3.5. Dynamic Edge Service Migration Algorithm

In this section, a dynamic service migration algorithm is presented by combing the resource
utilization model, resource usage model, service selection model and node selection model, as shown
in Algorithm 2. This algorithm is provided for each edge node to complete the service migration
automatically.

Algorithm 2 Dynamic Edge Smart Service Migration.

Require: θmax, vi, V, Svi , TRvi ,k, SCR, SCRSvi ,j,k

Ensure: null
1: ℘vi = ∑

rvi
k=1

exp(TCRvi ,k/TRvi ,k)

∑
rvi
k′=1

exp(TCR
vi ,k′

/TR
vi ,k′

)

TCRvi ,k
TRvi ,k

2: if θmax < ℘vi then

3: while j <‖ Svi ‖ do

4: lSvi ,j = ∑
rvi
k=1

exp(SCRsvi ,j,k/TCRvi ,k)

∑
rvi
k′=1

exp(SCR
svi ,j,k′

/TCR
vi ,k′

)

SCRsvi ,j,k

TCRvi ,k

5: end while
6: ser ⇐ get edge service which has the maximum value lSvi ,j
7: while vt ∈ V and vt 6= vi do

8: ∆k = ∑
rvi
k=1

exp(SCRsvi ,j,k/TCRvi ,k)

∑
rvi
k′=1

exp(SCR
svi ,j,k′

/TCR
vi ,k′

)
SCRsvi ,j,k

9: ℘
′
vi
= ∑

rvi
k=1

exp(TCRvi ,k+SCRsvi ,j,k+∆k/TRvi ,k)

∑
rvi
k′=1

exp(TCR
vi ,k′+SCR

svi ,j,k′
+∆
′
k

/TR
vi ,k′

)

TCRvi ,k+SCRsvi ,j,k+∆k

TRvi ,k

10: if ℘
′
vi
< θmax then

11: Add vi to Eh set
12: end if
13: end while
14: while vt ∈ Eh do
15: Get the maximum f low bandwidthi,t between vi and vt
16: Computing the migration delayi between vi and vt
17: end while
18: dest⇐ get edge service which has the minimum delayi,t
19: if dest == null then
20: dest = cloud
21: end if
22: stopService(ser)
23: trans f er(ser, dest)
24: end if

This algorithm firstly computes the synthetical occupancy rate of device resources for the edge
nodes, as shown in line 1. If θmax < ℘vi , the edge node vi is resource-critical. It should choose a
migrating service based on the service selection model (lines 3–6). And then, it gets the hosting node
based on the node selection model (lines 7–13).

After getting the hosting node, this algorithm can compute the migration delay between vi
and other nodes vt ∈ Eh by edge node maximum flow method (lines 14–17). Then, the algorithm is
based on the edge node selection mode to get the migration destination dest. If none of nodes can
host the service, it will be migrated to the cloud center (lines 18–21). Otherwise, it stops the running
of service, and then transfers it to the hosting node, as shown in lines 22–23. Note that, the value
of θmax will influence the time of migration smart service and last effect the stability of edge node
flow network.

Sensors 2020, 20, 2294 9 of 15

4. The Prototype System and Case Study

This section firstly introduces the implementation the prototype system. And then, based on
the prototype system, an IoT case including 10 edge nodes is simulated to evaluate the effectiveness
and performance of the IoT-RECSM.

4.1. The Class Graph of Prototype System

The prototype system is developed according to the class graph as shown in Figure 3.
The prototype system main includes 6 classes: ServiceMigrationSystem class, EdgeNode class, Service
class, ServiceMigrationSystemUI class, MaximumFlow class and Graph_Matrix class. And the quantity
relationship among the classes is shown in Figure 3. For example, The ServiceMigrationSystem class
has a one-to-many relationship with EdgeNode class, and the ServiceMigrationSystem class also has a
one-to-one relationship with ServiceMigrationSystemUI class.

Figure 3. The class graph of prototype system.

The EdgeService class is an abstract representation of all the services on edge nodes. Service class
uses the update() function to update the resource demand of service. The logs() function is used to
output the logs that mainly include the number of various resources of each service.

In EdgeNode class, edge services are created by the installService() function. The edge node
selection model is implemented by the preMigrationEdgeService() function to pre-migrate service from
resource-critical edge nodes to resource-rich nodes and find out an optimal edge node as the destination
for service migration. The resource usage model is implemented by the evaluateService() function.
The resource utilization model is implemented by the evaluateEdge() function. The function
updateServices() is used to update all services by calling the update() function of edge service.

The method of network maximum flow is implemented in MaximumFlow class, which
can get the value of Maximum flow between two edge nodes. In MaximumFlow class,
the _create_undirected_matrix() function is used to create adjacency matrices for edge nodes,
respectively. The _draw_undirected_graph() function is used to generate a topology of edge nodes.
Finally, the value() function returns the maximum flow value between two edge nodes.

The Graph_Matrix class is used to dynamically construct the network topology of edge nodes.
In Graph_Matrix class, the add_vertex() function adds an edge node to the edge node network.
The add_edge() function adds an edge to the network of edge nodes. The to_do_vertex() function
returns all edge nodes in the edge node network. The to_do_edge () function returns all edges of
the edge node network.

Sensors 2020, 20, 2294 10 of 15

The ServiceMigrationSystem class is designed to create an instance of the prototype system.
In ServiceMigrationSystem class, the installEdgeNode() function is used to instantiate all edge nodes.
The updateEdges() function is used to call the updateServices() function of all edge nodes to update all
edge nodes. The function migrationEdgeService() is used to migrate service from resource-critical edge
nodes to resource-rich nodes. The run() function is used to start the simulation experiment, which will
call the function updateEdges() to update all edge nodes.

The ServiceMigrationSystemUI is used to create a user interface (UI) of the prototype system.
The next sub-section will detail introduce the UI of the prototype system.

In addition, the prototype system is developed with Qt Creator 4.10.1 (Qt 5.13.1) and Python 3.7.4,
and the code is available online [30].

4.2. The Configuration of Prototype System

Figure 4 shows the Configuration of the prototype system. The simulated information of edge
nodes needs to be configured in the sub-tab of the EDGE NODE CONFIGURE UI, including the number
of edge nodes, CPU, RAM, and Storage. And the value of the threshold −θmax is configured as shown
in Figure 4a. After setting the edge nodes, the services of each edge nodes need to be set in the sub-tab
of EDGE SERVICE CONFIGURE UI, including the number and resource requirement of edge servicesas
shown in Figure 4b. The bandwidth between edge nodes is configured in the sub-tab of EDGE NODE
ADJACENCY MATRIX UI, the configure information can be imported from a file as shown in Figure 4c.
After submitting the configure information of bandwidth, the topology is got from the sub-tab of
EDGE NODE TOPOLOGY UI as shown in Figure 4d. Finally, the system can be started to simulate
the service migration and show the real-time information in LOGS INFORMATION UI as shown in
Figure 4e. When this simulation system finishes the work of smart service migration, the total number
of service migration among edge nodes is showed in the sub-tab of EDGE SERVICE MIGRATION
RESULT UI as shown in Figure 4f.

(a) The configuration of Edge Nodes (b) The configuration of Edge Services

(c) The adjacency matrix of Edge Nodes (d) The topology of Edge Nodes

(e) Log information (f) The results of Service Migration

Figure 4. The user interface of the prototype system.

Sensors 2020, 20, 2294 11 of 15

4.3. A Case of Edge Service Migration on Prototype System

In this section, a case of edge service migration is simulated based on the prototype system. In this
case, it has 10 edge nodes and a cloud center. Figure 4d shows the topology of the 10 edge nodes.
Table 2 is the size of bandwidth between edge nodes.

Table 2. The bandwidth between edge nodes.

Edge
Node 0 1 2 3 4 5 6 7 8 9

0 0.0 0.0 0.0 0.0 37.5 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 37.5 0.0 0.0 0.0
2 0.0 0.0 0.0 7.5 7.5 108.0 7.5 0.0 108.0 37.5
3 0.0 0.0 7.5 0.0 0.0 0.0 7.5 0.0 7.5 0.0
4 37.5 0.0 7.5 0.0 0.0 0.0 0.0 37.5 0.0 0.0
5 0.0 0.0 108.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 37.5 7.5 7.5 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 37.5 0.0 0.0 0.0 0.0 108.0
8 0.0 0.0 108.0 7.5 0.0 0.0 0.0 0.0 0.0 108.0
9 0.0 0.0 37.5 0.0 0.0 0.0 0.0 108.0 108.0 0.0

The allocating resource of edge nodes depends on the hardware of Raspberry pi 3. For example,
edge nodes include three types of internet that are 7.5 MB/s Bluetooth, 37.5 MB/s Wi-Fi and the
108.0 MB/s wired. In addition, the size of CPU, RAM, and storage are 1.4 GHz, 1 GB and 2 GB,
respectively. Finally, the storage size of edge services is referred to some smart services from the
domain of deep learning as shown in Table 3.

Table 3. Service and its size.

Service Storage Size (MB) Service Storage Size (MB)

squeezenet1_1 [31] 4.736 resnet101 [32] 170.449
squeezenet1_0 [31] 4.785 resnet152 [32] 230.341
densenet121 [33] 30.844 alexnet [34] 233.095
resnet18 [32] 44.658 vgg11 [35] 506.835
densenet169 [33] 54.708 vgg11_bn [35] 506.881
densenet201 [33] 77.373 vgg13 [36] 507.540
resnet34 [32] 83.261 vgg13_bn [36] 507.589
resnet50 [37] 97.753 vgg16 [35] 527.795
googlenet [38] 103.814 vgg19 [36] 548.051

The value of θmax is a critical parameter and impacts the performance of the edge network.
In order to get an optimal value, two group experiments are done. One is that all the edge smart
services are the maximum size of smart services, that is, 548.051 MB. The other is that all the edge
smart services are the minimum size of smart services, that is, 4.736 MB. The result is shown in Figure 5.
The value of θmax needs to satisfy 0.68 ≤ θmax ≤ 0.74. In order to make the edge network adapt to the
extreme conditions, all the edge services are in the maximum size. In this way, the value of θmax had
better be set to 0.68.

Sensors 2020, 20, 2294 12 of 15

Figure 5. The relationship between the value of θmax and the total number of edge services.

In the simulation experiment, the number of services in each edge node is randomly generated,
and the type of each edge service is randomly selected from Table 3. The experiment result of service
migration is shown in Table 4.

Table 4. The number of migrating services in every edge node and cloud.

Edge
Node 0 1 2 3 4 5 6 7 8 9 Cloud

0 0 0 1 1 2 3 1 2 3 0 15
1 2 0 0 1 3 5 0 4 7 0 18
2 2 1 0 0 1 1 0 4 5 2 2
3 3 2 0 0 3 0 2 3 4 1 14
4 3 3 0 4 0 3 1 3 1 0 26
5 2 1 1 3 4 0 0 0 2 0 28
6 1 10 0 2 2 2 0 0 1 0 8
7 1 4 1 1 5 6 0 0 3 0 20
8 2 2 1 3 6 5 2 7 0 1 20
9 0 0 4 1 1 4 0 7 10 0 2

According to the experiment result, the total number of hosting services is 348 and the total
number of migrating services among edge nodes is 195. In addition, the total migration storage size
is 92,1963 GB. Moreover, the total execution time of service migration among edge nodes is 241 s.
Compared with the cloud migration, the efficiency of edge service migration is improved about
three times.

5. Conclusions

This paper has proposed a resource-constrained smart service migration framework for the edge
computing environment in IoT and a dynamic edge service migration algorithm. The IoT-RECSM can
ensure the resource load of IoT edges smoothly, by migrating some services of resource-critical nodes
to resource-rich nodes. A smart service migration method has also constructed for the IoT-RECSM,
which can be deployed on the IoT edge to dynamically monitor and migrate services. Finally, a smart
service migration prototype system has been implemented to simulate the service migration based on
IoT-RECSM. An IoT case including 10 nodes is simulated to evaluate our approach. According to the
experiment results, service migration among edge nodes not only maintains the stability of service
execution on edge nodes, but also reduces the sensor data traffic between edge nodes and cloud center.

Sensors 2020, 20, 2294 13 of 15

There are still some limitations to be addressed and ongoing work for the IoT-RECSM. Currently,
the simulation of migration delay in the algorithm is not universal, cannot deal with the Pre-copy
migration and Post-copy migration very well. We will improve the simulation method of migration
delay to adapt to live migration in future work. Moreover, the dynamical service migration approach
of IoT-RECSM is complex. It needs to consume some additional resources to compute the parameters
of migration models in real-time, which may restrict the efficiency of service migration. We intend to
adopt the learning technologies into the edge service migration. It pre-learns a migration model for
every node according to the historical log information of resource consumption. And then, a distributed
migration algorithm can be easily designed for the nodes.

Author Contributions: Conceptualization, Z.Z., K.X., L.Z., B.C., J.Q. and J.W.; methodology, Z.Z. and K.X.;
software, K.X.; validation, Z.Z., K.X., L.Z., B.C., J.Q. and J.W.; formal analysis, Z.Z. and K.X.; investigation,
K.X.; resources, L.Z.; data curation, K.X.; writing–original draft preparation, K.X.; writing–review and editing,
Z.Z. and K.X.; visualization, K.X.; supervision, Z.Z.; project administration, Z.Z.; funding acquisition, Z.Z.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Nature Science Foundation of China (Nos.61562015,61572146,
U1711263, 61862014, 61902086), Guangxi Natural Science Foundation of China (No.2018GXNSFBA281142),
Innovation Project of Young Talent of Guangxi (AD18281054), Guangxi Key Laboratory of Trusted Software
(kx201718,201505), Open Foundation of State key Laboratory of Networking and Switching Technology
in China (SKLNST-2018-1-04), The Innovation Team of GUET, The Innovation Project of GUET Graduate
Education(No.2019YCXS049).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Negash, B.; Rahmani, A.M.; Liljeberg, P.; Jantsch, A. Fog computing fundamentals in the internet-of-things.
In Fog Computing in the Internet of Things; Springer: Cham, Switzerland, 2018; pp. 3–13.

2. Wang, B.; Kong, W.; Guan, H.; Xiong, N.N. Air Quality Forcasting based on Gated Recurrent Long Short
Term Memory Model in Internet of Things. IEEE Access 2019, 7, 69524–69534. [CrossRef]

3. Wang, T.; Zeng, J.; Lai, Y.; Cai, Y.; Tian, H.; Chen, Y.; Wang, B. Data Collection from WSNs to the Cloud based
on Mobile Fog Elements. Future Gener. Comput. Syst. 2020, 105, 864–872. [CrossRef]

4. Wu, W.; Huang, H.; Wu, N.; Wang, Y.; Bhuiyan, M.Z.A.; Wang, T. An Incentive-Based Protection and Recovery
Strategy for Secure Big Data in Social Networks. Inf. Sci. 2020, 508, 79–91. [CrossRef]

5. Li, Y.; Wang, X.; Fang, W.; Xue, F.; Jin, H.; Zhang, Y.; Li, X. A Distributed ADMM Approach for Collaborative
Regression Learning in Edge Computing, Comput. Mater. Contin. 2019, 59, 493–508.

6. Li, S.; Liu, F.; Liang, J.; Cai, Z.; Liang, Z. Optimization of Face Recognition System Based on Azure IoT Edge.
Comput. Mater. Contin. 2019, 61, 1377–1389. [CrossRef]

7. Wang, T.; Bhuiyan, M.Z.A.; Wang, G.; Qi, L.; Wu, J.; Hayajneh, T. Preserving Balance between Privacy
and Data Integrity in Edge-Assisted Internet of Things. IEEE Internet Things J. 2020, 7, 2679–2689. [CrossRef]

8. Wang, T.; Mei, Y.; Jia, W.; Zheng, X.; Wang, G.; Xie, M. Edge-based Differenital Privacy Computing for
Sensor-Cloud Systems. J. Parallel Distrib. Comput. 2020, 136, 75–85. [CrossRef]

9. Wang, T.; Luo, H.; Zheng, J.X.; Xie, M. Crowdsourcing Mechanism for Trust Evaluation in CPCS based on
Intelligent Mobile Edge Computing. Acm Trans. Intell. Syst. Technol. 2019, 10, 1–19. [CrossRef]

10. Kun, Z.; Kang, Z.; Falin, F.; Hong, Y.; Yunlei, Y.; Deze, Z. Real-Time Massive Vector Field Data Processing in
Edge Computing. Sensors 2019, 19, 2602.

11. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake, UT, USA, 18–22 June 2018; pp. 6848–6856.

12. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Wey, T.; Andreetto, M.; Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

13. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, Utah, USA, 18-22 June 2018; pp.4510–4520.

http://dx.doi.org/10.1109/ACCESS.2019.2917277
http://dx.doi.org/10.1016/j.future.2017.07.031
http://dx.doi.org/10.1016/j.ins.2019.08.064
http://dx.doi.org/10.32604/cmc.2019.06402
http://dx.doi.org/10.1109/JIOT.2019.2951687
http://dx.doi.org/10.1016/j.jpdc.2019.10.009
http://dx.doi.org/10.1145/3324926

Sensors 2020, 20, 2294 14 of 15

14. Chollet and François. Xception: Deep learning with depthwise separable convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016;
pp. 1251–1258.

15. Su, J.; Sheng, Z.; Xie, G.; Li, L.; Liu, G.; Alex, X. Fast splitting based tag identification algorithm for
anti-collision in UHF RFID system. IEEE Trans. Commun. 2019, 67, 2527–2538. [CrossRef]

16. Su, J.; Sheng, Z.; Leung Victor, C.M.; Chen, Y. Energy efficient tag identification algorithms for RFID: Survey,
motivation and new design. IEEE Wirel. Commun. 2019, 26, 118–124. [CrossRef]

17. Somayya, M.; Bhagat, P. Edge Computing in the IoT Environment: Principles, Features, and Models.
In Edge Computing; Springer: Cham, Switzerland, 2018; pp. 23–43.

18. Scheepers, M.J. Virtualization and containerization of application infrastructure: A comparison.
In Proceedings of the 21st Twente Student Conference on IT, Enschede, The Netherlands, 23 June 2014;
pp. 1–7.

19. Le, S.; Hai, D.; Khadeer, H.O.; Khadeer, H.F.; Liu, A.X. A framework of cloud service selection with criteria
interactions. Future Gener. Comput. Syst. 2019, 94, 749–764.

20. Kazzaz, M.M.; Rychlý, M. Restful-based mobile Web service migration framework. In Proceedings of
the 2017 IEEE International Conference on AI & Mobile Services (AIMS), Bangkok, Thailand, 25–27 August
2017; pp. 70–75.

21. Jeong, T.; Chung, J.; Hong James, W.-K.; Ha, S. Towards a distributed computing framework for Fog.
In Proceedings of the IEEE Edge World Congr. (Fwc) Santa Clara, CA, USA, 30 October–1 November 2017;
pp. 1–6.

22. Wang, N.; Varghese, B.; Matthaiou, M.; Nikolopoulos, D.S. ENORM: A framework for edge node resource
management. IEEE Trans. Serv. Comput. 2017.

23. Happ, D.; Wolisz, A. Towards gateway to Cloud offloading in IoT publish/subscribe systems. In Proceedings
of the IEEE Second International Conference on Edge and Mobile Edge Computing (FMEC), Valencia, Spain,
8–11 May 2017; pp. 101–106.

24. Ibrahiem, O.; Chundrigar, S.; Huang, K.-L. Enabling Mobile Service Continuity across Orchestrated Edge
Networks. IEEE Trans. Netw. Sci. Eng. 2019. [CrossRef]

25. Puliafito, C.; Mingozzi, E.; Vallati, C.; Longo, F.; Merlino, G. Virtualization and Migration at the Network
Edge: An Overview; In Proceedings of the 4th IEEE International Conference on Smart Computing, Taormina,
Sicily, Italy, 18–22 June 2018; pp. 368–374.

26. Tziritas, N.; Koziri, M.; Bachtsevani, A.; Loukopoulos, T.; Stamoulis, G.; Khan, S.U.; Xu, C.-Z. Data
Replication and Virtual Machine Migrations to Mitigate Network Overhead in Edge Computing Systems.
IEEE Trans. Sustain. Comput. 2017, 2, 320–332. [CrossRef]

27. Bittencourt, L.F.; Lopes, M.M.; Petri, I.; Rana, O.F. Towards virtual machine migration in edge computing.
In Proceedings of the IEEE 10th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), Krakow, Poland, 4–6 November 2015; pp. 1–8.

28. Zhao, C.; Wang T.; Yang, A. A Heterogeneous Virtual Machines Resource Allocation Scheme in Slices
Architecture of 5G Edge Datacenter. Comput. Mater. Contin. 2019, 61, 423-437. [CrossRef]

29. Wang, H.; Chen, Z.; Zhao, J.; Di, X.; Liu, D. A vulnerability assessment method in industrial internet of
things based on attack graph and maximum flow. IEEE Access 2018, 6, 8599–8609. [CrossRef]

30. Github-hisangke/The-Prototype-System-of-Edge-Service-Migration. Available online: https://github.com/
hisangke/The-prototype-system-of-edge-service-migration (accessed on 26 March 2020).

31. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W. J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and less 0.5 MB model size. arXiv 2016, arXiv:1602.07360.

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

33. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4700–4708.

34. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 14–18 December 2012; pp. 1097–1105.

http://dx.doi.org/10.1109/TCOMM.2018.2884001
http://dx.doi.org/10.1109/MWC.2019.1800249
http://dx.doi.org/10.1109/TNSE.2019.2953129
http://dx.doi.org/10.1109/TSUSC.2017.2715662
http://dx.doi.org/10.32604/cmc.2019.07501
http://dx.doi.org/10.1109/ACCESS.2018.2805690
 https://github.com/hisangke/The-prototype-system-of-edge-service-migration
 https://github.com/hisangke/The-prototype-system-of-edge-service-migration

Sensors 2020, 20, 2294 15 of 15

35. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

36. Barsoum, E.; Zhang, C.; Ferrer, C.C.; Zhang, Z. Training deep networks for facial expression recognition with
crowd-sourced label distribution. In Proceedings of the 18th ACM International Conference on Multimodal
Interaction, Tokyo, Japan, 12–16 November 2016; pp. 279–283.

37. Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; De Geus, P. Malicious software classification using transfer
learning of resnet-50 deep neural network. In Proceedings of the 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1011–1014.

38. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 26 June–1 July 2016; pp. 2818–2826.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Service Migration Framework
	Service Migration Algorithm

	IoT-RECSM Smart Service Migration Framework
	Resource Utilization Model for Edge Node Resource
	Resource Usage Model for Edge Service
	Migration Service Selection Model
	Edge Node Selection Model
	Dynamic Edge Service Migration Algorithm

	The Prototype System and Case Study
	The Class Graph of Prototype System
	The Configuration of Prototype System
	A Case of Edge Service Migration on Prototype System

	Conclusions
	References

