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Abstract. The present study aimed to evaluate the effect of the 
CX3CR1 inhibitor AZD8797 in early recovery after acute SCI 
and elucidate its potential mechanism in blocking inflamma-
tion and apoptosis. Adult rats were sacrificed after 3, 7, 10, or 
14 days of SCI. The injured spinal tissues were collected for 
assessing C‑X3‑C motif chemokine ligand 1(CX3CL1)/C‑X3‑C 
motif chemokine receptor 1 (CX3CR1) expression at each time 
point via western blotting (WB) and quantitative PCR. The 
cellular localization of the proteins was detected by immu-
nofluorescence. Another batch of rats (subdivided into sham, 
injury model, AZD8797 and methylprednisolone groups) were 
used to evaluate locomotive recovery with a Basso Beattie 
Bresnahan score. Based on the expression level of CX3CR1, 
these rats were sacrificed at the most prominent stage of 
CX3CR1 expression (10 days after SCI), for assessing the serum 
levels of tumor necrosis factor‑α/interleukin (IL)‑6/IL‑1β and 

the expression of CX3CL1/CX3CR1/caspase 3/Bcl‑2/Bax in 
the spinal cord tissues through WB and ELISA. Additionally, 
apoptosis and necrosis in the injured spinal cord were evalu-
ated by terminal deoxynucleotidyl transferase‑mediated dUTP 
nick‑end labeling staining/fluoro‑jade B staining. Expression 
levels of both CX3CR1 and CX3CL1 reached their peak 
10 days after the injury, followed by a dramatic downward 
trend at 14 days. The enhanced expression of CX3CR1 was 
detected in astrocytes and microglia of the injured spinal cord. 
AZD8797 improved locomotive recovery after 10 days of 
SCI and was as effective as methylprednisolone. The effect 
of AZD8797 was mediated by suppressing apoptosis, necrosis 
and inflammatory responses, as assessed by WB/ELISA 
and morphological examinations. The current study has 
demonstrated that AZD8797 can effectively block over-
whelming inflammation, apoptosis and necrosis after SCI and 
facilitate early recovery of locomotive function.

Introduction

Spinal cord injury (SCI) is one of the most heterogeneous 
injuries occurring in the central nervous system for its diverse 
symptoms and treatment outcomes, because of variability 
in the external mechanical forces causing the injury. Based 
on the epidemiological data, the World Health Organization 
has predicted that SCI is most likely to surpass numerous 
diseases as the major cause of death and disability worldwide 
by 2020 (1). Moreover, a statistical study by the National Spinal 
Cord Injury Statistical Center has indicated that the global 
incidence of SCI is roughly 23 SCI cases per million annu-
ally (2,3). Chronic complications after primary SCI are quite 
common and severe (4‑9), leading to reduced life expectancy 
and enhanced morbidity. This not only creates a physically 
and emotionally debilitating condition but also generates 
a prominent financial burden for individuals, families, and 
society (10,11). Thus, there is an urgent need in research for 
developing new therapeutics.
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SCI can cause immediate cellular death, resulting from 
direct mechanical impact or compression and followed 
by numerous types of secondary and neurodegenerative 
processes  (12‑14). Those secondary processes may cause 
progressive and fundamental alterations of the cellular struc-
ture and function. These effects are most likely to occur on 
the injured sites, where the cells are extremely susceptible 
to free radical overproduction and lipid peroxidation as well 
as glutamate‑calcium (Ca2+)‑ and potassium (K+)‑related 
neurotoxicity, followed by a local or systemic inflammatory 
responses (12,13,15,16). Consequently, all these drastic altera-
tions at the cellular and subcellular level inevitably result in 
not only accumulative progression of the microglial inflam-
matory response but also Wallerian degeneration and reactive 
astrogliosis. Eventually, the fibrotic core surrounded by reac-
tive astrocytes will form glial scars, resulting in progressive 
and severe loss of motor and sensory function due to structural 
changes at the neuronal micro‑circuitry level (17‑19).

Unlike the immediate primary injuries caused by struc-
tural deconstruction, secondary injuries, caused by numerous 
inflammatory mediators, particularly cytokines and chemo-
kines, are progressive, leading to further damage beyond the 
primary injury. Those chemokines are secreted by resident 
cells in the central nervous system (CNS) and by infiltrating 
cells, recruited to the CNS through blood vessels (20,21). As a 
result of the extensive association of inflammatory mediators 
with CNS function, chemokines, designated as a novel subtype 
of neurotransmitters and neuromodulators, have previously 
received attention under physiological or pathological condi-
tions and, hence, are also known as neurochemokines (22,23). 
In previous years, several studies independently uncovered 
that the secondary injury of SCI is closely correlated with 
immunological components (24). Moreover, the corresponding 
therapeutic approaches targeting inflammatory responses 
are quite promising, with enhanced neuroprotection and 
neuro‑regeneration (25,26).

In particular, C‑X3‑C motif chemokine ligand 1(CX3CL1) 
also known as fractalkine has so far been regarded as the only 
member of the CX3Cδ subfamily that has both soluble and 
membrane‑anchored forms. Thus, its dual roles are uniquely 
fulfilled as both a chemoattractant and a cell adhesion mole-
cule. The latter role is mediated by its binding to the C‑X3‑C 
motif chemokine receptor 1 (CX3CR1), a G protein‑coupled 
receptor (27).

Given its role in mediating communication among neuronal, 
microglial and astroglial populations, CX3CL1/CX3CR1 
signaling plays an important role in hippocampal synaptic 
plasticity and maturation  (28), and this signaling exhibits 
a remarkable effect on the modulation of human temporal 
lobe epilepsy (29), glioblastoma (30,31) and CNS injury (32). 
Previous evidence  (28,32) has implicated the role of the 
CX3CL1/CX3CR1 axis in the pathophysiology of neuroin-
flammatory processes after CNS injuries such as traumatic 
brain injury and SCI. The role of the CX3CL1/CX3CR1 axis 
has not been widely recognized for its presence and potential 
function in the pathophysiology of SCI‑related phenomena, and 
its importance in systemic and direct local immune responses 
is still under investigation. The quality of the evidence and 
the safety of its application has been continually debated. The 
microglial inflammatory response, in addition to subsequent 

Wallerian degeneration and reactive astrogliosis, can dramati-
cally vary following SCI (33‑35). Until now, there is little 
data on how to treat SCI in experimental animals or human 
patients. A favorable profile of the corresponding treatment via 
the CX3CL1/CX3CR1 axis is thus far from being considered 
definitive. Thus, this study focuses on developing a novel ther-
apeutic approach to selectively target the CX3CL1/CX3CR1 
axis following SCI and explore the detailed molecular mecha-
nisms for the role of CX3CL1/CX3CR1 in the pathogenesis of 
secondary injury in SCI.

Materials and methods

Animal models. Adult male Sprague‑Dawley rats (n=75), 
weighing 220‑280  g, were purchased from the Animal 
Facilities of Soochow University. A total of 65 of them even-
tually qualified for final statistical analyses. They were kept 
in cages with controlled temperature  (22˚C) and humidity 
(50‑70%), where food and water were offered ad libitum, along 
with 12‑h light and dark cycle. All experimental procedures 
were approved and supervised by the Animal Care and Use 
Committee of the Soochow University, which were practiced 
in compliance with the guidelines regarding the Care and Use 
of Laboratory Animals from the National Institutes of Health.

The rat SCI model was generated with a clip compression 
method as previously described (36). Following anesthesia via 
intraperitoneal injection with 4% chloralhydrate (400 mg/kg), 
the rat skulls were fixed by a stereotactic instrument. Following 
a posterior median incision at T10, the paravertebral muscles 
were pulled aside from both sides to expose the T9‑T11 
lamina. The T10 lamina was trimmed and, hence, the bilateral 
edges of the dura were clearly exposed. After satisfactory 
hemostasis, a clamp (Lawton; Huanxi) with a closing pressure 
of 30 g, was applied to directly clamp the spinal cord and then 
released carefully after 20 sec. After surgery, the muscles and 
the skin were sutured. According to each experimental design 
as follows, the T10 lamina was resected and the dura mater 
was exposed. However, no clamp was used in the sham oper-
ated rats. For drug treatment, the CX3CR1 inhibitor AZD8797 
(80 µg/kg) (37) dissolved in DMSO, was injected intraperito-
neally after SCI in rats from subset II, once per day until the 
rats were sacrificed, whereas methylprednisolone was injected 
intraperitoneally (30 mg/kg) (38) within 30 min after SCI in 
rats from the subset II. A bladder massage was given twice 
a day after the operation until normal urination was restored. 
The pads were replaced every 2 days after the operation to 
keep the limbs dry and the limbs with pressure sores were 
disinfected with an iodophor.

A total of 4% chloral hydrate (400 mg/kg) was injected 
intraperitoneally, blood samples were collected after anaes-
thesia, then an assistant held the back of the rat, exposing the 
neck, the rats' head were removed with scissors and the needed 
spinal cord tissues were collected.

A total of 25 out of 30 surviving rats (subset I), which had 
no statistical difference concerning their weight, intake and 
motor ability, were randomly divided into 5 groups, namely 
sham, SCI 3 day (D), SCI 7D, SCI 10D, and SCI 14D groups 
(Fig. 1B). The tissues from the spinal lesion area were collected 
and longitudinally split into two equal aliquots, one of which 
were used for quantitative(q)PCR and the other for western 
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blot analyses. Similarly, 40 out of 45 surviving rats (subset II), 
which had no statistical difference in weight, intake and 
motor ability, were randomly divided into 4 groups, namely 
sham, SCI, SCI + inhibitor (AZD8797), and SCI + methyl-
prednisolone (Me) groups (Fig. 1C). A total of 10 days after 
SCI, the locomotive recovery was assessed via Basso Beattie 
Bresnahan (BBB) scoring in all groups before sacrificing. 
The blood (~3 ml) was then collected from the inferior vena 
cava after anesthesia in each of those 40 rats. Finally, the rats 
were sacrificed to collect their spinal cord tissues. In addi-
tion, other evaluations, such as terminal deoxynucleotidyl 
transferase‑mediated dUTP nick‑end labeling (TUNEL) 
staining and fluoro‑jade B (FJB) staining, were also carried out 
accordingly (Fig. 1C). All experiments were strictly adhered to 
blinded methods during the analyses. Meanwhile, all data that 
was associated with the corresponding samples was recorded 
by an independent researcher.

qPCR. Using TRIzol reagent (Invitrogen; ThermoFisher 
Scientific, Inc.), the total RNA was obtained from the spinal 
cord tissues. The extracted RNA was reverse‑transcribed as 
follows: First, the oligo(dt) primer, mRNA and nuclease‑free 
water were added into a sterile, nuclease‑free tube on ice‑cold 
water to make a total volume 12 µl. The solution was mixed 
gently, centrifuged briefly (860 x g; 4˚C; 30 sec) and incubated 
at 65˚C for 5 min. The solution was then chilled on ice, spun 
down (860 x g; 4˚C; 30 sec) and the resulting vial placed back 
on ice. The 5x Reaction Buffer, RiboLock RNase Inhibitor, 
10 mM dNTP Mix, Revert Aid H Minus M‑MuLV and Reverse 
Transcriptase were then added to the solution, and it was 
mixed gently and then centrifuged (860 x g; 4˚C; 30 sec), then 
incubated for 60 min at 42˚C. The reaction was terminated by 
heating the solution at 70˚C for 5 min. The reverse transcrip-
tion reaction product was used directly in PCR applications 
or stored at ‑20˚C for <1 week. For longer storage, ‑70˚C is 
recommended. The Revert Aid H Minus First Strange cDNA 
Synthesis kit (Thermo Fisher Scientific, Inc.) used for the 
reverse transcription. cDNA was synthesized from 1 µg of the 
total RNA. qPCR was performed using a QuantStudio™ Dx 
Instrument (Life Technologies; ThermoFisher Scientific, Inc.) 
with a PowerUp™ SYBR™ Green Master Mix (Thermo Fisher 
Scientific, Inc.). The qPCR protocol is as follows: Denaturation 
of templates was initiated at 95˚C for 2 min, followed by 
40 cycles of the amplification reaction (95˚C for 15 sec, 60˚C 
for 15 sec and 72˚C for 1 min). GAPDH mRNA was employed 
as an internal control for each sample tested and relative 
mRNA expression levels of all genes tested were quantified 
using the 2‑ΔΔCq method (39) (n=3). In addition, the primers 
used in the present studywere as follows: CX3CR1: Forward, 
5'‑GCT​GAG​GCC​TGT​TAT​TTG​GG‑3'; and reverse, 5'‑GAC​
CGA​ACG​TGA​AGA​CAA​GG‑3'; CX3CL1: Forward, 5'‑TCA​
TTC​AGA​AGC​TGC​CAG​GA‑3'; and reverse, 5'‑AGA​GTC​
CCT​TCC​AGA​ACA​CG‑3'; GAPDH: Forward, 5'‑TGG​CCT​
TCC​GTG​TTC​CTA​CC‑3'; and reverse, 5'‑TCT​TCC​ACC​ACT​
TCG​TCC​GC‑3'.

Western blotting. Protein samples were obtained from the 
spinal cord tissues lysed for homogenization using RIPA 
buffer (Beyotime Institute of Biotechnology), supplemented 
with a protease/phosphatase inhibitor cocktail, followed by 

centrifugation at 13,000 x g at 4˚C for 20 min. The protein 
concentration in the supernatants was measured using 
aPierce™ bicinchoninic acid Protein Assay kit (Thermo Fisher 
Scientific, Inc.) and diluted accordingly. Equal amounts of 
protein (30 µg) in all samples were used for electrophoresis 
with 10% SDS‑polyacrylamide gels (Beyotime Institute of 
Biotechnology) and then transferred onto polyvinylidene 
difluoride membranes (EMD Millipore). After blocking with 
5% non‑fat milk in 0.1% TBST for 2 h at room temperature, the 
membranes were incubated with the primary antibodies over-
night at 4˚C with the following dilution: Rabbit anti‑GAPDH 
(1:10,000; cat. no. PLA 0125; Sigma‑Aldrich; Merck KGaA), 
mouse anti‑β‑actin (1:10,000; cat. no. A5316; Sigma‑Aldrich; 
Merck KGaA), rabbit anti‑CX3CL1 (1:1,000; cat. no. ab25088; 
Abcam), rabbit anti‑CX3CR1 (1:1,000; cat.  no.  ab8021; 
Abcam), rabbit anti‑Bcl2 (1:1,000; cat. no. ab196495; Abcam), 
rabbit anti‑Bax (1:2,000; cat.  no.  ab232479; Abcam) and 
rabbit anti‑caspase 3 (1:500; cat. no. ab49822; Abcam). The 
membranes were then incubated with the goat anti‑mouse 
IgG‑horseradise peroxidase (HRP) (cat.  no.  31430) or 
anti‑rabbit IgG‑HRP (cat.  no. 31431) (both 1:10,000; both 
from Invitrogen; Thermo Fisher Scientific, Inc.) secondary 
antibodies at 4˚C for 2 h. Immunoblots were then visualized 
with a chemiluminescent substrate (EMD Millipore) using 
a Bio‑Rad imaging system (Bio‑Rad Laboratories, Inc.), 
followed by image analyses using ImageJ software (version 
ImageJ 1.44P; National Institute of Health).

Immunofluorescence. The injured spinal cords were dissected 
out and post‑fixed with 4% paraformaldehyde for 24 h at 4˚C. 
The samples were then sequentially dehydrated in 15 and 
30% sucrose in PBS (pH 7.4) for 24 h. Then the samples were 
embedded in OCT compound (Sakura Finetek USA,  Inc.) 
and frozen at ‑80˚C until use. Coronal sections (15  µm 
thick) were obtained by cryosectioning with Leica DMi8 
(Leica Microsystems, GmbH) and transferredonto the slides 
pre‑coated with poly‑L‑lysine. After rinsing with 1% Triton 
in PBS, the sections were incubated in the blocking buffer 
containing 10% goat serum at room temperature for >1 h. 
Then they were incubated with the primary antibodies 
overnight at 4˚C as follows: Mouse anti‑cluster of differen-
tiation11b (1:200; cat. no. MABF520; EMD Millipore), mouse 
anti‑glial fibrillary acidic protein (1:300; cat. no. SAB1405864; 
EMD Millipore), rabbit anti‑CX3CR1 (1:100; cat. no. ab8021; 
Abcam) and mouse anti‑NeuN (1:200; cat.  no.  MAB377; 
EMD  Millipore), followed by incubation with secondary 
antibodies, including donkey anti‑rabbit IgG antibody 
conjugated with Alexa Fluor 488 (1:1,000; cat. no. R37118; 
Invitrogen; Thermo Fisher Scientific, Inc.) or donkey 
anti‑mouse IgG antibody conjugated with Alexa  Fluor 
555 (1:1,000; cat. no. A‑31570; Invitrogen; Thermo Fisher 
Scientific, Inc.), for 1 h at room temperature. The results 
were observed under a Leica DMi8 confocal microscope and 
captured using LAS X software (version 2.0.1.14392; Leica 
Microsystems GmbH).

FJB staining. FJB staining was performed according to the 
protocols provided by the manufacturer (EMD Millipore). 
After incubating with 1% sodium hydroxide in 80% alcohol for 
5 min and 70% alcohol for 2 min, the cryosectioned samples 
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were then transferred to 0.06% potassium permanganate for 
10 min. Afterwards, they were immersed (room temperature) 
in 0.0004% fluoro‑jade dye solution containing 0.1% acetic 
acid for 20 min, followed by rinsing with deionized water. 
Then, they were dried in an oven at 50˚C for 5‑8 min. The 
sections were then immersed in xylene for at least 1 min and 
then mounted with a non‑aqueous and non‑fluorescent plastic 
mounting medium, distyreneplasticiser xylene. The samples 
were observed under a Leica DMi8 confocal microscope 
and the images were captured using LASX software (Leica 
Microsystems, GmbH).

TUNEL staining. Apoptosis was detected using TUNEL staining 
according to the manufacturer's protocol (Abcam). Frozen injured 
spinal cord tissue sections were soaked in 4% polyformaldehyde 

for 15 min and then shifted into a protease K working solution 
and incubated for 5 min. The samples were immersed in 4% 
polyformaldehyde for another 5 min and rinsed with wash buffer 
twice for 5 min each. All the slices were incubated (37˚C) in 
DNA labeling solution and stored in a wet box away from light 
for 1 h. After washing the slices, antibody solution was added 
and kept in a dark and wet box for 30 min. The samples were 
then rinsed with deionizing solution for 5 min. After air drying, 
they were then sealed with DAPI (room temperature in the dark 
for 30 min). All the slides were observed under a laser confocal 
microscope Leica DMi8 (Leica Microsystems, GmbH) and 
images were captured using the LASX software.

ELISA. The concentrations of interleukin‑1β (IL‑1β), tumor 
necrosis factor‑α (TNF‑α) and IL‑6 in the serially collected 

Figure 1. Study design. (A) The representative areas obtained from the injured rat spinal cords for further analysis. (B) Experiment subset I was employed for the 
time course expression analyses of CX3CL1/CX3CR1 after SCI. (C) Experiment subset II was employed to establish the functional role of CX3CL1/CX3CR1 
signaling in SCI rats. SCI, spinal cord injury; CX3CL1, C‑X3‑C motif chemokine ligand 1CX3CR1, C‑X3‑C motif chemokine receptor 1; SD, Sprague‑Dawley; 
q, quantitative; IL, interleukin; TNF, tumor necrosis factor; BBB, Basso Beattie Bresnahan; TUNEL, terminal deoxynucleotidyl transferase‑mediated dUTP 
nick‑end labeling; FJB, fluoro jade B; DAPI, 4',6‑diamidino‑2‑phenylindole.
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serum samples were measured on the 10th postoperative day 
using the ELISA kits for IL‑1β (cat. no. MK1198); TNF‑α 
(cat. no. EK0526); and IL‑6 (cat. no. EK0412) (all from Wuhan 
Boster Biological Technology, Ltd.). The serum was obtained 
by centrifugation (5,700 x g, for 10 min and 4˚C) after the 
blood was kept overnight at room temperature. After prepa-
ration, the sample and standard (100 µl each) were added to 
a 96‑well plate and incubated at 37˚C for 90 min. Then, the 
antibodies were labeled with biotin in 100 µl aliquots in each 
well and reacted for 60 min at 37˚C. Then samples were rinsed 
with 0.01 M TBS and 100 µl avidin‑biotin complex was added 
to each well and allowed to react at 37˚C for 30 min, followed 
by 5 rinses with 0.01 M TBS. The reaction time was <30 min, 
after adding tetramethyl benzidine (TMB) at 37˚C without 
light and then TMB termination solution was added. Using 
a microplate reader, the absorbance at 450 nm was measured 
and the protein concentrations (ng/ml) were calculated using 
standard curves.

Statistical analysis. All the collected data were analyzed using 
SPSS 22.0 software (IBM, Corps.). A one‑way analysis of vari-
ance was employed for multiple comparisons among different 
groups and a Student's t‑test was employed to compare the 
results between two groups, given that all data was normally 
distributed. The data were presented as the mean ± standard 
deviation, Tukey honest significant difference test was used as 
a post hoc test. P<0.05 was considered to indicate a statisti-
cally significant difference, while a P<0.01 was considered as 
indicative of a high level of significance.

Results

CX3CR1 and CX3CL1 are upregulated at both the mRNA and 
protein levels in the injured spinal cords after SCI. CX3CL1, 
also known as fractalkine, is a chemokine that is uniquely 
anchored to the plasma membrane. The CX3CL1/CX3CR1 
axis has also been frequently described for its role in the 
pathogenesis and progression of numerous CNS diseases and 
injuries. Thus, in order to evaluate the time course of changing 
CX3CL1/CX3CR1 signaling, samples were collected at 
different time points after SCI and assessed accordingly. 
CX3CR1, at both the mRNA and protein levels, increased after 
3 days of SCI, reached its peak on the 10th day, and decreased 
significantly on the 14th day (Fig. 2B and D). These results 

indicate that CX3CR1 expression increased, mediating a local 
inflammatory response and decreased significantly 14 days 
after SCI. Similarly, the expression of CX3CL1 at the mRNA 
level decreased significantly on the 3rd day, then increased 
gradually, reaching its peak on the 10th day and decreasing 
significantly on the 14th day after SCI (Fig. 2A). These results 
suggest that CX3CL1 exists as a membrane‑bound as well 
as a secretory protein. After SCI, the expression of CX3CL1 
decreased for a short period of time, potentially due to local 
injury and being released into the blood as a chemokine. It 
then gradually increased, possibly due to enhanced expression, 
adhesion and aggregation. Its expression then again decreased 
following a constant pattern, indicative of a relatively stable 
level of protein on the 14th post‑SCI day.

CX3CR1 is upregulated in microglia, astrocytes and neurons 
after SCI. In order to determine the specific cell types impli-
cated in CX3CL1/CX3CR1 signaling, immunofluorescence 
was performed to identify certain cell types expressing 
CX3CR1 among neurons, microglia and astrocytes. The 
results show that CX3CR1 was not detectable in neurons at all 
(Fig. 3A). In contrast, both microglia and astrocytes displayed 
the expression of CX3CR1 at the protein level (Fig.  3B 
and D). Furthermore, they were upregulated significantly after 
SCI, especially in the microglia, suggesting a major role of 
microglia following SCI (Fig. 3C).

AZD8797 treatment enhances the early behavioral 
recovery after SCI. Considering extensive involvement of 
CX3CL1/CX3CR1 signaling in CNS diseases and injuries, 
the effect of AZD8797 treatment on SCI was yet to be exam-
ined, and, hence, evaluation of locomotive recovery via BBB 
scoring was performed on the 10th day after the operation. As 
shown in Table I, the BBB score was reduced nearly 4 times 
in the SCI group compared with the sham control. In contrast, 
the treatment with AZD8797 significantly improved the BBB 
score when compared to the untreated SCI group. Similarly, 
treatment with methylprednisolone also significantly improved 
the BBB score. However, there was no statistical difference 
between the BBB scores in the AZD8797 treated group and 
the methylprednisolone treated group. Thus, the results clearly 
indicate that AZD8797 treatment enhances early behavioral 
recovery after SCI and is as effective as the methylprednisolone 
treatment.

Table I. Assessment of locomotive recovery of rats from sham, injury, inhibitor, or methylprednisolone administration groups 
10 days after operation via BBB scoring.

	 Group
BBB score	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
and difference	 Sham	 Model	 Inhibitor	 Me

BBB score	 19.30±0.95	 5.40±0.84	 7.70±0.82	 7.40±0.70
P‑value		  <0.001a	 <0.001a	 <0.001a

P‑value			   <0.001b	 <0.001b

P‑value			     0.391c	

aP<0.05 vs. the sham group, bP<0.05 vs. the model group; cP<0.05 vs. the Me group. Me, methylprednisolone; BBB, Basso Beattie Bresnahan.
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AZD8797 treatment suppresses the activation of apoptosis 
machinery after SCI. To explore the underlying mecha-
nism for CX3CR1 inhibitor‑mediated enhanced behavioral 
recovery, the expression levels of apoptosis‑related molecules, 
including caspase 3, Bcl‑2 and Bax were evaluated, in addition 
to the expression levels of CX3CL1/CX3CR1 signaling after 
AZD8797 treatment. Cleaved caspase 3 has two molecular 
weight forms of 17 and 19 kDa. In the present experiment, 
cleaved caspase 3 with the weight form of 17 kDa was tested as 
the expression of cleaved caspase 3 with the molecular weight 
form of 19 kDa was weak (Fig. 4A). The total caspase 3 in 
each group is equivalent to that of the reference β‑actin, so 

the ratio between cleaved caspase 3 and β‑actin was calcu-
lated to reflect apoptosis. For the CX3CR1 level, the results 
showed that there was a significant increase in the SCI model 
group compared with the sham control (P<0.001). However, 
treatment with AZD8797 (P=0.861) or with methylpred-
nisolone (P=0.771) did not result in a significant change in 
CX3CR1 levels (Fig. 4A and C). Comparatively, CX3CL1 
levels were significantly elevated in the SCI model group 
when compared with the sham control (P<0.001). AZD8797 
treatment resulted in a significant increase in CX3CL1 levels 
when compared to the untreated model (P=0.012) and to the 
methylprednisolone treated group (P=0.007). In contrast, 

Figure 2. Time course oftheexpression of CX3CL1/CX3CR1 in the spinal cord at both the mRNA and protein levels after SCI. (A) CX3CL1/(B) CX3CR1 
mRNA levels after SCI in rat spinal cord tissue obtained at each time point were analyzed by quantitative PCR. Quantitative analyses were then performed for 
assessing the relative quantity normalized to the internal control and then further normalized to the mean value of the sham group. The data was presented as 
the mean ± SD. **P<0.01 and ***P<0.001 vs. sham; nsP>0.05 vs. sham. n=5. (C) The representative examples of the western blot analysis of the CX3CL1/CX3CR1 
protein levels in the spinal cord obtained at each time pointafter SCI. Quantitative analysis of the western blot result of (D) CX3CL1/(E) CX3CR1 using ImageJ 
software, followed by normalizing the mean values to the sham group for (D) CX3CR1 and (E) CX3CL1. The data was represented as the mean ± SD. *P<0.05, 
**P<0.01 and ***P<0.001 vs. sham; n=5. SD, standard deviation; SCI, spinal cord injury; CX3CL1, C‑X3‑C motif chemokine ligand 1CX3CR1, C‑X3‑C motif 
chemokine receptor 1; ns, not significant.
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methylprednisolone treatment did not have any effect on 
CX3CL1 levels when compared to the untreated model group 
(P=0.643; Fig. 4A and B).

For the apoptosis machinery‑related molecules, including 
caspase  3, Bax and Bcl‑2, the results consistently show 
significant differences between the SCI model and the sham 
control (P<0.001; Fig. 4D‑F). Treatment with AZD8797 or 
methylprednisolone significantly reversed the changes when 
compared to the untreated SCI group (P<0.01; Fig. 4D‑F). 
Treatment with AZD8797 was even more effective in reducing 
the elevated levels of Bax in the SCI model when compared to 
the methylprednisolone treatment (P=0.029; Fig. 4F), but, for 
Bcl‑2 and caspase 3, treatment with AZD8797 was as effective 
as that with methylprednisolone (P=0.158; Fig. 4D; P=0.586; 
Fig.  4E). Accordingly, given the activation of apoptosis 
machinery after SCI through the CX3CL1/CX3CR1 signaling 
pathway, significantly enhanced cell necrosis was also noted 

in the SCI model compared to the sham control (P<0.001; 
Fig. 5A and B). AZD8797 treatment significantly reduced cell 
necrosis when compared to the untreated SCI group (P<0.01). 
The methylprednisolone treatment also reduced necrosis when 
compared to the untreated SCI group (P<0.01) but was not 
as effective as the AZD8797 treatment (P<0.05). Note that 
the Bax level was also different between these two groups 
(Fig. 4F).

Intriguingly, the pattern of neuronal death caused by apop-
tosis was consistent with the evaluation for neuronal necrosis 
(Fig. 5C and D). Overall, these results have demonstrated that 
AZD8797 treatment suppresses the activation of apoptosis 
machinery following SCI.

AZD8797 treatment inhibits the inflammatory response after 
SCI. Due to the widespread influence of CX3CL1/CX3CR1 
signaling during the inflammatory response, the inhibition of 

Figure 3. Fluorescence immunostaining for cellular localization of CX3CR1 in the injured spinal cord after SCI. (A) Co‑immunostaining of CX3CR1 (green) 
and the neuronal marker NeuN (red). Note that CX3CR1 was not localized in the NeuN positive cells (neurons). (B) Co‑immunostaining of CX3CR1 (green) 
and the microglial marker CD11‑B (red) after SCI. The arrows indicate the co‑localization (yellow) of CX3CR1 and CD11‑B. (C) The corresponding quantita-
tive analysis is shown. (D) Co‑immunostaining of CX3CR1 (green) and the astrocyte marker GFAP (red) in injured spinal cord tissues. The arrows indicate 
the co‑localization (yellow) of CX3CR1 and GFAP. The corresponding quantitative analysis is shown in (E). The data was represented as the mean ± SD. 
**P<0.01 and ***P<0.001 vs. sham. Scale bar=50 µm. n=5. Me, methylprednisolone; ns, not significant; GFAP, glial fibrillary acidic protein; SCI, spinal cord 
injury; CX3CL1, C‑X3‑C motif chemokine ligand 1CX3CR1, C‑X3‑C motif chemokine receptor 1; DAPI, 4',6‑diamidino‑2‑phenylindole; CD, cluster of 
differentiation.
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this pathway by AZD8797 could suppress numerous types of 
chemokines and cytokines. Thus, the serum levels of multiple 
cytokines (e.g., IL‑1β, IL‑6 and TNF‑α) needed to be deter-
mined. As shown in Fig. 6, on the 10th postoperative day, 
the serum levels of these three cytokines were significantly 
increased in the SCI group compared to the sham control. 
However, the SCI treated with AZD8797 resulted in a signifi-
cant reduction of the elevated levels for these three cytokines 
when compared with the SCI group without treatment. 
Methylprednisolone treatment resulted in a similar reduction 
in TNF‑α and IL‑6 when compared to the AZD8797‑treated 
group, but with a slightly smaller, yet significant, reduction 
of IL‑1β when compared to the AZD8797‑treated group. As 
regards the potential mechanisms of the CX3CR1-mediated 
inflammatory response after SCI, microglia and astrocytes 
play an important role (Fig. 7).

Therefore, these results suggest that this particular 
CX3CR1 inhibitor can suppress the overall inflammatory 
response after SCI and it is as effective as, or even better than, 
methylprednisolone.

Discussion

Currently, the precise role of the fractalkine/CX3CR1 
signaling pathway following SCI remains largely unknown. 

To this end, using an SCI rat model, the association of the 
CX3CL1/CX3CR1 signaling pathway with inflammation was 
explored, as well as necrosis after SCI. Combining evaluations 
for the expression of both CX3CL1 and CX3CR1 at both the 
mRNA and protein levels, it was found that CX3CR1 and 
CX3CL1 expression levels consistently increase after 3 days 
of SCI, reaching a peak after 10 days, and decrease after 
14 days. This pattern of short‑term alteration is consistent 
with its role as a chemokine during the inflammatory response 
after SCI. This pattern also indicates a gradual increase in its 
role of adhesion and aggregation, whereas a stable decrease 
in its expression following 14 days matches the short‑term 
release of most chemokines. Interestingly, the suppression of 
the CX3CL1/CX3CR1 signaling pathway by AZD8797 led 
to improved recovery after SCI as shown by BBB scoring, 
compared with the sham group within the same period. 
However, this CX3CR1 inhibitor did not change the expres-
sion level of the CX3CR1 protein but enhanced the expression 
level of the CX3CL1 protein. AZD8797 is a non‑competitive 
inhibitor for CX3CR1. The above result suggests that it has no 
influence on the CX3CR1 protein itself except for affecting 
the activation of its downstream signaling pathway. More 
intriguingly, AZD8797 increases the expression level of 
CX3CL1, indicating that there is a feedback loop, probably 
a compensatory effect after blocking the signaling pathway, 

Figure 4. AZD8797 reduces neuronal apoptosis after rat SCI. (A) The representative examples of the western blot analysis results for the expression of 
CX3CL1, CX3CR1, caspase 3, Bcl‑2 and Bax in four groups as indicated 10 days after SCI. (B) Quantitative analysis of (B) CX3CL1, (C) CX3CR1, 
(D) Bcl2, (E) caspase 3 and (F) Bax expression in the western blotting in the sham, Model, Inhibitor and Me groups 10 days after SCI. Data is presented as 
means ± standard deviation. ***P<0.001 vs. sham, nsP>0.05 vs. Injury, &P<0.05 and &&P<0.01 vs. Me. #P<0.05, ##P<0.01 and ###P<0.001 vs. Injury. n=10. Me, 
methylprednisolone; ns, not significant; GFAP, glial fibrillary acidic protein; SCI, spinal cord injury; CX3CL1, C‑X3‑C motif chemokine ligand 1CX3CR1, 
C‑X3‑C motif chemokine receptor 1.
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Figure 5. Evaluation of neuronal death. (A) Neuronal death was examined by FJB staining. FJB‑positive (green) cells per mm2 were quantified accordingly. 
(B) The data was represented as mean ± SD. ***P<0.01 vs. sham; ##P<0.01 vs. Injury; and &P<0.05 vs. Me. Scale bar, 50 µm. n=10. (C) Neuronal apoptosis 
was examined by a TUNEL assay using immunofluorescence. In each section, apoptotic neurons were labeled by TUNEL (green), while nuclei were labeled 
with DAPI (blue). TUNEL‑nuclei positive neurons per mm3 were (D) quantified accordingly. The data are presented as the mean ± SD. White arrows indicate 
positive signals. ***P<0.01 vs. sham; ##P<0.01 and ###P<0.001 vs. injury; and &&P<0.01 vs. Me. Scale bar, 50 µm. n=10. TUNEL, terminal deoxynucleotidyl 
transferase‑mediated dUTP nick‑end labeling; FJB, fluoro jade B; DAPI, 4',6‑diamidino‑2‑phenylindole; SD, standard deviation; SCI, spinal cord injury; 
CX3CL1, C‑X3‑C motif chemokine ligand 1CX3CR1, C‑X3‑C motif chemokine receptor 1; Me, methylprednisolone.

Figure 6. Changes of the serum concentrations of IL‑1β, IL‑6 and TNF‑α after SCI injury in treated and untreated groups. The three inflammatory cytokines 
(A) IL‑1β, (B) IL‑6 and (C) TNF‑α were measured by ELISA. Their concentrations are normalized to the mean values of the sham group. The data was 
represented as the mean ± SD. **P<0.01 vs. sham; ***P<0.001 vs. sham; #P<0.05, ##P<0.01 and ###P<0.001 vs. injury; nsP>0.05 vs. Me; and &P<0.05 vs. Me. N=10. 
IL, interleukin; TNF, tumor necrosis factor; SCI, spinal cord injury.
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which has been pointed out previously but is yet to be further 
defined (40).

Unlike CNS diseases in most cases, SCI creates a short 
term but usually drastic opening of the blood‑brain barrier. 
It certainly cannot be ignored that CX3CL1 functions as an 
adhesion molecule in a subset of leukocytes, that allows these 
cells to cross the blood vessel wall by binding to CX3CR1 
expressed in vascular endothelial cells  (41). Some clinical 
trials have demonstrated that, in cases of ischemic stroke, 
endovascular therapy is effective, especially for those caused 
by a proximal intracranial occlusion within the anterior 
circulation (42‑44). Given that the short‑term alteration pattern 
of CX3CL1/CX3CR1 signaling matches the time window of 
reactive astrogliosis  (45,46), microglia, known as resident 
immune cells of the CNS, are thus considered to generally play 
a major role in inflammatory responses in the CNS, following 
either CNS injuries or diseases. Specifically, microglia 
express CX3CR1 at a high level and are an activated cell 
type detectable through phenotypic transformation following 
ischemia (47,48). The deficiency in microglial CX3CR1 can 
cause communication defects among neurons, microglia 
and astrocytes during numerous CNS diseases or even inju-
ries (49). In addition, CX3CL1 activation is correlated with the 
specific type of neuropathic pain induced by multiple sclerosis 
through interaction with CX3CR1 (50). Moreover, the levels 
of CX3CL1 are potentially regulated by diverse neurotoxic 
stimuli and its signaling is correlated with several types of 

CNS diseases, including HIV infection, epilepsy, and cerebral 
tumors among other neuropathologies (51).

Methylprednisolone is a glucocorticosteroid commonly 
used in the clinic with strong immunosuppressive and 
anti‑inflammatory effects. A phase III clinical study (52‑53) 
of the National Association of Acute Spinal Cord Injury Study 
has confirmed that it is effective to use high‑dose methyl-
prednisolone to treat the early stage of acute SCI. The known 
mechanisms for methylprednisolone's effect in the treatment 
of SCI include i) inhibition of lipid peroxidation, apoptosis, 
inflammation and the release of inflammatory substances, 
and improvement of spinal microcirculation, ii) modification 
of vascular permeability and tissue edema, and iii) inhibition 
of excitatory amino acid toxicity, promotion of neurotrophic 
factors and the release of other cytokines. However, the 
detailed molecular mechanism behind methylprednisolone's 
effect is not clear. Notably, previous studies demonstrated that 
in vitro lipopolysaccharide‑ and interferon γ‑induced release 
of multiple cytokines (i.e., IL‑1β, TNFα, and IL‑6) in cultured 
microglia can be effectively suppressed through the activity 
of CX3CL1 signaling. This suggests that CX3CL1/CX3CR1 
signaling is vital in modulating upstream production and 
cytokine release from microglia (51), thereby contributing to 
the feedback loop as well. By inhibiting the cx3cl1/CX3CR1 
pathway, AZD8797 can suppress the role of microglia and 
astrocytes, thus preventing the development of the inflamma-
tory response (54,55). The present study shows that blocking 
the CX3CR1 signaling with AZD8797 results in, not only a 
more effectively reduced concentration of the inflammatory 
cytokine, IL‑1β (which is associated with a better recovery 
after injury), but also lower apoptosis and necrosis levels when 
compared to methylprednisolone treatment.

In conclusion, the present study has demonstrated that 
treatment with the CX3CR1 specific inhibitor, AZD8797, can 
facilitate the recovery of neurological function in the acute phase 
of SCI through suppression of CX3CL1/CX3CR1 signaling. 
The current findings provide a novel, practical approach for 
SCI treatment. Nevertheless, further investigation is required 
for elucidating the combined effect of CX3CL1/CX3CR1 
signaling, especially considering its extensive involvement 
and potential side effects, as well as analyzing its efficacy and 
safety in preclinical and clinical trials.
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