
sensors

Article

Geo-Social Top-k and Skyline Keyword Queries on
Road Networks

Muhammad Attique 1,∗ , Muhammad Afzal 1, Farman Ali 1, Irfan Mehmood 2 ,
Muhammad Fazal Ijaz 3 and Hyung-Ju Cho 4,∗

1 Department of Software, Sejong University, Seoul 05006, Korea; mafzal@sejong.ac.kr (M.A.);
farmankanju@sejong.ac.kr (F.A.)

2 Faculty of Engineering & Informatics, University of Bradford, Bradford BD7 1DP, UK;
irfanmehmood@ieee.org

3 Department of Industrial and Systems Engineering, Dongguk University, Seoul 04620, Korea;
fazal@dongguk.edu

4 Department of Software, Kyungpook National University, Sangju-Si 37224, Korea
* Correspondence: attique@sejong.ac.kr (M.A.); hyungju@knu.ac.kr (H.-J.C.)

Received: 20 December 2019; Accepted: 25 January 2020; Published: 1 February 2020
����������
�������

Abstract: The rapid growth of GPS-enabled mobile devices has popularized many location-based
applications. Spatial keyword search which finds objects of interest by considering both spatial
locations and textual descriptions has become very useful in these applications. The recent integration
of social data with spatial keyword search opens a new service horizon for users. Few previous
studies have proposed methods to combine spatial keyword queries with social data in Euclidean
space. However, most real-world applications constrain the distance between query location and data
objects by a road network, where distance between two points is defined by the shortest connecting
path. This paper proposes geo-social top-k keyword queries and geo-social skyline keyword queries
on road networks. Both queries enrich traditional spatial keyword query semantics by incorporating
social relevance component. We formalize the proposed query types and appropriate indexing
frameworks and algorithms to efficiently process them. The effectiveness and efficiency of the
proposed approaches are evaluated using real datasets.

Keywords: top-k spatial keyword queries; skyline queries; location-based social networks; geo-social
queries

1. Introduction

Smartphones and social networks are significant innovations from the past decade, and the
combination of these technologies has engendered geo-social network (GSN) applications, such as
Facebook, Instagram, and Foursquare. Geo-tagged data (e.g., photos, videos, check-ins, and likes)
allow these applications to provide many useful services to users based on social and location relevance.
Furthermore, the easy availability of textual descriptions for desired facilities (e.g., restaurants,
departmental stores, and travel destinations) has promoted many decision support systems and
recommendation services.

Traditional top-k spatial keyword queries [1–3] rank facilities based on spatial proximity to the
query location and textual relevance to query keywords. Many existing studies have proposed spatial
keyword query systems in Euclidean space [3–5] and road networks [6,7]. However, query results
can be improved by including social data, since users tend to consult other users and specially their
friends, besides their own preferences, for recommendations on movies, restaurants, and places to
visit. Therefore, this paper investigates geo-social keyword queries that not only exploit spatial and
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textual information, but also social information to offer many interesting services. Each data object
has a set of fans who exhibit positive behavior towards it, and social relevance is obtained from the
number of fans and the relationship between these fans and the query user.

Geo-social keyword queries can be used for a wide range of GSN applications and services, such
as a tourist visiting Seoul and searching for a French restaurant. Geo-social keyword queries uses
spatial, textual, and social information parameters to retrieve the query results. Spatial information
relates to the distance between the user and the facility, textual relevance relates to how well the
facility description matches query keywords, e.g., French restaurant; and social information relates to
a tourist’s friends and other users.

These query types are also important in various monitoring systems, such as disease monitoring
and crime prevention (e.g., users searching about drugs and subsequently joining Facebook pages to
discuss drug related activities). Law enforcement agencies can identify crime locations by monitoring
commonly visited places for users of those pages. Similarly, Dengue fever patients can be connected
using social networks, and the monitoring of frequently visited places could help medical teams
identify key disease spreading locations. The queries can also be used for decision support systems
such as determining the best location to open a new business or store.

Geo-social queries [8–10] have recently attracted significant research attention due to their
real-world relevance. Sohail et al. [9] proposed a method to monitor socio-spatial top-k famous
queries and skyline queries in Euclidean space. However, they did not consider the textual relevance
to the query keyword. Wu et al. [10] investigated top-k social aware keyword queries in Euclidean
space. However, users typically follow the road network to reach their desired location. Moreover,
processing spatial queries on road networks is significantly more complicated than in Euclidean space
because, it requires computing several shortest paths. Therefore, Euclidean space algorithms cannot be
applied to road networks.

Therefore, we propose geo-social top-k keyword (GSTK) queries to retrieve the k best data objects
based on spatial, textual and social relevance. However, the results depend on the scoring function
defined by the user and choosing a suitable scoring function may be challenging due to different
attribute distributions or inadequate user knowledge. Hence, we also introduce geo-social skyline
keyword (GSSK) queries, which do not require scoring. GSSK queries return every object for which
there does not exist any other object that has a higher spatial, textual, and social score. In this study,
we formalize the concept of processing these queries and provide methodology to process and rank
objects considering spatial, textual, and social relevance. We provide a formal definition of GSTK and
GSSK in Sections 4.1 and 5.1, respectively.

The main contributions of this study are summarized as follows:

• We introduce geo-social top-k keyword (GSTK) queries on road networks that ranks data objects
based on spatial, textual and social relevance.

• We extend our work to propose geo-social skyline keyword (GSSK) queries that return data objects
that are not dominated by any other data object.

• We present an indexing technique to retrieve data objects. Furthermore, we present efficient
algorithms that exploit the indexing technique to process these queries.

• Finally, we conduct extensive experiments on real road network datasets to demonstrate the
efficiency of the proposed techniques.

2. Related Work

In this section, we discuss previous studies related to our work. Section 2.1 briefly reviews top-k
keyword queries. Section 2.2 discusses skyline queries. Finally, Section 2.3 presents a survey on
geo-social queries.
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2.1. Top-k Keyword Queries

Several approaches have been proposed to rank spatial data objects based on keyword relevance.
Initially, Zhou et al. [11] proposed hybrid indexing methods that combine inverted indexes [12] for
text processing and R*-tree [13] for spatial processing. Cong et al. [4] and Li et al. [5] introduced
top-k spatial keyword queries where each object is ranked based on its combined textual and spatial
relevance to query keywords and location. Both studies generated IR-trees by integrating spatial
indexing and text indexing. In contrast to Zhou et al. [11] who applied text indexes to filter web
documents and then used spatial indexes to process location, the IR-tree [4,5] combines indexes to
prune the search space. Rocha et al. [14] proposed an S21 indexing structure to map each keyword to a
block or aggregated R-tree for frequent terms.

Recent studies have investigated several spatial queries, such as nearest neighbor, reverse nearest
neighbor, range, and various top-k queries for road networks [15–19]. Rocha et al. [7] considered
top-k spatial keyword queries for road networks, and proposed an efficient indexing technique and
an overlay network to group objects in regions with similar textual description, thereby enabling
the computation of upper-bound scores for all objects in the region. Gao et al. [20] presented
filter-and-refinement based algorithms to process reverse top-k boolean spatial keyword queries
on road networks. Guo et al. [6] investigated the problem of continuous top-k spatial keyword
queries on road networks and proposed two algorithms to monitor continuous top-k keyword queries
incrementally that minimize the expansion of the network edges. Attique et al. [21] recently expanded
the problem and proposed a safe region based approach to monitor moving top-k keyword queries
in directed and dynamic road networks, where each network edge is directed and its traveling cost
depends on the traffic conditions.

2.2. Skyline Queries

Borzsony et al. [22] studied skyline queries and proposed two approaches: block nested
loop (BNL) and divide and conquer (D&C). Subsequently, Chomicki et al. proposed a sort filter
skyline SFS [23] to reduce skyline evaluation cost by sorting the objects before applying BNL. The
sorting technique improves performance because objects can only dominate the subsequent objects.
Sharifzadeh et al. [24] introduced spatial skyline queries, which are useful for many location-based
applications, decision-support systems and recommendation systems. Deng et al. [25] proposed an
algorithm to process multi-source skyline queries in road networks [26], defined a keyword matched
skyline query to obtain the set of objects whose textual description contain all query keywords.
However, they did not consider a distance function to obtain skyline objects.

Regaldo et al. [27] and Shi et al. [28] recently investigated location-based textual skyline (LTS)
and spatio-textual skyline (STS) queries, respectively. Both queries retrieve objects of interest based on
Euclidean distance to query location and textual relevance to a set of query keywords. Two algorithms
were proposed in [27], but main limitation of their work was that they only considered a single query
location. Shi et al. [28] proposed three models to integrate textual relevance into the spatial skyline,
with spatio-textual dominance (STD) being the most efficient, because it integrates spatial distance and
textual relevance to effectively prune irrelevant objects. Both studies considered textual and Euclidean
distance functions to find skyline objects. However, this study considers geo-social keyword skyline
queries that return the dominant objects based on their aggregated score of social relevance to the
query, textual similarity to the query keywords, and network distance to the query location through the
shortest path. Therefore, their objectives and problem formulations are entirely different and cannot
be applied to process GSSK queries for road networks.

2.3. Geo-Social Queries

Geo-Social query processing is an emerging field that has recently garnered considerable attention
from the research community [29–33]. Huang et al. [34] proposed geo-social network services that
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organize users in social networks based on geographic features, retrieving the set of nearby users
that share common interests. Ye et al. [35], designed a location recommendation system based on a
user’s social networks. Sarwat et al. [36] also proposed a location-aware recommendation system that
associates a user’s social network(s) and locations with ratings. Liu et al. [37] proposed a circle of
friends query that returns a group of friends in the user’s geo-social network who are geographically
and socially close to each other (e.g., community services, friend gathering, and combined sports
activities). Shim et al. recently studied the k-nearest l-close friends query, which reports the k nearest
data objects to a query location based on l-hop friends in the social network. Zhao et al. [31] proposed
a reverse top-k keyword query on road networks that finds potential customers for businesses based
on spatial, textual, and social information of users.

Emrich et al. [8] introduced geo-social skyline queries that report the set of persons close to a
given location, P and closely connected to user U. Sohail et al. [9] recently introduced top-k famous
places and socio-spatial skyline queries that consider social and spatial relevance to the query. They
provided three approaches: social first, spatial first, and hybrid. The main difference between the GSSK
query proposed in the current paper, and the problem studied by Emrich et al. [8] and Sohail et al. [9]
is that the previous studies did not consider keyword relevance and their approaches were applied
for Euclidean space. Wu et al. [10] investigated a problem similar to the proposed GSTK query.
They considered social-aware top-k spatial keyword queries, which retrieve objects based on social,
spatial, and textual relevance to the query, extended the IR-tree approach, and integrated the social
aspect to propose social network aware IR-trees (SNIR-trees). Their approach is also applicable to
Euclidean space and relied on R-trees to determine the minimum distance from query location and
objects. Algorithms designed for Euclidean space, are not suitable for processing GSTK queries
in road networks because they are designed to reduce the number of data objects to be accessed,
without considering the underlying spatial network. However, road network based methods should
be optimized to minimize the number of network edges to be explored and the cost of computing the
distance between query location and objects [25]. To the best of our knowledge, this is the first study
to introduce GSTK and GSSK queries in road networks.

3. Preliminaries

Road Network: We represent a road network by an undirected graph G = (N, E, W), where
N is the set of nodes, E is the set of edges, and W : E → R+ is associated with each edge, i.e., a
positive real number representing the network weight, such as the distance or travel time. Each
edge is represented by a starting and ending node (ns, ne) commonly referred to as boundary nodes
nB ∈ {ns, ne}. Figure 1 presents a road network example with eleven nodes, n1 to n11. The query
point is represented by a triangle and data objects with their textual description are represented by
rectangles. The number on each edge denotes the weight of an edge such as distance in kilometers or
travel time. The distance function, dist(a1, a2) indicates the shortest network distance from a1 to a2.
For example in Figure 1, the shortest distance from q to d1 is dist(q, d1) = 7 and the shortest path is
q→ n8 → d1. The set of data objects in an edge (ns, ne) and (ne, ns) are the same, and the dist(ns, di) is
equal to dist(ns, ne)− dist(ne, di). Hence, dist(ne, di) can be easily obtained from dist(ns, di). Therefore,
the starting node (ns) is used to compute the distance to the objects.

Geo-Social Networks: GSNs consist of entities (such as users, groups, and places) and
relationships between them. The relationship between two entities u and v can have several types,
such as friends-with, lives-in, born-in and works-at. Consider Bob, a Facebook user born in France, who
lives in Seoul, works at Sejong University, and is friends with another French user, Alice. Facebook
stores this information by connecting Bob and Sejong University with works-at, Bob and Alice with
friends-with and Bob and France with born-in relationships. Figure 2 illustrates the resulting social
relationship diagram.
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Figure 1. Illustration of road network.

Figure 2. Illustration of geo-social network.

Points of interest: In this study, points of interest (POIs) are all data objects d ∈ D such as
restaurants, hotels, theme parks, and museums. Each data object lies on the edge E of the road network
G. Each data object has a spatial location d.l, textual description d.t, and set of fans Fd, where a fan is a
user u ∈ U who exhibits positive behavior towards object d (e.g., check-in, like, share, etc.). Table 1
describes the notations used in this study.

Table 1. Frequently used notations.

Notation Definition
ψ(d) Score of data object d
µ(q.t, d.t) Textual relevance of data object d with query keywords
τ(q.s, d.s) Social relevance of data object d with query user
λ(q.l, d.l) Spatial relevance of data object d with query location
(α, β, γ) Preference parameters that represent the importance of textual, social and spatial relevance, respectively
δ Preference parameter that controls the importance between query user friends and other users
Fd Set of fans of data object d
Nq One-hop neighbors of q in social network
Ωt Highest significance of a given term t among the description of the data objects lying on edge eid
Ω f Highest significance of fans of any data object lying on edge eid with term t
σ(d) Aggregated social and textual score used in GSSK queries
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4. Geo-Social Top-k Keyword Queries

4.1. Problem Formulation

A geo-social top-k keyword (GSTK) query in road network G is defined as QG = (q.l, q.t, q.s, k),
where q.l is the query location, q.t are query keywords, q.s is the query user’s social network, and k is
the number of desired data objects. Given a set of data objects D on G; QG returns k data objects from
D in descending order of score ψ(d), which is defined as:

ψ(d) =
[1 + α · µ(q.t, d.t)]× [1 + β · τ(q.s, d.s)]

1 + γ · λ(q.l, d.l)
(1)

where µ(q.t, d.t) is the textual similarity between q.t and d.t, τ(q.s, d.s) is the social relevance of d with
respect to q, and λ(q.l, d.l) is the network distance between q.l and d.l. We also defined preference
parameters (α, β, γ) ∈ [0, 1] to represent the importance of textual, social and spatial relevance,
respectively, with 0 representing the lowest and 1 the highest preference.

Textual relevance (µ) can be measured using any information retrieval model. This study used
cosine similarity to compute the relevance between q.t and d.t, which is defined as:

µ(q.t, d.t) = ∑
t∈q.t

Ωt(d.t).Ωt(q.t) (2)

where the significance Ωt(n) =
wt(n)√

∑t∈n(wt(n))
2

is the normalized weight of the term t in the document by

considering document length [38,39].
Social relevance (τ) can be expressed as:

τ(q.s, d.s) = δ× |Fd ∩U|
|U| + (1− δ)

|Nq ∩ Fd|
|Nq|

where Fd represents the set of fans with positive attitude towards data object d ∈ D (i.e., visited, liked,
recommended or shared) and Nq represents the adjacent neighbors of user q, e.g., if the relationship is
works-at and the query entity is the Facebook page “Sejong University,” then Nq is a set of all users
working at Sejong University. Although any type of relationship can be supported by the presented
work, the remainder of this paper only considers friendship relationships for simplicity. In this context,
Nq comprises only the set of query user’s friends. The expression |Fd∩U|

|U| represents the portion of

users Fd ∈ U who are fans of the data object d and |Nq∩Fd |
|Nq | represents the portion of q’s friends who are

also fans of d. In real life, users commonly consider feedback from friends and other users in social
media. Consider a tourist traveling to a foreign country. Typically the farther from home, the more
difficult to obtain meaningful opinions from family and friends. Hence, the tourist must rely more
on recommendations from other social network users. The proposed social relevance score considers

these situations and aggregates the scores |Fd∩U|
|U| and |Nq∩Fd |

|Nq | . We provide a preference parameter δ to
control the importance of one measure over the other, e.g., δ = 0 if only friends feedback is considered,
δ > 0.5 increases the weight of other users feedback over friends feedback, and δ = 0.5 meaning equal
weight to both sources.

Spatial relevance (λ) is defined as λ(q.l, d.l) = dist(q.l, d.l) which represents the shortest distance
between data objects d and q. Thus, a data object closer to the query has a higher spatial relevance score.

Consider the road network example of Figure 1 and assume that we have a set of
users U = {u1, u2, ..., u100}. User u1 is the query user q and issues a query with
keywords “French restaurant,” requesting one result (k = 1). User u1 and has ten friends,
Nq = {u4, u16, u23, u39, u48, u55, u67, u71, u80, u94}. Equal preference is assigned to every attribute, i.e.,
α = β = γ = 1 and δ = 0.5. If we only consider spatial relevance, the top-1 result is the nearest
restaurant d3. If we consider spatial and keyword relevance the top-1 result is d6. However, d6 does
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not have a suitable social score. Therefore, d2 is the top-1 result considering spatial, textual and social
relevance. Notice that although d2 is slightly far from d6 (dist(q, d2) > dist(q, d6)) and has less textual
relevance than d6 (µ(q.t, d2.t) < µ(q.t, d6.t)).

Table 2 summarizes d2, d3, and d6 scores. To simplify the presentation, we assume the textual
score is the number of occurrences of the query keywords in the object description divided by the total
number of keywords in the object description. For example the textual score of d2 is 2

3 = 0.66, the
social score is 0.5× 20

100 + 0.5× 5
10 = 0.35, and dist(q, d2) = 7. The overall score of d2 is computed as

ψ(d2) =
0.66×0.5

7 = 0.033. Similarly, ψ(d3) = 0.02 and ψ(d6) = 0.024. Consequently, the GSTK query
returned d2 as the top-1 result.

Table 2. Score computation of data objects.

d λ(q.l, d.l) µ(q.t, d.t) FD Nq in FD τ(q.s, d.s) ψ(d)
d2 7 0.66 20 5 0.35 0.033
d3 4 0.50 23 1 0.165 0.020
d6 6 1 9 2 0.145 0.024

4.2. Indexing Framework

Figure 3 shows the proposed indexing framework structure. The spatial component is used to
retrieve adjacent nodes for a given node to allow efficient traversing of the road network. The binding
component binds the road network and keywords to the objects using edge id (eid) and term id (tid).
The social component stores the social relationships of users. Finally, the inverted file component
stores data objects along with their descriptions and set of fans.

Figure 3. Overview of the proposed indexing framework.

Spatial Component: This component integrates the road network and spatial information as
proposed by Papadias et al. [40]. Each road segment is represented by an edge comprising a detailed
polyline and is stored in the network’s R-tree. The B-tree is used to retrieve the adjacent nodes of a
given node ni from adjacency file, to ensure efficient traversing of the network from one node to the
other. The adjacency file stores edge eid (i.e., (ni, nj)) along with its weight W (i.e., dist(ni, nj)). Data
objects that lie on a particular edge can be easily retrieved using eid.

Social Component: The social component employs a B-tree to index each user ui ∈ U along
with their social relationships Nui . The B-tree points to the block in the users file where the social
relationships of user are stored. This component enables efficient retrieval of the query user’s
relationships to compute the social score.

Binding Component: The binding component uses a B-tree that binds a key composed of the
pair eid and tid to the inverted lists that contain the data objects located on the edge with term t in
the data object description. The binding component is also used to efficiently retrieve candidate
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objects that are relevant to the query based on spatial, textual and social relevance. To achieve this,
for each edge the binding component stores the highest significance of a given term t (Ωt) among the
description of objects lying on the edge and the highest significance of fans (Ω f ) of any object lying on
the edge with term t. The highest significance of a term t is an upper-bound textual relevance and the
highest significance of fans is the upper-bound social relevance of any object on the edge with t in its
description. The upper-bound score for edge eid is derived from (Ωt), (Ω f ) and the minimum distance
from query point to edge. The closest boundary node nB is considered to compute the minimum
distance from q to eid (i.e., dist(q, nB)). Therefore, a term t’s inverted list on edge eid is accessed only if
the upper-bound score is greater than the score of the kth object found so far.

Consider the example road network presented in Figure 4. We calculate the upper-bound score
as follows. Let the set of users be U = {u1, u2, ..., u100}, where user u1 is the query user who issued
a query with the keyword “cafe” and query parameters α = β = γ = 1 and δ = 0.5. The number of
fans of d1, d2, d3 and d4 are 15, 30, 40 and 0, respectively. On edge (n2, n3), Ωt = 1 since d1.t = ”Ca f e”.
To compute the highest significance of social relevance (Ω f ), we set the highest score for the portion

of friends of q who are also fans of d i.e., |Nq∩Fd |
|Nq | = 1. Thus, for edge (n2, n3) the (Ω f = 0.5× 30

100 +

0.5× 1 = 0.65). The minimum distance from q to (n2, n3) is dist(q, n2) = 3. Finally, the upper-bound
score of edge (n2, n3) is computed as 1×0.65

3 = 0.21. Similarly, the upper-bound score for edge
(n2, n4) is 0 because no data object lie on the edge that contains terms relevant to the query keywords.
Finally, the upper-bound score of edge (n2, n5) is 0 because data object d4 has no fans and therefore
Ω f = 0.5× 0

100 + 0.5× 0 = 0.

q
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n4

3 1
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Figure 4. Upper bound score computation.

Inverted File Component: This component consists of vocabulary and inverted lists. The
vocabulary stores the frequency of each term which assists in computing the textual score of the
data objects. The inverted list stores the data objects lying on an edge ei with term t in their description.
Thus an inverted list stores the distance between the data object and starting node ns (dist(ns, di)) for
edge eid, the significance of the term ti in the description of data object (Ωti ,di

), and the fans of data
object (Fdi

) for each data object di. The social component and fans of data objects stored in the inverted
lists are used to compute the aggregated social relevance score. Fdi

returns all fans of data object di,
and the friend list of query Nq allows all friends in Fdi

to be identified. Inverted lists are identified
using a (eid, tid) key and a separate inverted lists are created for each term t in the object description.
The inverted file for edge ei is the set of inverted lists containing objects lying on the edge, and there is
an inverted file associated with every edge that contains at least one data object.

The proposed indexing framework has several features that significantly enhance GSTK query
processing performance. First, the data objects located on edge eid are stored in inverted files and
objects relevant to keyword queries can be easily retrieved using (eid, tid). Second, the distance between
the starting node and data object is also stored in an inverted file, hence data objects can be accessed
directly. Third, the set of fans for each data object FD is stored in the inverted file, enabling faster
computation of the social relevance score. Fourth, upper-bound scores are computed considering the
combined textual, social and spatial relevance to the query. Fifth, the binding component uses the
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upper-bound score for each edge to prune edges that do not contain data objects that could be in the
top-k results.

4.3. Methodology

The overview of the proposed query processing methodology is shown in Figure 5. A user initially
generates a GSTK query (Step 1 in Figure 5). The query processing module receives a query that has
information about user location, query keywords, user social networks, and the number of requested
data objects (k) (Step 2 in Figure 5). The query processing module then starts searching the top-k data
objects (Step 3 in Figure 5); it utilizes the indexing framework to process the query. First, it accesses
the spatial component to start traversing the road network and searches the candidate data objects
from the edge where user is located (Step 4 in Figure 5). Next, the binding component is accessed to
compute the upper-bound score of edge by using the pre-computed Ωt and Ω f (Step 5 in Figure 5).
If the upper-bound score is less than the current kth data object, then the edge is pruned, and the
proposed system continues traversing the adjacent edges (Step 6 in Figure 5). If the upper-bound score
is greater than the current kth data object, then the query processing module accesses the inverted file
and social components to compute the score of each data object that lies on the edge (Step 7 in Figure 5).
Next, the result set is updated by inserting the data objects with a score greater than the current kth
data object (Step 8 in Figure 5). The query processing module continues road network expansion to
retrieve more candidate data objects that can be in the top-k result set (Step 9 in Figure 5). Finally, the
system is terminated when all edges are explored or there is no edge left with an upper-bound score
greater than the kth data object, and the result set is returned to the user (Step 10 in Figure 5).

Figure 5. Overview of the proposed query processing methodology.

4.4. Query Processing Algorithm

Algorithm 1 presents the main steps for the proposed Geo-Social Top-k Keyword query processing
algorithm, GSTK-A. The algorithm takes input query QG and returns result set Rk containing the best
k data objects in descending order by score ψ(d). GSTK-A expands adjacent edges of query objects in
increasing order of distance from q.l similar to Dijkstra’s algorithm [41]. A min-heap H is implemented
to arrange encountered edges which is initially empty. Each entry in H is represented as (pr, eid) where
pr corresponds to the reference point in edge eid i.e., the starting point of expansion. An edge that
contains query object q is represented as active edge eactive. Query object q becomes the reference point
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for an active edge and either adjacent node ns or ne becomes the reference point (or reference node) for
other edges. Variable mk stores the score of the current kth data object in Rk.

The algorithm is initiated by visiting the active edge where query object q lies. Then, the
candsearch((eid, tid), mk) function finds candidate data objects Rc lying on eactive with ψ(d) > mk,
and updates Rk and mk using the data objects in Rc. The traversal of adjacent edges continues until
the min-heap H is exhausted or the shortest distance to any remaining data object produces an
upper-bound score smaller or equal to mk. The upper-bound score of a node n is computed using
dist(n, q), the maximum textual and social relevance (which can be 1). Therefore, if the upper-bound
score ≤ mk, then even if there is an unexplored data object d with maximum textual and social
relevance, its score cannot be higher than the kth data object d in Rk because dist(d, q.l) ≥ dist(n, q.l)
since the algorithm strictly expands and selects the reference node with minimum distance to the
query location.

Algorithm 2 presents the candsearch((eid, tid), mk) procedure to identify candidate data objects.
First, the algorithm accesses the social component to retrieve the friends of q and compute the social
relevance score. Then, it computes the upper-bound score of the edges using the binding component
with Ωt, Ω f , and the minimum distance from the query location to the edge. The inverted lists of
term t are fetched only if their upper-bound scores are greater than mk. The scores of data objects are
computed using the formula in Equation (1), and data objects with ψ(d) > mk are returned.

Next, we discuss the running example of the proposed algorithm presented in Figure 1.
For simplicity, we assume the example settings as discussed in Section 4.1, i.e., we have a
set of users U = {u1, u2, ..., u100}. User u1 is the query user q who issued a query with
keywords “French restaurant”, requested one result (k = 1), and has a set of ten friends
Fq = {u4, u16, u23, u39, u48, u55, u67, u71, u80, u94}. Equal preference is assigned to every attribute, i.e.,
α = β = γ = 1 and δ = 0.5. Recall that the textual relevance is the number of occurrences of the query
words in the object description divided by the total number of keywords in the object description.
Table 2 presents the details and score computation of d2, d3 and d6.

Algorithm 1: GSTK-A

1 Input: Geo-Social Top-k keyword query QG = (q.l, q.t, q.s, k)
2 Output: Top-k data objects with highest score Rk
3 max-heap Rk ← ∅ /*current Top-k set
4 mk ← 0 /*k-th score in Dk
5 min-heap H ← ∅
6 visited← ∅
7 (eactive)← (niq, njq) /*edge where q is located
8 insert (q.l, eactive) in H
9 visited← visited ∪ (q.l, eactive)

10 Rc ← candsearch((eid, tid), mk)
11 update Rk and mk with d ∈ Rc
12 (pr, eid)← H.pop()
13 while H 6= ∅ and ( 1

1+γ.λ(q.l,d.l) < mk) do
14 for each non-visited adjacent edge of (pr, eid) do
15 visited← visited ∪ (pr, eid)
16 Rc ← candsearch((eid, tid), mk)
17 update Rk and mk with d ∈ Rc
18 end
19 (pa, eid)← H.pop()
20 end
21 return Rk
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Algorithm 2: Candidate searching method

1 Input: Query q, Edge ID: eid, Term ID: tid, score of k-th object mk
2 Output: candidate list Rc
3 Nq ← friends of q
4 if Ωt > 0 and Ω f > 0 then
5 compute upper.score(eid)
6 /*upper-bound score derived from Ωt, Ω f and dist(q, nB)

7 end
8 if upper.score(eid) > mk then
9 For each data object in eid compute ψ(d) /*by using equation 1 if ψ(d) > mk then

10 Rc ← Rc ∪ d
11 end
12 end
13 return Rc

The algorithm starts network expansion from active edge (n3, n8) with q as the reference point.
Edges (q, n3) and (q, n8) are inserted in min-heap H. First, (q, n3) and (q, n8) are explored and no data
object is found in both edges. Then, n3 becomes the reference point and edges (n3, n2), (n3, n4), and
(n3, n7) are inserted in min-heap H. Next, the candsearch function searches the candidate data objects
on edges (n3, n2), (n3, n4), and (n3, n7) having scores better than mk. The upper-bound score of edge
(n3, n7) is 0.5×0.61

2 = 0.15 (Ωt = 0.5, Ω f = 0.5× 23
100 + 0.5× 1 = 0.61 and dist(q, n3) = 2). Therefore,

the inverted list of edge is accessed because the upper-bound score of edge (n3, n7) is greater than the
current mk score (mk = 0); moreover d3 is retrieved with ψ(d3) =

0.5×0.165
4 = 0.02. Data object d3 is

inserted in the Rk set, and mk is set to 0.02. The upper-bound score of edges (n3, n2) and (n3, n4) is zero,
since there is only one data object d4 found on (n3, n4) with a description (“cafe and bar”) that does not
match with the query keywords. The algorithm continues expanding the edges whose upper-bound
score is greater than mk. Next, n8 becomes the reference point and the edges (n8, n1), and (n8, n9) are
explored, but neither edge contains objects relevant to the query keywords. Node n2 becomes the next
reference point and edges (n2, n1), and (n2, n6) are visited. There is no data object in (n2, n1) but the
inverted list of (n2, n6) is accessed by candsearch function because the upper-bound score of (n2, n6)

is 0.66×0.6
4 = 0.09 which is greater than the current mk = 0.02. Therefore, any available candidate

object could be the top-1 result. The inverted list of (n2, n11) is accessed and d2 is retrieved with
ψ(d2) =

0.66×0.35
7 = 0.033 which is greater than the current mk = 0.02. Rk is updated with d2 and set

mk = 0.033. Next, n4 becomes the reference point and edges (n4, n5), and (n4, n10) are explored. Edge
(n4, n5) does not contain any data object, but the inverted list of (n4, n10) is accessed by candsearch
function because upper-bound score of (n4, n10) is 1×0.545

4 = 0.136 which greater than mk = 0.033.
Data object d6 is found with ψ(d6) =

1×0.145
6 = 0.024, which is less than sk = 0.033. Hence Rk and mk

are not updated. The algorithm continues expanding the network until min-heap H is exhausted or
the minimum network distance to any remaining data object produces an upper-bound score smaller
or equal to mk. The upper-bound score of remaining edges is 0 because they do not contain any data
objects relevant to the query keywords. Consequently, the algorithm terminates and reports d2 as the
top-1 result.

4.5. Index Maintenance

In general, the updates in the textual description and check-in information of data objects are
more recurrent than the updates in the spatial information of data objects or road networks. Therefore,
we first discuss index maintenance when the textual description of data object is modified. Without
loss of generality, let us assume that given a data object d ∈ D with textual description d.t is to be
modified with new textual description d.t+. The update procedure begins by finding the edge eid in
which d is located using the network’s R-tree. Then by using eid, the vector is obtained that contains
all terms eid.t in that edge. Next, for terms ti that are in d.t but not in d.t+ data object d is removed
from the inverted list of ti. The significance of term ti in eid.t is recomputed using the inverted list of ti,
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when Ωti ,eid = Ωti ,d and d is deleted from the inverted list of ti. For terms tj that are in d.t+ but not
in d.t, d is inserted into the inverted list of tj. The significance of term tj in eid.t is recomputed using
the inverted list of tj, when Ωtj ,d > Ωti ,eid , and d is inserted into the inverted list of tj. For terms tk

that are in both d.t and d.t+, the significance of tk (Ωtk ,d) in the inverted list is updated to (Ωt+k ,d). The
significance of term tk in eid.t is also updated to a significance of (Ωt+k ,d) when Ωt+k ,d > Ωtk ,d.

Now we discuss index maintenance for an update in the check-in information of data object
d. Consider a user ui checked-in to data object di ∈ D. Similarly, the update procedure starts with
retrieving edge eid where di lies and then vector eid.t is accessed. Next, the inverted lists of all terms
are accessed that are in di.t using (eid, tid). If ui is already a fan of di i.e., ui ∈ Fdi

, no further action is
required. If user ui /∈ Fdi

, it is inserted in Fdi
. Next, the highest significance of fans Ω f on eid with terms

di.t is updated if Ω fi
> Ω f where Ω fi

indicates the Ω f of di after inserting new fan ui in Fdi
. Next, we

discuss the updates in the social relationships which are relatively straight forward. Consider users uj
and uk becomes friends, uj is then added in Nuk and vice versa. Similarly, if they unfriend each other,
uj is deleted from Nuk and vice versa. If uj deletes his or her account, then he or she is removed from
Nu of all their friends and also removed from fan lists of all such data objects d where uj ∈ Fd.

Finally, we discuss the updates in the spatial information of the data object which is a relatively
infrequent operation. Consider a data object dadded with description dadded.t located on edge eid. As
mentioned previously, initially edge eid is located and vector eid.t is accessed. Next for the term ti
that is present in both dadded.t and eid.t, the inverted list of ti is accessed and data object dadded is
inserted along with its dist(ns, dadded), Ωti ,dadded

, and Fdadded
. Next, the significance of term ti in eid.t is

updated if Ωti ,dadded
> Ωti ,eid . Then, the highest significance of fans Ω f on eid with term ti is updated

if Ω fadded
> Ω f where Ω fadded

indicates the Ω f of dadded. For term tj that are in dadded.t but not in eid.t,
a new inverted list (eid, tj) is created, and a data object dadded is inserted into it. Next, Ωt and Ω f are
computed for term tj on edge eid. Assume data object ddeleted with ddeleted.t to be removed is located
on eid. All inverted lists with ddeleted.t are accessed and ddeleted is removed from them. Next, the
significance of term t ∈ ddeleted.t in eid.t is updated if Ωt,ddeleted

> Ωt,eid , and Ω f on eid with term t is
updated if Ω fdeleted

> Ω f where Ω fdeleted
indicates the Ω f of ddeleted. Finally, updating spatial location of

a data object d is handled as a deletion followed by an insertion.

5. Geo-Social Skyline Keyword Queries

5.1. Problem Formulation

Skyline queries are useful for extracting desired data objects from a multi-dimensional datasets.
A data object is desired if it is not dominated by any other data object i.e., it is not worse than any other
data object in all dimensions. Geo-Social Top-k keywords queries retrieve the k best data objects based
on spatial, textual and social relevance to query q. GSTK uses a scoring function and results depends
on the values of query parameter (α, β, γ) defined by the user. However, it is important that the user
has adequate knowledge to select appropriate values for these parameters. It is somewhat challenging
to define a suitable scoring function due to different attribute distributions or user inability to choose
an appropriate values [42]. Therefore, to supplement GSTK queries, we extend our work to study
Geo-Social Skyline Keyword (GSSK) queries. GSSK queries return every object d within range r (i.e.,
dist(q, d) < r) which is not dominated by any other object in terms of distance to the query location
and aggregated score of social and keyword relevance. The range parameter is used in GSSK queries
to accommodate the case where a user is not interested in distant places but wants to find all possible
objects within the chosen range.

The aggregated social and keyword and keyword score σ(d) is defined as:

σ(d) = µ(d.t, q.t)× γ(d.s, q.s) (3)

where µ(q.t, d.t) is the textual similarity between q.t and d.t and τ(q.s, d.s) is the social relevance
of data object d with respect to query q. The definition of µ(q.t, d.t) and τ(q.s, d.s) are presented in
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Section 4.1. To calculate τ(q.s, d.s) we set δ = 0.5 to indicate equal importance to query user friends
and other users.

Geo-Social Keyword Dominance: A data object d is dominated by another data object d
′

if
σ(d

′
) ≥ σ(d), dist(q, d

′
) ≤ dist(q, d) and at least one of the following holds: σ(d

′
) > σ(d) and

dist(q, d
′
) < dist(q, d). We denote the dominance relationship as d

′ ≺ d which implies that data object
d is dominated by data object d

′
.

Geo-Social Skyline Keyword Queries: Given a query q, a set of keywords q.t and range r, GSSK
queries return all data objects that are not dominated by any other data object.

Mapping to Distance-Score Space: Each data object d is mapped to a point in the distance-score
space denoted by M, defined by axes dist(q, d) and σ(d).

To describe the problem definition, consider we have a set of data objects d = {d1, d2, ..., d10}
inside range r = 5, with dist(q, d) and σ(d), as presented in Table 3. Figure 6 illustrates the mapping of
data objects presented in Table 3 to the distance-score space M. Horizontal and vertical axes represent
distance dist(q, d) and score σ(d), respectively. Lower values are preferred for the distance, whereas
higher values are preferred for the score. Figure 6 illustrates that d2, d7, and d9 are dominant data
objects, and all other data objects are dominated by them. For example, d2 dominates d4 because
σ(d2) > σ(d4) and dist(q, d2) < dist(q, d4). Similarly, d7 dominates d5 because d7 has a superior
distance and score. Therefore, d2, d7, and d9 are skyline objects si, belonging to skyline set SKY i.e.,
{d2, d7, d9} ∈ SKY.

Table 3. Data object details.

Data Object dist(q, di) Cscore
d1 3 0.45
d2 4.5 0.8
d3 1.5 0
d4 5 0.7
d5 2 0.15
d6 3.5 0.4
d7 1 0.5
d8 4 0
d9 2.5 0.6
d10 1.5 0.2

Figure 6. Distance-score mapping.
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5.2. Query Processing Algorithm

We use the same indexing framework as described in Section 4.2, except the upper-bound score of
the edge is composed from Ωt and Ω f . The inverted list of a term t on edge eid is only accessed if the
edge is not dominated by a data object si ∈ SKY. An edge is dominated by si if the upper-bound score
of the edge is less than σ(si) and dist(q, nB) is greater than or equal to dist(q, si). We then use Lemma 1
to prune non-skyline objects. In addition, the query processing methodology of GSSK query is similar
to GSTK query as presented in Section 4.3.

Lemma 1. If edge eid is dominated by si ∈ SKY, then edge eid does not contain any skyline objects.

Proof. Data object si represents the object in the skyline set, so if edge eid is dominated by si then
the upper-bound score of edge eid is less than the score of si and dist(q, nB) > dist(q, si). Thus, all
objects that lie on the edge have scores lower than the upper-bound score, and hence they cannot be
skyline objects.

We now present an algorithm GSSK-A for processing Geo-Social Skyline Keyword queries that
returns the set of skyline objects SKY within range r. Algorithm 3 is similar to Algorithm 1; it
traverses the road network in a similar fashion and exploration begins from the active edge eactive
where q is located. The same min-heap H is implemented to arrange the encountered edges and it
is initially empty. For each unexplored adjacent edge whose minimum distance is less than range r
(i.e., dist(q, nB) ≤ r), we compute the upper-bound score based on Ωt and Ω f . The inverted list of a
term t on edge eid is only accessed if the edge is not dominated by any si ∈ SKY. Next, for each data
object d that lies on edge eid, σ(d) is computed if it satisfies the range constraint r (i.e., dist(q, d) ≤ r). If
data object d is not dominated by any skyline object si ∈ SKY, it is added to skyline set SKY. Finally,
the algorithm terminates when the heap is exhausted or there is no edge whose minimum distance is
within range r.
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Algorithm 3: GSSK-A

1 Input: Geo-Social Skyline keyword query GSSK = (q.l, q.t, r, α)
2 Output: Set of skyline objects SKY
3 SKY← ∅ /*set of skyline objects
4 min-heap H ← ∅
5 visited← ∅
6 (eactive)← (niq, njq) /*edge where q is located
7 insert (q.l, eactive) in H
8 visited← visited ∪ (q.l, eactive)
9 Fq ← friends of q

10 compute Ωt and Ω f
11 while min-heap 6= ∅ and dist(q, nB) < r do
12 for each unexplored adjacent edge of (pr, edge) do
13 explored← explored ∪ (pr, edge)
14 if Ωt > 0 and Ω f > 0 then
15 compute upper.score(eid)
16 /*upper-bound score derived from Ωt and Ω f
17 end
18 if eid is not dominated by si ∈ SKY then
19 for each data object d in eid do
20 if dist(q, d) < r then
21 compute σ(d) /*by using equation 4
22 end
23 end
24 if d is not dominated by si ∈ SKY then
25 SKY ← SKY ∪ d
26 end
27 end
28 end
29 (pr, eid)← H.pop()
30 end
31 return SKY

6. Performance Evaluation

In this section, we evaluated the performance of our proposed algorithm through simulation
experiments. Section 6.1 describes the experiment settings, and Sections 6.2 and 6.3 present the
experimental results for GSTK and GSSK queries, respectively. Section 6.4 compares GSTK and GSSK
query responses.

6.1. Experimental Settings

A real road network dataset [43] was used that comprised the main roads of North America,
with 175,812 nodes and 179,178 edges. The real dataset of Gowalla [44] and a synthetic dataset were
used in these experiments. The characteristics of these datasets are presented in Table 4. Gowalla
was a geo-social networking website that was subsequently acquired by Facebook. It included
196,591 users, 950,327 friendships, 6,442,890 check-ins and 1,280,956 checked-in places (data objects).
We randomly generated data objects on each edge, producing seven data objects on average for
each edge. We extracted data object descriptions from Twitter messages [45], and one tweet per
data object was assigned. A user who checked-in at the location was considered a fan. For each
experiment, we randomly selected 100 query objects from users and report the average cost of
100 queries. Query keywords were random terms generated from the dataset vocabulary. Table 5
summarizes the experiment parameters. In each experiment, we varied a single parameter within the
given range, holding all other parameters at the constant default value highlighted in bold text unless
specified otherwise.
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Table 4. Summary of dataset.

Attribute Gowalla Synthetic
Total Size 1.62 GB 1.87 GB
Total data objects 1,280,956 1,500,000
Total users 196,591 150,654
Total friendships 950,327 830,683
Total check-ins 6,442,890 7,364,130
Average fans per data object 3.4 5.8
Total words 8,198,118 11,420,957
Total distinct words 798,118 112,957
Average distinct words per
data object

4.8 6.2

Table 5. Experimental parameter settings.

Parameter Values
Number of results (k) 5, 10, 15, 20, 25
Number of keywords (n) 1, 2, 3, 4, 5
Number of data objects (|D|) 20, 40, 60, 90, 120, 1300, 1500 (x10,000)
Range (r) 20, 40, 60, 80, 100
α, β, γ 0.2, 0.4, 0.6, 0.8, 1.0
δ 0.5

To the best of our knowledge, the processing of GSTK and GSSK queries has not been studied
before for road networks. Therefore, we compared our algorithms with social-textual index (SNIR-tree)
proposed by Wu et al. [10] which was applicable for Euclidean space. For a fair comparison, we
modified their work and designed a competitive technique (INE-SNIR) comprising the road network
framework (INE) proposed by Papadia et al. [40] and social-textual index (SNIR-tree) [10]. The road
network framework [40] enables locating a query point and traversing the network. The SNIR-tree [10]
is based on the IR-tree [5] and is used to index and store user information and relationships; it also
stores the social, textual and spatial information of data objects. The SNIR-tree index also facilitates
finding the data objects inside the minimum bounding region (MBR) of edges socially and textually
relevant to the query. The query processing of INE-SNIR works as follows. The MBR of edge MBR(eid)

is used to perform a query in the index to obtain the data objects inside MBR(eid) that are socially
and textually relevant to the query, and then utilizes the spatial framework to calculate the distance
between the query location and data object.

We implemented all algorithms in Java, and experiments were conducted on a PC machine with
a 3.60-GHz Intel Core i7 process and 16 GB RAM. Indexes were disk-resident and the page size of
the network’s R-Tree and SNIR-tree were 8KB. We evaluated the algorithms performance using the
following measures: (1) runtime, which indicates the total query execution time and (2) I/O cost,
which represents the number of disk page accessed for query processing.

6.2. Experimental Results of Geo-Social Top-k Keyword Queries

Figure 7 shows the performance of GSTK-A and INE-SNIR with respect to k, the number of
requested data objects with the highest scores. Experimental results reveal that the runtime and
I/O cost of both the algorithms increased with increasing k, which is unsurprising since more data
objects are explored and processed when increasing k. However, GSTK-A significantly outperformed
INE-SNIR due to the proposed indexing framework. First, fewer inverted lists were processed due
to the upper-bound score and, second, score calculation was highly efficient because the inverted list
stores dist(ns, di), Ωti ,di

and Fdi
.
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Figure 7. Effect of k on runtime and I/O cost.

Figure 8 depicts the runtime and I/O cost performance for GSTK-A and INE-SNIR with respect to
the number of query keywords. As expected, the runtime and I/O cost for both algorithms increased
with an increasing number of keywords in the query. With fewer query keywords, fewer data objects
are relevant to the query, hence fewer edges and data objects are explored and processed. In contrast,
with more query keywords, more data objects are relevant and consequently more edges and data
objects are explored and verified. Notice that runtime and I/O cost for INE-SNIR increased more
rapidly than for GSTK-A because the INE-SNIR candidate searching process is quite expensive. First it
requires searching an index to retrieve data objects inside the MBR of edge that are textually and socially
relevant to the query, and then computes the network distance between the query and data objects.
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Figure 8. Effect of the number of keywords on runtime and I/O cost.

We randomly generated 200 K, 400 K, 600 K, 900 K, 1200 K, and 1500 K data objects on the
synthetic dataset to produce various sized datasets to evaluate the scalability of GSTK-A and INE-SNIR
algorithms, as depicted in Figure 9. Both algorithms exhibited relatively poor performance when the
number of data objects was small or large. Performance degraded for small number of data objects
mainly because data object density is low and the algorithms expand more edges to retrieve k data
objects. On the other hand, when the number of data objects is large, data objects relevant to query
keywords also increase, with consequential increases runtime and I/O cost. The algorithms performed
best for 400–600 K data objects.
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Figure 9. Effect of the number of data objects on runtime and I/O cost.

Figure 10 illustrates the impacts from query preference parameters α, β and γ on GSTK-A and
INE- SNIR runtime. For each case, we varied the value of one parameter while maintaining the other
two parameters at 0.5. Query preference parameters do not have significant impact on running time,
although the performance of both approaches slightly improve when γ (spatial relevance) has a high
preference, because fewer edges are required to be expanded; the performance slightly degrades when
increasing α and β (textual and social relevance, respectively) due to the large number of data objects
relevant to the query.
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Figure 10. Effect of query parameters on runtime.

6.3. Experimental Results of Geo-Social Skyline Keyword Queries

In this section we analyzed the performance of the algorithms (GSSK-A) for geo-social skyline
keyword queries. We implemented the SKY-SNIR algorithm which uses the same indexing structure
composed of INE [40] and SNIR-tree [10]. The SKY-SNIR algorithm first uses an SNIR-tree index to
compute the aggregated score of data objects within range r based on social and textual relevance,
and then calculates the network distance between the query and data objects. Skyline objects are then
identified as those objects that are not dominated by any other data object using the aggregated score
and network distance.

Figure 11 illustrates the range effects on GSSK-A and SKY-SNIR performance. Runtime and I/O
cost increased with increasing r for both algorithms because the search space increased as r increasesd;
consequently, the algorithms needed to expand more edges and process more data objects. However,
GSSK-A scaled much better than SKY-SNIR because it only expanded edges that were not dominated
by skyline data objects.
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Figure 11. Effect of range on runtime and I/O cost.

Figure 12 compares GSSK-A and SKY-SNIR performance with respect to the number of query
keywords. These experiment results indicate similar trends as in Figure 8. The proposed algorithm
GSSK-A not only outperformed SKY-SNIR but also scaled more effectively because SKY-SNIR is
expensive for searching an index to retrieve data objects.
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Figure 12. Effect of the number of keywords on runtime and I/O cost.

Figure 13 shows data object cardinality effects on GSSK-A and SKY-SNIR performance using the
synthetic dataset. In contrast to the experimental results of the GSTK query (Figure 9), the results of
the GSSK query reveals that the runtime and I/O cost gradually increased as the cardinality of data
objects increased. This is primarily because GSTK queries retrieve the k best data objects, and the
algorithms must expand more edges when the search space is less dense, which increases runtime and
I/O cost. In contrast, GSSK queries retrieve all data objects in r that are not dominated by any other
data object, hence more data objects must be explored and verified as cardinality increases.
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Figure 13. Effect of the number of data objects on runtime and I/O cost.

6.4. Comparison of Results Returned by GSTK and GSSK Queries

This section compares and analyzes the results returned by GSTK and GSSK queries. The main
advantage of the GSTK query is that user can control the number of data objects to be returned.
However, the user must able to define the scoring function correctly, which can be challenging. GSSK
queries solve that problem and do not need a scoring function, and also only provide data objects
within the user specified range. However, the number of data objects in a result set cannot be controlled
by the user. In the next experiment, we executed 100 queries for each setting, reporting the average
number of data objects retrieved by GSTK, GSSK and the average number of common data objects that
were retrieved by both queries.

Figure 14a, illustrates the GSTK and GSSK result set outcomes with respect to k for r = 100. It
is obvious that GSSK returned the same number of skyline data objects within range regardless of
k, whereas GSTK returned exactly k data objects. Figure 14b, depicts the GSTK and GSSK result set
outcomes with respect to r for k = 25. As with fixed r, GSTK always returned the same k number of
data objects, whereas the number of data objects in the result set of GSSK increased as r increased. The
experimental results demonstrate that the result set of GSTK and GSSK shared many data objects but
also included data objects that the other query failed to return. Thus, the proposed GSSK and GSTK
queries complemented each other.
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Figure 14. The number of data objects returned by GSTK and GSSK queries.
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7. Conclusions

This paper introduced geo-social top-k keyword (GSTK) queries for road networks for the first
time, integrating social relevance into traditional spatial keyword search and returning the k best data
objects based on spatial, textual, and social relevance to the query. We also extended the model to
propose geo-social skyline keyword queries (GSSK) on road networks, which returns all data objects
that are not dominated by any other data object. We developed an efficient indexing structure that
effectively prunes the search space by retrieving data objects relevant to the query, and proposed
efficient algorithms to process GSTK and GSSK queries in road networks. Experimental results
demonstrates that our proposed approaches significantly outperforms INE-SNIR and SKY-INIR
algorithms in terms of query runtime and I/O cost.

The proposed study retrieves data objects based on the single search keywords such as “French
restaurant.” In the future, we plan to extend our work to study geo-social top-k collective keyword
queries, which will retrieve a group of k data objects based on the set of keywords, query location, and
query social information. Geo-social top-k collective keyword query has many real-world applications
as the user often needs to find a group of data objects such as “tourist attractions,” “shopping malls,”
and “cafes.” The processing of geo-social top-k collective keyword query is more challenging as it
has to consider all sets of query keywords, data objects in the result set should be close to the query
location, and should have minimum inter-object distance.
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