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Abstract: Fall-related information can help clinical professionals make diagnoses and plan fall
prevention strategies. The information includes various characteristics of different fall phases, such
as falling time and landing responses. To provide the information of different phases, this pilot
study proposes an automatic multiphase identification algorithm for phase-aware fall recording
systems. Seven young adults are recruited to perform the fall experiment. One inertial sensor is
worn on the waist to collect the data of body movement, and a total of 525 trials are collected. The
proposed multiphase identification algorithm combines machine learning techniques and fragment
modification algorithm to identify pre-fall, free-fall, impact, resting and recovery phases in a fall
process. Five machine learning techniques, including support vector machine, k-nearest neighbor
(kNN), naïve Bayesian, decision tree and adaptive boosting, are applied to identify five phases.
Fragment modification algorithm uses the rules to detect the fragment whose results are different
from the neighbors. The proposed multiphase identification algorithm using the kNN technique
achieves the best performance in 82.17% sensitivity, 85.74% precision, 73.51% Jaccard coefficient,
and 90.28% accuracy. The results show that the proposed algorithm has the potential to provide
automatic fine-grained fall information for clinical measurement and assessment.

Keywords: multiphase identification; wearable inertial sensor; fall recording system

1. Introduction

With the increase of life expectancy and the decrease of the fertility rate, the proportion
of elders older than 64 years old in the total population explosively increases. Falls are one
of the major problems leading to physical injuries, functional decline, increased healthcare
costs, and even death for elders [1]. In the United States (2018), 27.5% of adults aged more
than 65 years reported at least one fall in the past year, and a percentage of women reported
at least one fall or fall-related injury has higher than did men [2]. Furthermore, the elders
may develop anxiety, depression, and fear of repeated falling after fall events occur, which
significantly influences the ability to live independently, social isolation, and the quality of
life [3].

In recent years, advanced microelectromechanical systems (MEMS) and information
and communication technology (ICT) create new opportunities for fall-related healthcare
applications [4,5], including fall detection and prevention. Various sensors (e.g., inertial
sensors [6], pressure or seismic sensors [7,8] and cameras [9,10]) and machine learning
techniques (e.g., support vector machine (SVM), and k-nearest neighbor (kNN)) have been
successfully applied to fall-related applications [5,11–14]. These works have shown that fall
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events can be automatically detected by the systems. Furthermore, the detailed information
of different fall phases (e.g., the way to fall, the fall direction, the performed activities
before the fall event, falling time, and landing responses) can assist in considering ways
to plan preventive strategies and diagnostic approaches [12,15–17]. However, few works
focus on the development of automatic fall recording systems to obtain fall information in
fine-grained levels for clinical evaluation and measurement.

Typically, there are two common approaches to record and analyze fall-related infor-
mation in clinical practice. The first is relying on self-report by fallers and caregivers [18,19].
But this approach has issues in misremembering, respondent interpretation, and cultural
diversity [18,19]. Another approach is to install cameras in the potential faller’s house for
long-term recording. If a fall accident has happened, clinical professionals can manually
analyze fall-related information based on the video after fall events [16]. However, several
challenges limit the usability of the manual-based fall analysis using cameras. The first
one is that the manual operation and analysis of the whole fall event is time-consuming.
Another one is that the manual recording suffers the issues in inter-rater bias and manual
errors during the fall pattern analysis [16]. These issues might decrease the reliability of
the analyzed results. Furthermore, it is a huge consumption of manpower and financial
resources to install cameras in the potential faller’s house. To tackle the aforementioned
challenges, there is a requirement to develop automatic fall recording systems to obtain
objectively fine-grained fall information for fall information analysis.

To support objective and reliable fine-grained fall monitoring, various analysis ap-
proaches of fall characteristics have been proposed in automatic fall recording systems
to acquire fall information for planning fall prevention strategies [8,14,20]. These studies
utilized inertial sensors and seismic sensors to acquire the movement information while
falling. Then, machine learning techniques are applied to classify fall directions, fall types
and fall positions. In fact, the information of other fall phases is also essential for clinical
assessment and analysis. For example, the duration of resting after hitting on the ground
has far greater attendant risks in dehydration, hypothermia, and even death [21]. Fall
information of different fall phases (e.g., pre-fall, falling, impact, resting, and recovery
phase) is important to help clinical professionals analyzing and assessing fine-grained fall
information. Therefore, automatic multiple fall phase segmentation and identification are
required for objective assessment and evaluation.

The main purpose of this study is to automatically obtain five fall phases for automatic
fall recording systems, including pre-fall, free-fall, impact, resting, and recovery phases.
This pilot study proposes an automatic multiphase identification algorithm that combines
machine learning techniques and fragment modification algorithm to identify the fall
phases, while most works only focused on the analysis of a single fall phase. In addition,
seven types of falls emulated in a lab-based environment are conducted to validate the
proposed algorithm.

2. Materials and Methods
2.1. Background

A fall model is defined as the temporal order of the phases in a fall process. A fall
process is defined as the body coming to rest unintentionally on the ground or other
lower level when performing an activity, and getting up from the ground depending
on consciousness [1,22]. The multiphase fall model divides a fall process into several
fall phases. Various types of fall models have been proposed for the analysis of fall
events [17,23–26]. There are two common types of fall models. One type is the four-phase
fall model, including pre-fall, critical, post-fall and recovery phases [23]. The critical phase
is the sudden body movement to the ground or other lower levels that ends with the shock.
The critical phase is utilized to disclose the significant features for detecting fall events.
Another work [17] proposed the five-phase fall model to obtain more detailed information
of fall events for clinical analysis, which includes pre-fall, free-fall, impact, resting and
recovery phases. Compared to the four-phase model, the five-phase fall model divides
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the critical phase into free-fall and impact phases. The information of free-fall phases can
provide information of falling height and falling responses such as grabbing or stepping. In
addition, the information of impact phases is important to assess fall types and directions.
To provide the fine-grained fall information for clinical professionals, this study adopts the
five-phase fall model. An acceleration-based signal of a fall process is shown in Figure 1.

Figure 1. Diagram of an acceleration-based signal of a fall process.

These phases are defined as follows:

• Pre-fall phase (green area): A pre-fall phase is defined as an activity before losing
balance and hitting on the ground such as walking, standing, sit-to-stand, stand-to-sit
activities, that may highly impact the fall biomechanics of faller. Through identified
pre-fall activities, fallers and caregivers can understand which activity easily leads to
fall events.

• Free-fall phase (red area): A free-fall phase is the process of sudden body movement
toward the ground. There is no protective strategy that can prevent people from
falling in the free-fall phase. The time of free-fall phase depends on the circumstances
such as fall direction and fall height.

• Impact phase (yellow area): An impact phase is the process of the person hitting on the
ground and can be determined by the abrupt shock of the acceleration signal. This
phase is a critical phase for fall detection algorithms and systems. The fall types and
directions can be analyzed by the duration of the impact phase and the magnitude of
tri-axial acceleration in the impact phase.

• Resting phase (purple area): A resting phase is defined as a faller remaining inactive on
the ground after a fall occurred. The injury severity of the fall affects the duration of
resting phases. In some fall events, the duration of the resting phase is extremely short
when the faller directly picked oneself up. Conversely, the duration of the resting
phase may be long or unending if the faller is unable to rise. The situation that the faller
cannot get up is identified as long-lie, which means involuntarily remaining on the
ground. Then, there is no recovery phase and the fall event ends in the resting phase.

• Recovery phase (blue area): A recovery phase is the last phase of a fall event if the
faller has consciousness to get up from the ground. Resting and recovery phases are
important to understand the severity of falls and whether the faller has immediate
assistance. Previous studies [27,28] have shown the positive correlation between the
mortality rates and the waiting time of rescue from falls. Rescuing the faller quickly
can reduce the risks of hospitalization and death [23].
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2.2. Developments on Multiphase Identification Algorithm

The functional diagram of the proposed multiphase identification algorithm is shown
in Figure 2. Three main stages are included, data collection, multiphase identification,
and multiphase information. Firstly, the data collected by an inertial sensor and fall-
related experimental protocol are described in Section 2.2.1. Secondly, the multiphase
identification utilizes machine-learning-based classifiers and fragment modification to
identify fall phases, that detailed description in Section 2.2.2. Finally, the multiphase
information is obtained, including the starting point, ending point and duration of each
fall phase.

Figure 2. Functional diagram of proposed multiphase identification algorithm.

2.2.1. Data Collection and Experimental Protocol

Seven young adults (three males and four females; age [mean ± standard deviation]:
20.86 ± 1.07 years; height: 1.68 ± 0.08 m; weight: 64.86 ± 18.23 kg) are recruited in this
study. One inertial sensor (APDM, Inc., Portland, OR, USA) is worn on the waist and
utilized to collect the data of body movement. A tri-axial accelerometer, gyroscope, and
magnetometer are involved in the inertial sensor. In this study, only tri-axial acceleration
data from the accelerometer and tri-axial angular velocity data from the gyroscope are
utilized to collect movement information, and the data are collected at a sampling rate of
128 Hz.

In the experiment, seven types and four directions of fall are executed, as presented
in Table 1. One trial involves each type with one direction of fall is performed. Each type
with one direction of fall repeats three times. Between trials, the resting time depends on
the physical condition of the subject. In the experiment, the subjects are asked to perform
the instructed fall type and get up later. For example, when performing forward fall while
standing, the subjects firstly stand in front of the soft mattress, then fall forward on the
soft mattress, and finally get up to stand in front of the mattress. The elapsed time of each
fall type and direction is shown in Table 2. The elapsed time of each trial is defined as the
duration from performing the activity before losing balance (pre-fall phase) to getting up
and standing in front of the mattress (recovery phase).
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Table 1. Types and directions of fall.

No. Type Direction Trial

1 Fall while standing Forward, backward, right lateral, and left lateral 84
2 Fall while standing up Forward, backward, right lateral, and left lateral 84
3 Fall while sitting down Forward, backward, right lateral, and left lateral 84
4 Fall while stooping down Forward, backward, right lateral, and left lateral 84
5 Fall while walking Forward, backward, right lateral, and left lateral 84
6 Fall while jumping Forward, backward, right lateral, and left lateral 84
7 Fall while walking backward Backward 21

Table 2. Elapsed time of each fall type and direction (notation: mean ± standard deviation).

Type Direction

Forward (s) Backward(s) Right Lateral(s) Left Lateral(s)

Fall while standing 14.89 ± 2.03 14.91 ± 2.53 15.58 ± 2.32 15.35 ± 1.95
Fall while standing up 16.66 ± 3.01 17.00 ± 2.58 17.07 ± 1.83 17.33 ± 1.67
Fall while sitting down 16.44 ± 1.88 15.91 ± 1.85 15.90 ± 1.85 15.69 ± 1.72

Fall while stooping down 17.68 ± 1.35 20.56 ± 2.73 18.61 ± 2.13 19.07 ± 1.82
Fall while walking 15.52 ± 1.97 16.46 ± 1.93 15.65 ± 1.73 15.81 ± 1.55
Fall while jumping 19.04 ± 2.23 19.64 ± 2.62 19.11 ± 2.41 19.02 ± 2.36
Fall while walking

backward – 19.17 ± 1.80 – –

The experimental environment setting is shown in Figure 3. All experiments were
performed on the 18 cm soft mattress to prevent injuries. A helmet, a waist support belt,
and knee and elbow guards are worn to protect subjects from harm in experimenting. The
orientation and position of a sensor and schematic view of the subject wearing protectors
are shown in Figure 4.

Figure 3. Diagram of the experimental environment setting.
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Figure 4. The sensor orientation, wearing position of a sensor, and the subject has worn protectors in
the experiment. (a) Sensor orientation; (b) The sensor was worn on the waist (lower back); (c,d) The
front and back view of the subject worn protectors, respectively.

A camera embedded with a smartphone is synchronized with an inertial sensor to
record the video with 30 frames per second and placed on the lateral side of the subjects
during the entire experiment for providing ground truth labels. The researcher manually
labels initial and ending timestamps of each fall phase through recorded videos. The
performance of the proposed multiphase identification algorithm is evaluated by ground
truth labels.

Respecting research ethics and the participant’s privacy, a required consent form was
signed by the subjects, and revealing personal identities of a subject were replaced with
codes. This experiment was approved by the Institutional Review Board Committee of
National Yang-Ming University (YM106066E).

2.2.2. Multiphase Identification

The multiphase identification includes four steps, such as sliding window, feature
extraction, multiphase classifier, and fragment modification. The software MATLAB
R2019a is utilized to perform and develop the collected data processing and the multiphase
identification algorithm. In the sliding window, sensing data collected from an inertial
sensor are divided into small segments using a window size. The influence of window size
on identification performances is intelligible [29,30]. However, no clear definition exists
for the selection of the optimal window size in activities identification. A large window
size may involve many activities while a small window size may split an activity into
several segments. Therefore, the adequate window size is needed to be investigated. In this
study, five window sizes with a fixed sliding size of one sample are investigated, including
window size of eight samples (0.0625 s), window size of 16 samples (0.125 s), window size
of 24 samples (0.1875 s), window size of 32 samples (0.25 s), and window size of 40 samples
(0.3125 s).

The segmented each segment is transformed to a set of features by the feature ex-
traction. A total of 64 features are extracted for the multiphase identification, and that
are listed in Table 3. Eight types of statistical features are extracted from each segment,
including mean, standard deviation (std), variance (var), maximum (max), minimum (min),
range, kurtosis, and skewness. These statistical features are commonly utilized in the field
of activity recognition and identification [11,12,14]. Eight signals are utilized for features
extraction, including the x-, y- and z-axis of acceleration (ax, ay and az), the x-, y- and z-axis
of angular velocity (gx, gy and gz), resultant of acceleration (AR) and resultant of angular
velocity (GR). That resultant of acceleration (AR) and resultant of angular velocity (GR) are
calculated by Equations (1) and (2).

AR =
√

ax2 + ay2 + az2 (1)
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GR =
√

gx2 + gy2 + gz2 (2)

Table 3. The feature set for multiphase classifier.

Feature Set,
F = (f1, f2, . . . , f64) ε R64

Feature Description

f1 ~ f8 mean, std, var, max, min, range, kurtosis and skewness o f ax
f9 ~ f16 mean, std, var, max, min, range, kurtosis and skewness o f ay
f17 ~ f24 mean, std, var, max, min, range, kurtosis and skewness o f az
f25 ~ f32 mean, std, var, max, min, range, kurtosis and skewness o f gx
f33 ~ f40 mean, std, var, max, min, range, kurtosis and skewness o f gy
f41 ~ f48 mean, std, var, max, min, range, kurtosis and skewness o f gy
f49 ~ f52 mean, std, var, max, min, range, kurtosis and skewness o f AR
f53 ~ f64 mean, std, var, max, min, range, kurtosis and skewness o f GR

The multiphase classifier uses machine learning techniques to identify each phase,
including pre-fall, free-fall, impact, resting, and recovery phases. Because of the experi-
mental protocol, the initial and ending activities are the standing activity. Therefore, the
multiphase classifier may classify seven phases including the initial-static, pre-fall, free-fall,
impact, resting, recovery and ending-static phases.

Five common machine learning techniques are adopted as the multiphase classifier,
such as SVM, kNN, naïve Bayesian (NB), decision tree (DT), and adaptive boosting (Ad-
aBoost). For all techniques, the training data (xi, li), i = 1, . . . , N. N is numbers of total
training data. xi ∈ RN and the class labels are li ∈ {0, 1, 2, 3, 4, 5, 6} for seven classes
(0: initial-static, 1: pre-fall, 2: free-fall, 3: impact, 4: resting, 5: recovery, 6: ending-static).
The introduction of these machine learning techniques and the applied parameters is
as follows:

1. Support Vector Machine (SVM)

An SVM technique aims to find the optimal separating hyperplane and maximum
margins in the n-dimensional feature space. The testing data are classified by the optimal
hyperplane. Because the data distribution is unpredicted, there are various kernel functions
for an SVM technique, such as the linear, polynomial, sigmoid, hyperbolic tangent kernel,
and radial basis function (RBF). A multiclass SVM technique is implemented to classify
multiphase of a fall event. In this study, the multiclass SVM classifier with the one-versus-
one approach and the linear kernel function is adopted to classify multiphase of a fall event.
The linear decision function is f (xi) = wxi + b, that defines the hyperplane. And, the linear
kernel function K(x, xi) = xTxi is used for the multiclass SVM classifier.

2. K-Nearest Neighbor (kNN)

KNN is a nonparametric algorithm for recognition and classification, which stores
all training data and identifies testing data are classified by a plurality vote of nearest k
neighbor, which decided by the distance. There are various distance functions that can
be utilized to calculate distances, such as Euclidean, Manhattan, Minkowski, Chebyshev
distance functions. In this study, the Euclidean distance function di =

√
x2 + xi

2 is used
to calculate the distances. Because the parameter k highly depends on data distribution,
it commonly uses an odd constant from 1 to

√
n, where n is the number of training

data [31,32]. To find the best number of k for this study, a range of number between 1 and
21 with a step of 2 is explored and the best performances are gotten by k = 13.

3. Naïve Bayesian (NB)

NB technique is a conditional probability model that makes predictions using Bayes
theorem with the assumption of conditional independence between all features. The
posterior probability P(l|x) = P(x|l)P(l)

P(x) for each class is calculated by prior probability P(l),
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likelihood P(x|l), and predictor prior probability P(x) of class. The maximum a posterior
(MAP) decision rule argmax(P(l|x)) is used to obtain the most suitable class.

4. Decision Tree (DT)

DT technique is a supervised machine learning algorithm for classification and regres-
sion. The aim is to create a model that classifies the testing data by a set of decision rules
inferred from the training data. Classification and regression tree (CART), which is one of
decision tree building methods, is implemented to train a multiphase classifier in this study.

The splitting rule of CART is Gini impurity IG(x) =
c
∑

l=0
p(l|x)(−p(l|x)) = 1−

c
∑

l=0
p(l|x)2,

where c is total number of class.

5. Adaptive Boosting (AdaBoost)

Boosting methods apply a set of the weak models ht(x) to build a strong model

H(x) = sign
(

T
∑

t=1
αtht(x)

)
by a weighted vote of weak models with weight αt =

1
2 ln 1−εt

εt
,

where εt is the classification error of the weak model. AdaBoost employs decision trees as
weak classifiers and a weighted sum to create a stronger classifier. Current weak classifier
assigns different weighted sums to data of the previous weak classifier. The weighted
sum focuses on the misclassified data of the weak classifier. The misclassified data may
be assigned a higher weight to get the higher probability for classification than correctly
classified data. This process is repeatedly performed until reaching the defined maximum
number of iterations. The maximum number of iterations is defined as 10 in this study.

Finally, fragment modification is implemented to modify the misclassification results
from the multiphase classification, which are an inevitable situation in machine-learning-
based techniques with the sliding window approach. As shown in Figure 5, if the identified
phase of one segment, or two or three segments are different from that of the previous and
following segments, and the identified phase of the previous and following segments are
the same phase, the one segment, or two or three segments are considered misclassified
segments. The misclassified segments should be modified to the same with the previous or
following segments by Algorithm 1, which is the pseudocode of the fragment modification
algorithm. In Algorithm 1, each multiphase segment (phasei) and modified multiphase
segment (mphasei) are included in SPHASE =

(
sphasej

∣∣1 ≤ j ≤ a
)
, where a is the number

of defined semantic phases. There are seven defined semantic phases (a = 7) in this study, as
following {‘initial-static’, ‘pre-fall’, ‘free-fall’, ‘impact’, ‘resting’, ‘recovery’, ‘ending-static’}.
At the beginning of the fragment modification algorithm, the first segment should be set as
the initial-static phase (sphase1) and the last three segments should be set as the ending-
static phase (sphase7), referring to line 1 to line 4 and line 15 to line 18 in Algorithm 1. The
main modification process refers to line5 to line 14 in Algorithm 1 to modify the one to
three misclassified results between two segments with identical results.
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Figure 5. Diagram of proposed fragment modification algorithm. An example to modify one
(situation 1), two (situation 2), or three (situation 3) segments that are different from previous and
following segments. These segments (misclassified segments) should be modified to the same with
the previous or following segments.

2.2.3. Multiphase Information

A segment-based sequence of the phases is obtained from the output of the fragment
modification algorithm. The sample-based sequence is restored from the segment-based
sequence. The multiphase information is obtained by the sample-based sequence, including
starting and ending points of each phase. Furthermore, the duration of each phase can be
derived from starting and ending points.

Algorithm 1: Fragment modification algorithm in the multiphase identification stage.

Input: An identified segments sequence FALL = {(phasei|i = 1, 2, 3, . . . , N)}, The ith
multiphase segment phasei; total number of segments in the sequence N

Output: A modified and identified segments sequence MFALL = {(mphasei|i = 1, 2, 3, . . . , N)},
The ith modified multiphase segment mphasei

1: phase1 = sphase1//sphase1 is the semantic phase of initial-static.
2: phaseN = sphase7//sphase7 is the semantic phase of ending-static.
3: phaseN−1 = sphase7
4: phaseN−2 = sphase7
5: for i from 2 to N − 3 do
6: if phasei != phasei−1 && phasei−1 == phasei+1 then
7: phasei = phasei−1
8: else if phasei != phasei−1 && phasei+1 != phasei−1 && phasei−1 == phasei+2 then
9: phasei = phasei−1
10: else if phasei != phasei−1 && phasei+1 != phasei−1 && phasei+2 != phasei−1 &&

phasei−1 == phasei+3 then
11: phasei = phasei−1
12: end if
13: mphasei = phasei
14: end for
15: mphase1 = sphase1
16: mphaseN = sphase7
17: mphaseN−1 = sphase7
18: mphaseN−2 = sphase7
19: return MFALL
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2.3. Performance Evaluation

Leave-one-subject-out cross validation (LOSOCV) is utilized to evaluate the proposed
algorithm performance. It is a specific k-fold cross validation that utilizes one subject
data as the testing set and the others as the training set in each fold. Therefore, 75 trials
performed by the identical subjects are adopted as the testing set and 450 trials of the rest
subjects are the training data for each LOSOCV round. LOSOCV iterates 7 times until each
subject is used as the testing set because seven subjects are recruited in this study.

The sample-based approach is commonly used to evaluate the reliability and perfor-
mance of classification [33]. This approach calculates the number of true positive (TP), true
negative (TN), false positive (FP) and false negative (FN) based on the sample-by-sample
mapping between ground truth and output of multiphase identification. For example, if
we want to evaluate the identification performance of the proposed algorithm on an impact
phase. We define the impact phase as “positive”, and other phases as “negative”. TP is
that the sample is identified as the impact phase, and the phase is performed exactly. TN
is defined as that the impact phase is not performed, and the algorithm correctly predicts
the sample as other phases. FP is defined as that the algorithm predicts the sample as
the impact phase, but the impact phase is not performed actually. FN is that the algo-
rithm identifies the sample as other phases, but the impact phase is performed actually.
Four evaluation measures are utilized for performance evaluation, including sensitivity,
precision, Jaccard coefficient, and accuracy. These evaluation measures are calculated by
Equations (3)–(6). Sensitivity, precision, and Jaccard coefficient are measured for evaluation
of each phase in the proposed multiphase identification algorithm. Jaccard coefficient can
reveal the similarity between identified phase and the ground truth phase. In this study,
Jaccard coefficient is utilized to evaluate the accuracy of locating the starting and ending
points. Accuracy evaluates the average performance of the multiclass classifier:

Sensitivity =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Jaccard Coe f f icient =
TP

TP + FP + FN
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

An example of a process in the multiphase identification and the definition of TP, TN,
FP, and FN in the sensing stream data are shown in Figure 6, which is a case of a fall event
while walking.
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Figure 6. An example of a process in the multiphase identification. The fragment modified results were compared against
the ground truth in terms of TN, TP, FP and FN.

3. Results

In this study, there are a total of 525 trials (75 trials× 7 subjects) are collected. LOSOCV
is applied in this study, which uses 450 trials from six subjects as the training set and
75 trials from the left subject as the testing set, and iterates seven times. The average
performance results of the multiphase identification algorithm using different machine
learning techniques and window sizes are shown in Table 4. The overall performance of the
proposed multiphase identification algorithm achieves 76.54% sensitivity, 80.89% precision,
66.45% Jaccard coefficient, and 87.05% accuracy. To summarize the machine learning
techniques, the average performance is shown in Figure 7. The accuracy of all machine
learning techniques with different window sizes is over 80%. The proposed algorithm using
the kNN technique achieves the best performance in 82.17% sensitivity, 85.74% precision,
73.51% Jaccard coefficient, and 90.28% accuracy. Then, the proposed algorithm using the
NB technique has the worst performance than that using other techniques. To summarize
the window sizes, the average performance is shown in Figure 8. The best performance
of the proposed algorithm with different window sizes in sensitivity, precision, Jaccard
coefficient, and accuracy is 77.40% with a window size of 24 samples (0.1875 s), 81.59%
with a window size of 24 samples (0.1875 s), 67.28% with a window size of 32 samples
(0.25 s), and 87.52% with a window size of 40 samples (0.3125 s), respectively.



Sensors 2021, 21, 3302 12 of 17

Table 4. The performance results of the multiphase identification algorithm using machine learning techniques versus
window sizes (unit:%).

Machine Learning
Technique

Evaluation
Measure

Window Size

8 Samples
(0.0625 s)

16 Samples
(0.125 s)

24 Samples
(0.1875 s)

32 Samples
(0.25 s)

40 Samples
(0.3125 s) Overall

AdaBoost

Sensitivity 73.25 75.07 77.31 78.06 77.87 76.31
Precision 83.82 85.81 86.55 85.31 83.04 84.91

Jaccard coefficient 65.23 67.35 69.73 70.26 69.83 68.48
Accuracy 87.85 88.57 89.30 89.54 89.77 89.00

SVM

Sensitivity 72.47 74.44 75.70 77.62 78.22 75.69
Precision 78.40 76.61 77.92 79.07 79.30 78.26

Jaccard coefficient 61.81 61.44 63.05 64.91 65.37 63.32
Accuracy 84.45 83.83 84.80 85.86 86.22 85.03

kNN

Sensitivity 81.17 82.46 83.09 82.65 81.49 82.17
Precision 86.02 86.70 86.53 85.56 83.91 85.74

Jaccard coefficient 72.33 73.83 74.47 74.05 72.86 73.51
Accuracy 89.32 90.07 90.56 90.76 90.69 90.28

DT

Sensitivity 81.84 82.42 82.84 81.61 80.92 81.93
Precision 83.57 83.33 83.51 82.19 81.28 82.78

Jaccard coefficient 72.46 72.51 73.03 71.64 70.93 72.12
Accuracy 89.75 89.56 89.86 89.36 89.26 89.56

NB

Sensitivity 65.80 67.44 68.07 66.92 64.76 66.60
Precision 72.77 73.01 73.41 73.26 71.31 72.75

Jaccard coefficient 53.55 54.93 55.64 55.56 54.36 54.81
Accuracy 80.76 81.24 81.50 81.72 81.67 81.38

Overall

Sensitivity 74.91 76.37 77.40 77.37 76.65 76.54
Precision 80.92 81.09 81.59 81.08 79.77 80.89

Jaccard coefficient 65.08 66.01 67.19 67.28 66.67 66.45
Accuracy 86.42 86.65 87.20 87.45 87.52 87.05

Figure 7. The average performance using different machine learning techniques.
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Figure 8. The average performance using different window sizes.

According to the best performance of machine learning techniques, Table 5 shows the
performance results of each phase using the kNN technique with different window sizes. In
summary, the average performance of proposed algorithm using the kNN technique with
each window size is shown in Figure 9. The highest sensitivity, precision, Jaccard coefficient
and accuracy occurred proposed algorithm using the kNN technique with a window size
of 24 samples (0.1875 s), 16 samples (0.125 s), 24 samples (0.1875 s) and 32 samples (0.25 s),
respectively. For all window sizes, the sensitivity and Jaccard coefficient of the resting
phase and the precision of the pre-fall phase outperform that of other phases, except the
static phase. The sensitivity, precision, and Jaccard coefficient of the free-fall phase are
worse than that of other phases.

Table 5. The performance results of each phase using the kNN technique with different window sizes (unit:%).

Using a kNN technique with a window size of 8 samples (0.0625 s)

Initial-static Pre-fall Free-fall Impact Resting Recovery Ending-static Overall
Sensitivity 99.70 62.96 51.01 79.64 96.33 80.12 98.46 81.17
Precision 90.26 93.18 67.03 87.00 84.12 88.19 92.39 86.02

Jaccard coefficient 90.03 60.17 40.20 71.07 81.50 72.31 91.05 72.33
Accuracy 89.32

Using a kNN technique with a window size of 16 samples (0.125 s)
Sensitivity 99.70 64.34 54.42 81.21 96.74 82.38 98.45 82.46
Precision 91.38 94.75 67.63 86.49 86.07 87.68 92.88 86.70

Jaccard coefficient 91.14 62.11 42.73 71.94 83.62 73.79 91.51 73.83
Accuracy 90.07

Using a kNN technique with a window size of 24 samples (0.1875 s)
Sensitivity 99.54 66.02 54.89 82.07 96.98 83.80 98.33 83.09
Precision 92.50 95.73 64.50 85.12 87.31 87.52 93.03 86.53

Jaccard coefficient 92.12 64.10 42.08 71.68 84.97 74.81 91.55 74.47
Accuracy – – – – – – – 90.56

Using a kNN technique with a window size of 32 samples (0.25 s)
Sensitivity 99.29 67.71 49.88 81.87 96.86 84.70 98.24 82.65
Precision 93.44 96.18 57.93 82.93 88.07 87.49 92.89 85.56

Jaccard coefficient 92.83 65.91 37.11 70.01 85.60 75.52 91.35 74.05
Accuracy – – – – – – – 90.76

Using a kNN technique with a window size of 40 samples (0.3125 s)
Sensitivity 99.05 68.82 41.97 80.79 96.34 85.22 98.28 81.49
Precision 94.24 96.01 48.38 80.30 88.51 87.25 92.66 83.91

Jaccard coefficient 93.40 66.91 29.82 67.38 85.61 75.75 91.15 72.86
Accuracy – – – – – – – 90.69
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Figure 9. The average performance of proposed algorithm using the kNN technique with each
window size.

4. Discussion

The proposed multiphase identification algorithm can automatically and objectively
identify fall phases using a single wearable inertial sensor. The proposed algorithm
combines machine learning techniques and fragment modification algorithm to provide
fine-grained fall information about starting point, ending point and duration of fall phases
for clinical professionals. The proposed multiphase identification algorithm using the
kNN technique can achieve the best performance in all measures. The results demonstrate
the kNN technique is more suitable for the proposed algorithm. Moreover, the kNN
technique has the advantages of less computation complexity. The window size is an
important parameter that may affect identification performance. Larger window sizes may
include more patterns and characteristics across phases that obscure the machine learning
techniques to build the models and lead to misidentification. Smaller window sizes may
not include patterns and characteristics of a whole phase that confuses to build the models
and easily lead to motion fragment by trained models. Over the five window sizes, a
window size of 24, 16, 24, and 32 samples can achieve the best average performance using
the kNN technique in sensitivity, precision, Jaccard coefficient, and accuracy, respectively.
Therefore, the window size using 16, 24, and 32 samples are suitable for the proposed
multiphase identification algorithm.

To obtained the initial and ending points of a whole fall event, the movement of
initial and ending posture was collected in this experiment. Therefore, the initial- and
ending-static phases are included in the proposed multiphase identification algorithm. The
Jaccard coefficient is defined as the samples of the intersection divided by the samples of
the union in the target phase between ground truth and identification result. The initial-
and ending-static phases have the best performance in the Jaccard coefficient. The free-fall
phase identification has the worst performance of the Jaccard coefficient because the free-
fall phase has a short duration and be confused with daily activities easily. Therefore, the
free-fall phase identification remains room for improvement.

A summary of previous studies [8,14,16,17,20] on sensor types, techniques, and pro-
vided fall-related information is shown in Table 6. Most studies focused on extracting
characteristics of a whole fall to obtain information of fall directions, fall types and fall
positions. Hsieh et al. [20] proposed a machine-learning-based algorithm to detect fall
directions, and the accuracy was 97.34. Hussain et al. [14] used machine-learning-based
classifiers to detect fall types, and the results was 96.82% accuracy using random forest
classifier. Clemente et al. [8] utilized seismic sensor signals to estimate fall positions using
the time difference of arrivals measurements, and results showed that the localization error
is smaller than 0.28 m. However, these studies only focused on extracting characteris-
tics using the entire fall signal, and the fine-grained information and characteristics were
not extracted.
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Table 6. A summary of previous studies on sensor types, techniques, and provided fall-related information.

Article (Year) [Reference] Sensor Type Technique (Method) Provided Fall-Related Information

Becker et al. (2012) [17] Inertial sensor Manual labeling Starting and ending points of fall phases
Robinovitch et al. (2013) [16] Camera Manual labeling Causes of falling; Activities before the fall event.

Hsieh et al. (2018) [20] Inertial sensor Machine learning (SVM) Fall directions (97.34% accuracy)

Hussain et al. (2019) [14] Inertial sensor Machine learning (kNN, SVM
and random forest) Fall types (96.82% accuracy using random forest classifier)

Clemente et al. (2019) [8] Seismic sensor Machine learning (SVM) Fall positions (localization error is smaller than 0.28 m)

This study Inertial sensor Machine learning (SVM, kNN,
NB, DT and AdaBoost)

Starting and ending points of fall phases; Duration of
fall phases.

Two common approaches collected signals by inertial sensors and cameras to man-
ually label the starting and ending points of fall phases and obtain the fine-grained fall
information. The first is self-reports by fallers and caregivers [18,19]. The detailed fall-
related information, including falling time, the activities before falling and fall direction,
is recorded manually. The second approach is to install cameras in the potential faller’s
house for long-term recording. After fall events occur, clinical professionals can manually
analyze fall-related information based on the videos [16]. However, these two approaches
may suffer issues in inter-rater bias and manual errors. Especially, the camera-based ap-
proach captured only 28% and 45% of fall events in two different care facilities. To our
best knowledge, this is the first study aiming to automatically and objectively identify fall
phases within a fall process using machine learning techniques. Machine learning tech-
niques have been proposed and applied to automatic identification of activity, gesture and
movement in other applications [34–37]. However, obtaining fine-grained fall information
still rely on manual execution [16,17]. Our study demonstrates the feasibility of multiphase
identification for phase-aware fall recording system.

The performances of the proposed algorithm are restricted by some challenges to mul-
tiphase identification, such as motion variability, temporal order modification, boundary
decision. The performance of parts of phases needs to be improved, such as the free-fall
phase especially. We plan to examine other algorithms and powerful learning techniques,
such as hierarchical algorithms with rule conditions and machine learning techniques,
convolutional neural networks (CNN), long short-term memory (LSTM). Another lim-
itation is that only seven subjects with narrow age distributed are recruited and seven
types of fall are performed in the experimental environment for validation of the proposed
multiphase identification algorithm. More subjects with wide age distributed, types of fall
and real-world fall events datasets will be investigated to validate the proposed multiphase
identification algorithm in the future.

5. Conclusions

To obtain and understand the phase information of fall events for clinical requirements,
an automatic multiphase identification algorithm is proposed for phase-aware fall recording
systems. The sliding window approach, several machine learning techniques, and fragment
modification algorithm are utilized to identify five phases in a fall event. The proposed
multiphase identification algorithm using the kNN technique with a window size of
24 samples could achieve the best performance in 83.09% sensitivity, 86.53% precision,
74.47% Jaccard coefficient, and 90.56% accuracy. The results show that the proposed
system has the potential to provide automatic and reliable fine-grained fall information for
clinical professionals.
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