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Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pneumopathy is characterized by a complex clinical
picture and heterogeneous pathological lesions, both involving alveolar and vascular components. The severity and
distribution of morphological lesions associated with SARS-CoV-2 and how they relate to clinical, laboratory, and
radiological data have not yet been studied systematically. The main goals of the present study were to objectively
identify pathological phenotypes and factors that, in addition to SARS-CoV-2, may influence their occurrence. Lungs
from 26 patients who died from SARS-CoV-2 acute respiratory failure were comprehensively analysed. Robust
machine learning techniques were implemented to obtain a global pathological score to distinguish phenotypes with
prevalent vascular or alveolar injury. The score was then analysed to assess its possible correlation with clinical, lab-
oratory, radiological, and tissue viral data. Furthermore, an exploratory random forest algorithm was developed to
identify the most discriminative clinical characteristics at hospital admission that might predict pathological pheno-
types of SARS-CoV-2. Vascular injury phenotype was observed in most cases being consistently present as pure form
or in combination with alveolar injury. Phenotypes with more severe alveolar injury showed significantly more fre-
quent tracheal intubation; longer invasive mechanical ventilation, illness duration, intensive care unit or hospital
ward stay; and lower tissue viral quantity (p < 0.001). Furthermore, in this phenotype, superimposed infections,
tumours, and aspiration pneumonia were also more frequent (p < 0.001). Random forest algorithm identified some
clinical features at admission (body mass index, white blood cells, D-dimer, lymphocyte and platelet counts, fever,
respiratory rate, and PaCO2) to stratify patients into different clinical clusters and potential pathological phenotypes
(a web-app for score assessment has also been developed; https://r-ubesp.dctv.unipd.it/shiny/AVI-Score/). In SARS-
CoV-2 positive patients, alveolar injury is often associated with other factors in addition to viral infection. Identify-
ing phenotypical patterns at admission may enable a better stratification of patients, ultimately favouring the most
appropriate management.
© 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
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Introduction

Coronavirus disease 2019 (COVID-19) due to severe acute
respiratory syndrome-coronavirus-2 (SARS-CoV-2) pri-
marily affects the lung [1], with a broad spectrum of clini-
cal manifestations. The severity of symptoms is extremely
variable, showing the highest morbidity and mortality in
elderly men and in patients with chronic comorbidities
[2]. The incidence of acute respiratory distress syndrome
(ARDS) among COVID-19 patients has been reported to

range from 47% to 100% in intensive care unit (ICU)
patients and from 1% to 68% in overall hospitalized
patients [3–5]. Even though the most severe forms of acute
respiratory failure were initially treated as ARDS, the
increased awareness of the disease has suggested that acute
respiratory failure is characterized in these patients by
distinctive clinical features. Indeed, compared with
conventional ARDS, SARS-CoV-2 acute respiratory
failure presents severe hypoxaemia and ventilation/
perfusion mismatch, likely due to a downregulation of
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angiotensin-converting enzyme-2 (ACE-2) secondary to
viral endocytosis [6–8]. However, this aspect is still
debated; indeed, other relevant studies reported an increase
of ACE-2 expression after viral infection [9]. In addition,
COVID-19 is often accompanied by a hypercoagulable
state, with high levels of fibrinogen, D-dimers, and an
increased risk of thromboembolic complications. Lastly,
an abnormal immune response (i.e. ‘cytokine storm syn-
drome’) with high levels of interleukin (IL)-2, -4, -6, and
-10, and tumour necrosis factor (TNF)-α occurs. All these
distinctive clinical features represent only some examples
of the complex clinical scenario characterizing COVID-19
patients, whose management still remains extremely prob-
lematic [10–13]. Histological hallmarks of ARDS include
a spectrum of lung injuries from the hyaline membrane,
oedema, and haemorrhage (acute exudative phase) to type
2 pneumocyte hyperplasia, organizing pneumonia, and
squamous metaplasia (organizing/proliferative phase)
[14,15]. All these lesions grouped under the generic pattern
called diffuse alveolar damage (DAD) were described in
deceased COVID-19 patients as being the major histologi-
cal findings detected in the lung parenchyma [16].
Consistent vascular lesions, mainly with the features

of endothelialitis, thrombotic microangiopathy, and pul-
monary intussusceptive angiogenesis, have recently
been reported as distinctive pathological features of
COVID-19 pneumopathy [17–21]. Thus, as clinical fea-
tures, clear heterogeneous pathological changes have
also been reported.
Despite the fact that all the previously mentioned stud-

ies have represented an important step forward in our
knowledge of SARS-CoV-2-related lesions, the aetio-
pathogenesis of most of the pathological lung lesions
remains unclear. In particular, it is yet to be determined if
lung lesions are exclusively related to the viral infection
or are converselymore influenced by other factors. Indeed,
to date, the distribution of morphological lesions associ-
ated with SARS-CoV-2 pneumonia and how they relate
to clinical data have not been systematically studied.
In the present work, a large number of lung lesions from

patients who died from SARS-CoV-2 acute respiratory fail-
ure were comprehensively analysed and quantified by
pathologists. Statistical analyses andmachine learning algo-
rithmswere then used to ‘phenomap’ patients into prevalent
pathological subtypes. The pathological subtypes were ana-
lysed in associationwith clinical, laboratory, molecular, and
radiological datawith the principal aim of identifyingwhich
factors, in addition to SARS-CoV-2 infection, may have
influenced the presence of the different pathological lesions.
An additional exploratory aimwas to identify, using the ran-
dom forest algorithm (RFA), the most discriminative clini-
cal characteristics at hospital admission that might predict
SARS-CoV-2 pathological phenotypes.

Materials and methods

The present work was a single-centre prospective study
of 26 consecutive COVID-19 laboratory-confirmed

autopsies performed at the University Hospital of
Padua from 23 March to 23 April 2020, according to
national and international protocols, as previously
described [22]. The Ethics Committee of our Centre
was informed about the study (4853/A0/20): the study
was approved by our local Clinical Institution Review
Board and complied with the Declaration of Helsinki.
The diagnosis for COVID-19 was made according to
the WHO interim guidance [23]. Specifically, nasopha-
ryngeal swabs were tested by reverse transcription-
polymerase chain reaction (RT-PCR) according to
international standards. For each patient, the following
demographic data and clinical characteristics were
recorded: age, gender, body mass index (BMI), comor-
bidities, sequential organ failure assessment (SOFA)
score at hospital admission, ongoing therapies, first
positivity for SARS-CoV-2, other respiratory patho-
gens, length of intensive care unit (ICU) or internal
medicine ward (IMW) stay, conventional laboratory
data and inflammatory parameters, respiratory rate,
blood gas analysis (arterial partial pressure of oxygen,
PaO2, and carbon dioxide, PaCO2; oxygen saturation),
antiviral therapies and anticoagulant therapy during the
hospital stay, mode of respiratory support (i.e. conven-
tional O2 therapy; high flow nasal cannula, HFNC;
continuous positive airway pressure, CPAP; or inva-
sive mechanical ventilation, IMV), fraction of inspired
oxygen (FiO2), and PaO2/FiO2 ratio.

Radiological evaluation
To reduce the risk of infection spread, at the beginning of
the current pandemic computed tomography (CT) scans
in our tertiary centre were seldom performed and
COVID-19 patients were mainly assessed with chest
X-rays at diagnosis and follow-up. Thus, for all patients,
the only imaging available was chest X-ray.

All radiographs were evaluated by an experienced
radiologist in thoracic imaging (CG) using a previously
published and validated composed COVID-19 chest
X-ray score (i.e. COVID-19 chest X-ray score – CARE)
[24]. In brief, the score was based on the subdivision of
each lung in three areas (i.e. upper area, from the apices
to the superior margin of the hilum; middle area, from
the upper to the lower margin of the hilum; lower area,
from the lower margin of the hilum to the costophrenic
angle) and a three-grade score describing, separately,
the extension of ground glass (i.e. hazy opacity not oblit-
erating bronchi and vessels) and consolidations (i.e. area
of attenuation obscuring airways and vessels). The
occurrence of additional findings such as pleural effu-
sion, pneumothorax, pneumomediastinum, and subcuta-
neous emphysema was also recorded.

Autopsy and histological assessment
Autoptic examinations were carried out with a post-
mortem interval ranging from 24 hours to 6 days.
Lungs were removed en bloc and fixed in 10% buff-
ered formalin. Sixteen tissue blocks from the airways
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and each lung (three blocks per lobe) were sampled. In
selected cases, special stains [e.g. Gram, periodic acid–
Schiff (PAS), and Grocott’s methenamine silver stains]
were performed to highlight other concomitant micro-
organisms. Two expert lung pathologists (FC and FP)
performed the histological evaluation blindly. For each
section, several parameters were examined, as follows:
(1) trachea, bronchi, and bronchioli: acute and chronic
inflammation, presence of squamous metaplasia;
(2) alveolar spaces: oedema, blood extravasation,
fibrin, hyaline membranes, organizing pneumonia,
squamous metaplasia, pneumocyte type II hyperplasia,
and inflammatory cells, distinguishing acute (neutro-
phils) and chronic (macrophages, monocytes, and
lymphocytes); (3) alveolar wall: chronic and acute
inflammation, interstitial fibroblasts, capillary inflam-
mation, and microthrombi. We define the degrees of
capillary inflammation as (a) mild capillary inflamma-
tion (only neutrophil margination above baseline),
(b) moderate inflammation (neutrophil margination
above baseline with at least two back-to-back neutro-
phils), or (c) severe (frank capillaritis with destruction
of capillary walls, blood extravasation, and neutro-
philic karyorrhexis) [25,26]; (4) vessels: microthrombi
and large thrombi; and (5) pleura: inflammatory infil-
trates, fibrosis, and fibrin deposition. In each case, a
total of 27 histological parameters were separately
quantified in 16 slides, distinguishing each lobe of
the right and left lung. A total of 432 pathological fea-
tures were evaluated for each patient. The presence and
the extension of each parameter were scored in a semi-
quantitative manner from 0 to 3 (0: absent; 1: present,
focal, in <25% of the section; 2: present, ranging from
25% to 50%; 3: present, diffuse, in >50%). All other
additional findings were also carefully reported. Based
on the presence and severity of some histological
parameters, evaluated in all slides of each case,
patients were categorized in a prevalent histological
phenotype. Pathological alveolar injury (AI) prevalent
phenotype was defined as when the median scores of
hyaline membranes, organizing pneumonia, pneumo-
cyte type 2 hyperplasia, and squamous metaplasia were
at least as twice as high as the median scores of vascu-
lar lesions (microthrombi, large thrombi, vasculitis,
and capillary inflammation). We considered prevalent
vascular injury (VI) phenotype when the median scores
of vascular lesions were double those of AI. A mixed
phenotype was defined as when lesions of both AI
and VI were equally present (similar median score of
the two different types of lesion).

Molecular viral assessment
Total RNAwas extracted from about 30 mg of frozen lung
tissues using an RNeasy Plus Mini Kit (Qiagen, Hilden,
Germany) with a sample homogenization in a TissueLyser
System (Qiagen) according to the manufacturer’s instruc-
tions. The quantity and quality of prepared RNA were
examined spectrophotometrically (NanoDrop One/OneC
Microvolume UV–Vis Spectrophotometer; Thermo

Fisher Scientific, Waltham, MA, USA). Quantitative
determination of SARS-CoV-2 was performed using the
CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time
RT-PCR Diagnostic Panel [https://www.fda.gov/media/
134922/download] following themanufacturer’s protocol.
The reaction conditions were 10 min at 50 �C, then

95 �C for 3 min, followed by 45 cycles of denaturation
at 95 �C for 3 s, then annealing and extension at 55 �C
for 30 s. To correct for sampling variability, we used
human RNAse P (PRORP) as a reference to normalize
the viral load using the comparative cycle threshold
(CT) method (ΔCt) that transforms the CT into relative
loads (ratios of viral target to human target).

Statistical analysis
All clinical, radiological, and pathological data were
recorded in an electronic database. Data are presented
as medians (with first and third quartiles) for continuous
variables and as percentages for categorical variables.
Due to repeated measurements, comparisons among
groups were based on generalized linear models
(GLMs), with variance inflated using the Huber–White
sandwich estimator [27]. GLM family was the Gamma
family for continuous response variables with a logarith-
mic link and quasi-binomial family for the binary
response. To further account for multiple testing,
P values were adjusted using the Benjamini–Hochberg
procedure [27]. Agreement between pathologists was
assessed by using Cohen’s kappa. The final dataset com-
prised more than 1.5 million data points coming from the
26 patients.

Derivation of the AVI score

Data on pathological findings were summarized using
robust principal component analysis (RPCA) based on
projection pursuits [28]. Since the database had a wide
number of variables and a relatively small number of
patients, we used more conservative and robust statistical
methods for the analysis than the more familiar multi-
linear regression analysis, which enabled us to separate
important features from noisy data. Sparse robust princi-
pal components were derived using a grid search algo-
rithm in the plane and with sparseness constraints
derived using a grid search and tradeoff product optimi-
zation [29]. The PCA loadings were used to characterize
the AVI score. The entire analysis was blinded with
respect to the operator-based classification of phenotypes
into AI or VI subtypes. Subsequently, after unblinding, a
cut-off for the score was performed using standard ROC
analysis to discriminate between the operator-based clas-
sification of phenotypes. The distribution of AVI scores
was estimated using a Gaussian kernel and optimal band-
width selection [30].

Phenomapping

Descriptive analysis of the association between presen-
tation of all clinical data of patients and pathological
findings was based on GLMs, with choice of link and
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variance functions tailored to the type of response
(Gaussian functions for continuous variables and bino-
mial functions for binary variables). Survival functions
were estimated using a Kaplan–Meier estimator, and
multivariable survival models were based on the Cox
proportional hazardmodel. Then to ‘phenomap’ the clin-
ical variables that were mostly associated with patholog-
ical phenotypes [31], a random forest algorithm (RFA)
was implemented [32]. The choice of an RFA model
was suggested by the high k/n ratio, where k is the num-
ber of candidate variables and n is the number of
observations in the samples. RFA was implemented
optimizing over the number of trees (6600), a number
of k/3 variables randomly selected as candidates for
splitting a node, an average number of five data points
in a terminal node, and weighted mean-squared error as
splitting rule. Missing data were iteratively imputed
using the Ishwaran algorithm [33]. The relative impor-
tance of each clinical variable against the score derived
via RPCA was measured by the minimal depth of vari-
ables: the smaller the minimal depth, the greater the
impact that the variable has on sorting observations,
and therefore on the forest prediction. The mean of the
minimal depth distribution was used as an analytic
threshold for evidence of variable impact, with variables
with a minimal depth lower than this threshold being
considered as important in the forest prediction [34]. A
representative tree was then extracted from the forest to
clinically phenomap the pathological patterns. Extrac-
tion was based on the Euclidean distance d2 based on
closeness to prediction [35]. All analyses were made
using the R software [36] with the pcaPP [29] and the

randomForestSRC [37] libraries. Machine learning anal-
ysis was reported according to the EQUATOR draft
guidelines [38].

Results

Clinical data
The median age of the 26 patients was 82 years (Q1–
Q3: 76–88 years); 42% were women. Table 1 sum-
marizes the main clinical/radiological data. The esti-
mation of disease duration from symptom onset or
hospitalization to patient death was 8.5 days (95%
CI 7–13) and 5 days (95% CI 4–7), respectively (sup-
plementary material, Figure S1). A high percentage
of patients (14 out of 26 patients, 53.8%) had comor-
bidities, with the most common being hypertension;
96% of patients had two or more comorbidities,
including cardiovascular disease, chronic renal
failure, diabetes, dyslipidaemia, dementia, chronic
obstructive pulmonary disease, and cancer. Eight
(31%) and 14 (54%) patients received therapeutic
and prophylactic anticoagulant therapy, respectively,
while nine (39%) received antibiotics due to second-
ary bacterial infections. Seven patients (27%) were
admitted to the ICU and were invasively ventilated
[tidal volume ≤ 6 ml/kg of ideal body weight (IBW)
and driving pressure ≤ 14 cmH2O], with a median
length of 6 days (Q1–Q3: 5–14). Nineteen (73%)
patients were not invasively ventilated. Specifically,
13 subjects (50%) received O2 therapy, either through

Table 1. Clinical and radiological data of the study cohort.
N� Results* N� Results*

Clinical characteristicsClinical characteristics Laboratory dataLaboratory data
Age, years 26 76/82/88 WBC (109/L) 25 4.1/5.5/13.2

Males 15 58% LY (109/L) 23 0.64/0.80/0.98
Females 11 42% LY (%) 23 6.4/12.2/17.0

BMI 20 23/25/30 Platelet count (109/L) 24 143/167/220
SOFA score 18 4.0/5.5/7.0 D-dimer (ng/ml) 20 296/474/994
Comorbidity 26 96% (25) Fibrinogen (mg/dl) 11 4.6/5.3/5.4
Fever (�C) 21 38/38/39 IL-6 (μg/ml) 9 41/120/298
Cough 26 62% (16) Ferritin (ng/ml) 18 577/1162/1814
Shortness of breath 26 88% (23)
Dyspnoea 26 81% (21) Respiratory parametersRespiratory parameters
Anticoagulant therapy 26 Respiratory rate (bpm) 22 22/24/28

Never 15% (4) SpO2 (%) 26 89/93/97
Prophylactic 54% (14) pH 25 7.4/7.4/7.5
Therapeutic 31% (8) PaO2 (mmHg) 25 55/68/90

Antiviral therapy 26 38% (10) PaCO2 (mmHg) 25 30/33/40
Antibiotic therapy 26 96% (25) PaO2/FiO2 25 74.9/104.4/205.7
Microbiology for SARS-COV-2 26 100% (26) IMV 26 27% (7)
Superimposed infections 26 35% (9) Length of IMV (days) 7 5/6/14
IMW patients 26 54% (14)
IMW length of stay (days) 14 2.5/5/7 Radiological scoreRadiological score††

ICU patients 26 46% (12) Median global score 26 4
ICU length of stay (days) 12 3.2/5.0/8.0

BMI, body mass index; ICU, intensive care unit; IL-6, interleukin 6; IMV, invasive mechanical ventilation; IMW, internal medicine ward; LY, lymphocytes; SOFA, sequential
organ failure assessment; WBC, white blood cells.
*Data are expressed as first quartile/median/third quartile for continuous variables and as percentages (absolute numbers) for categorical variables.
†Radiological assessment of 97 chest X-rays of 26 patients.
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a nasal cannula or facial mask, or HFNC [median
length of 6 days (Q1–Q3: 4–7)]; six (23%) underwent
CPAP or non-invasive ventilation through a helmet
[median length of 4 days (Q1–Q3: 2.5–5)].

Radiological findings
A total of 97 chest X-rays were assessed. During the
entire time of hospitalization, all patients except one
showed both ground glass and consolidation after at least

Figure 1. ROC analysis indicates a cut-off of about zero (−0.034) with an overall accuracy of 0.97 (95% CI 0.91–1.00), sensitivity 0.91 (95% CI
0.74–1.00), and specificity equal to 1.00 to discriminate between AI and VI patients. Themixed phenotype is not characterized by specific ranges of
the AVI score. Data in the table are medians (I, III quartile). P value refers to the overall difference among phenotypes. At the top of the figure,
example histopathological sections of case 1 (VI phenotype, A, D), case 11 (mixed phenotype, B, E), and case 5 (AI phenotype, C, F) with the most
representative lesions in both upper (A–C) and lower lobes (D–F) are shown. (A) Capillaritis and microthrombus (H&E stain). (B) Microthrombi
(H&E stain). (C) Hyaline membrane with squamous metaplasia (H&E stain). (D) Neutrophilic margination and capillary inflammation (H&E stain).
(E) Diffuse hyaline membrane (H&E stain). (F) Organizing pneumonia (H&E stain). Original magnification: (A, B) ×200; (C–F) ×100.
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one chest X-ray. The highest global score (i.e. 36) was
found in four patients. The median scores were 2 (Q1–
Q3: 1–2.75) and 0 (Q1–Q3: 0–5) for ground glass and
consolidation, respectively. The median global score
was 4 (Q1–Q3: 1–6) (Table 1). The ground glass score
was significantly higher in the left parenchyma than on
the right side (p < 0.001), whereas no statistically signif-
icant differences emerged for the consolidation and the
global score (supplementary material, Table S1).

Viral molecular findings
RNA was extracted from frozen lung tissue samples
obtained from all patients included in the study popula-
tion. The quantity and quality of RNA samples were ade-
quate for the RT-qPCR analysis. In particular, mean
(� SD) RNA concentration was 241 � 193 ng/μl; mean
(� SD) A260/280 and A260/230 ratios were 2.09 � 0.03
and 1.52 � 0.55, respectively.
In all patients, positivity for SARS-CoV-2 was con-

firmed in lung tissues by RT-qPCR, showing median
(Q1–Q3) values of N1 ΔCt of 1.2 (−3.4 to 6.8), ranging
from −9.3 to 13.7 (supplementary material, Figure S2).

Pathological findings
Microscopic evaluation of lungs revealed lesions in dif-
ferent anatomic areas with a heterogeneous distribution.
The evaluation of all slides showed good inter-observer
agreement (K value between 0.6 and 1). A statistically

significant difference in lobe involvement was observed
for some parameters. In lung parenchyma, the highest
grades of the pathological parameters of AI were more
frequently assigned to the lower lobes. The vascular
bed showed various lesions from different grades of cap-
illary inflammation, including the most severe form of
neutrophilic capillaritis which was mainly detected in
the right lungs (p = 0.001), to microthrombi and, less
frequently, macrothrombi. There was no preferential dis-
tribution of microthrombi and macrothrombi in the
parenchyma. Other types of lesions were also detected
in 14 cases (54%), including infections (nine cases:
seven bacterial and two fungal, morphologically com-
patible with Aspergillus spp.), neoplasms (three cases:
two squamous cell carcinomas and one malignant soli-
tary fibrous tumour), and aspiration pneumonia (two
cases). Some of the infections were unknown before
autopsy and were also detected by using special stains
(e.g. Gram, Grocott, PAS). Large airway acute or
chronic inflammation was observed in all cases. Pleura
was frequently affected by inflammation and fibrous
reaction, without a significant difference in lung/lobe
distribution. From the comparison between cases with
associated signs of infectious diseases (fungal or bacterial)
and pure COVID-19 cases, pleural involvement was more
frequently detected in the second group (39% versus 26%,
p = 0.02). Detailed descriptions of the airways, paren-
chyma, vascular bed, and pleural lesions are reported in
supplementary material, Tables S3–S6, respectively.
According to the categorization of prevalent histological

Figure 2. Correlation of AVI score with (A) length of intubation (R2 0.63), (B) ICU stay (R2 0.72), (C) hospital stay (R2 0.49) and symptom dura-
tion (R2 0.67), and (D) viral quantity (R2 0.49 for AI, 0.01 for VI, and 0.33 for mixed). Log(2−ΔCt) represents the SARS-CoV-2 relative loads
(ratios of viral target to human target) transformed to logarithmic scale for graphical representation.
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features, the AI phenotype was present in four cases
(16%), the VI phenotype in 11 cases (42%), and the mixed
phenotype in the remaining 11 cases (42%).

Based on the above pathological findings, data were
synthesized using RPCA. The first RPCA dimension
explained 64.67% of the total variance, with higher load-
ings in absolute values determined by hyaline membrane,
intra-alveolar blood/fibrin and neutrophils, type 2 pneumo-
cyte hyperplasia, intra-alveolar macrophages/lympho-
cytes, oedema, organizing pneumonia, intra-alveolar
squamous metaplasia, capillary inflammation, pleural
inflammation, and thrombi (supplementary material,
Table S2). The first RPCA dimension was thus used to
derive a synthetic score to characterize each patient with
respect to the most important variables. Such a score was
challenged against a blinded classification by the patholo-
gists who classified patients as ‘prevalent AI’, ‘prevalent
VI’, or ‘mixed’ phenotype. Standard ROC analysis
showed that the score, called ‘AVI score’, discriminated
well between prevalent AI and prevalent VI patients. Pos-
itive AVI-score values identified prevalent AI phenotype,
while negative AVI-score values identified prevalent VI
phenotype. The mixed phenotype shared AVI-score
values from both phenotypes (Figure 1).

Clinical–pathological correlations
A positive value of AVI score (consistent with a more rep-
resentative presence of AI) was directly correlated with
endotracheal intubation and the length of invasive mechan-
ical ventilation, longer hospital and ICU stay, duration of
illness from symptom onset, and lower tissue viral quantity
(p < 0.001) (Figure 2 and supplementary material,
Tables S7–S10). A positive AVI score was also associated
with the presence of other pathological lesions, such as

aspiration pneumonia, other infections, neoplasms, or all
three (p < 0.001) (Figure 3 and supplementary material,
Table S11). A negative value of AVI score (consistent with
amore representative presence ofVI)was not related to any
clinical data. Neither positive nor negative value of AVI
score was correlated with any radiological findings. More
than 40 clinical covariates were analysed to characterize
the AVI-score distribution among patients, deriving a syn-
thetic ‘phenomap’ of the underlying pathological aspects.
Supplementary material, Table S12 presents anonymized
data for the 26 patients. The regression RFA showed good
performance (98.7% of explained variance at 10-fold cross-
validation) using variables recorded at the time of hospital
admission: BMI, white blood cells (WBC), D-dimer, lym-
phocyte (both absolute and percentage) count, platelet
count, fever, respiratory rate, and PaCO2 (Figure 4A).
Instead, radiological variables showed no significant corre-
lation and were excluded from further analysis. The combi-
nation of the above parameters at the time of admission
could lead to the identification of clinical clusters associated
with different pathological phenotypes and different AVI
scores. For instance, patients with a low respiratory rate,
unusual hypercapnia, and lymphocytopenia at admission
are potentially at higher risk of developing a ‘prevalent
AI’ phenotype (positive AVI score) (Figure 4B).
To facilitate the interpretation and use of the phenotypic

representation, a web-app has been developed and made
available at https://r-ubesp.dctv.unipd.it/shiny/AVI-Score/.

Discussion

In this study of 26 consecutive patients who died from
SARS-CoV-2 acute respiratory failure, we identified

Figure 3. (A) Correlation of AVI score with other pathological lesions. (B–G) On the right, the most representative histological sections of the
pathological lesions detected: inflammatory exudate within the intra-alveolar space resulting in lobar pneumonia (B, H&E stain); necrotizing
granuloma (C, H&E stain); pulmonary aspergillosis (D, H&E stain); squamous cell carcinoma (E, H&E stain); lung metastasis of pleural malig-
nant solitary fibrous tumour, previously diagnosed (F, H&E stain); and aspiration pneumonia with inhaled foreign body (G, PAS stain). Original
magnification: (D) ×200; (F, G) ×100; (B, E) ×50; (C) ×15.

Machine learning of SARS-CoV-2 acute respiratory failure 179

© 2021 The Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

J Pathol 2021; 254: 173–184
www.thejournalofpathology.com

https://r-ubesp.dctv.unipd.it/shiny/AVI-Score/
http://www.pathsoc.org
http://www.thejournalofpathology.com


three major phenotypes: (1) phenotype with a prevalent
DAD (AI); (2) phenotype with prevalent vascular
lesions (VI); and (3) phenotype with mixed DAD and
VI (Figure 1). This evidence was obtained following a
thorough analysis of multiple lung samplings to care-
fully capture all lesions and to avoid underestimating
or missing some important tissue alterations [39].
To our knowledge, this is the first study that has used a

combination of robust machine learning techniques to
objectively identify pathological phenotypes and fac-
tors, which, in addition to SARS-CoV-2, may influence
their occurrence. The generated AVI score grouped
lung lesions in a spectrum identifying vascular injury

for negative values and alveolar damage for positive
values. The association between AVI score and clinical
data showed that a positive value of the score was sig-
nificantly related to a longer duration of the disease
(whether calculated from the onset of symptoms or from
the hospital stay), longer ICU stay, tracheal intubation,
and prolonged invasive mechanical ventilation, inde-
pendently of other factors. Generally, patients affected
by SARS-CoV-2 acute respiratory failure are more hyp-
oxic and usually require invasive mechanical ventila-
tion and a longer hospital stay. Prolonged mechanical
ventilation is an important risk factor for ventilator-
associated pneumonia, aspiration, and superimposed

Figure 4. Variables characterizing AVI score. (A) A random forest-based model was used to obtain the most important variables able to sort
patients based on the previous robust principal component analysis (RPCA). The relative importance of each clinical variable against the score
derived via RPCA was measured by the minimal depth of variables: the smaller the minimal depth, the more important the variable. Important
variables are reported in rank order with the most important at the top. The vertical dashed line indicates a threshold corresponding to the
maximal–minimal depth for important variables (left side of the panel). Variables exceeding this value are considered unimportant.
(B) Phenomapped representation of the random forest algorithm (pruned version) to show how patients were classified to a specific AVI score
based on the most important clinical characteristics. The final node number represents values of the AVI score for specific patterns of
covariates.
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infections, and all of these elements could have contrib-
uted to the development of a prevalent AI, generating a
vicious circle [40,41].

We also detected a more extensive AI in patients with
associated other lesions: neoplasms, aspiration pneumo-
nia, and other infections – the last two also found in
patients not treated by prolongedmechanical ventilation.
The risk of developing AI in patients with infectious
pneumonia is higher in hospitalized patients, particularly
in cases with viral, fungal, or mixed infections [42]. The
pathogenetic mechanisms at the basis of AI in these
pathological lesions are complex, often related to a dys-
regulation of innate or acquired immune response [43].
Thus, our observations suggest that the development of
AI is not exclusively related to SARS-CoV-2 infection.
Supporting this, the detection of a lower tissue viral
quantity in patients with more extensive AI is notewor-
thy. Such findings are in agreement with earlier observa-
tions, obtained in a multicentre study with our
contribution, which showed an association of AI with
longer disease duration and less frequent tissue virus
detection [44]. Based on this, a speculated timeline for
the disease may involve viral-related lung damage and
significant vascular injury in the early stages, whereas
in the advanced stages the damage may be mainly influ-
enced by other factors (such as prolonged disease dura-
tion or mechanical ventilation, superinfections, etc.)
responsible for maintaining the inflammatory state with
a prevalent pathological appearance of DAD.

In our study, negative AVI score (which means more
extensive VI) was not correlated to any clinical outcome
data, including all coagulation parameters. This was not
an unexpected finding in our case series, considering that
the majority of patients had received anticoagulant ther-
apy due to comorbidities or prophylaxis. The absence of
any correlation between disease duration, type of clinical
management, and other pathological lesions may sug-
gest that VI is a peculiar feature of the COVID-19 pneu-
mopathy. Indeed, in the literature, considerable evidence
indicates the important role of vascular damage in the
aetiopathogenesis of the disease [17–21,45].

In COVID-19, the specificity of pathological lung
lesions, particularly vascular injury, becomes even more
interestingwhenwe compare the characteristics observed
in our case series with those of prior severe global pan-
demics – SARS, MERS, and H1N1 influenza. Patterns
of lung injury, including DAD in exudative and/or orga-
nizing phases, were identified in MERS and SARS
[46–51]. However, the heterogeneous pattern of vascular
lesions frequently detected in SAR-CoV2 infection was
never reported in any of these infections. Particularly,
Ackermann et al reported that several vascular lesions,
including endothelialitis, thrombosis, and intussuscep-
tive angiogenesis, were detected in COVID-19 patients
more frequently compared with severe influenza virus
infections [21].

No associations between AVI score and radiological
findings were detected. Although radiological imaging
plays a crucial role in diagnosing and monitoring
patients with SARS-CoV-2 pneumopathy [52–54], our

results showed that chest X-rays only marginally affect
the AVI score. This controversial finding might be due
to the severity of the disease in our population and the
low specificity of the applied technique. Although chest
X-ray has been shown to be a reliable tool for diagnosing
and monitoring patients with COVID-19 [55–57], fur-
ther studies using CT scans are highly recommended to
obtain more accurate characterizations of the disease.
We also built a model based on RFA in an attempt to

identify clinical, laboratory, or functional ‘biomarkers’
that, at hospital admission, could predict the develop-
ment of distinct pathological lesions. It is noteworthy
that WBC, lymphocyte and platelet counts, BMI,
PaCO2, fever, respiratory rate, and D-dimer were the
most important features able to stratify patients into dif-
ferent clinical clusters and ‘potential’ pathological phe-
notypes with the aim of allowing more individualized
management. For instance, in patients at risk of develop-
ing a ‘prevalent’AI phenotype, more attention should be
given to optimize mechanical ventilation to ensure a
lung-protective ventilatory strategy, avoiding ‘high’
tidal volumes or transpulmonary pressure, preventing
patient self-inflicted lung injury, atelectasis, barotrauma,
and pneumothorax during both invasive and non-
invasive partial ventilatory support [58]. Finally, a
proper antibiotic stewardship should be established with
the aim of minimizing any potential risk factor for super-
imposed infections [59]. On the contrary, in patients at
risk of developing a potential VI phenotype, the primary
aim is to optimize thrombotic prophylaxis. Specifically,
thromboprophylaxis should be considered for all hospi-
talized COVID-19 patients [60,61]. This model, if vali-
dated in a large multicentre case series, could be highly
informative for more appropriate management of
COVID-19 patients.
The present study has limitations. First, the sample size

was relatively small and from a single centre. It should be
noted, however, that this is one of the largest single-
centre case series in which all the patients received proto-
colized medical treatments, respiratory support [62], and
standardized lung sampling methodology and analysis.
Furthermore, the statistical techniques were among those
best suited for dealing with a limited number of patients
and a large number of covariates, also including the dif-
ferent treatments. However, the risk of instability in the
estimates could not be excluded; for example, there could
have been a potential underestimation of the rate of ‘pure’
AI, which was observed in a few cases. Nevertheless,
both the clinical and the pathological observations, as
derived from the statistical models, do agree well with
the current knowledge about COVID-19 pathology. Sec-
ond, some clinical features could be affected by the
numerous therapeutic treatments administered to
patients. Accordingly, all clinical information subsequent
to the patients’ admissions was excluded from the pheno-
mapping and used only for the exploratory analysis.
Finally, all pathological parameters were analysed

only on haematoxylin and eosin-stained slides using a
scoring system that is observer-dependent and subjective.
However, all the evaluations were blindly performed by
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two pathologists, showing good inter-observer agree-
ment and, overall, were confirmed by machine learning
analysis. The present study could represent a good start-
ing point to promote the use of a deep learning approach
in digitized slides stained both with haematoxylin and
eosin and immunohistochemistry for a more precise def-
inition of the phenotypical characteristics of the inflam-
matory infiltrate.
In conclusion, we found that vascular lesions are an

important feature of COVID-19 pneumonia since they
are consistently present in the majority of cases, while
AI is related to several factors in addition to SARS-
CoV-2 infection. The identification of phenotypical pat-
terns associated with clinical characteristics could allow
us to stratify COVID-19 patients into different risk clus-
ters to optimize future management strategies.
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