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Abstract: Hybrid systems are subject to multiple dynamic models, or so-called modes. To estimate
the state, the sequence of modes has to be estimated, which results in an exponential growth of
possible sequences. The most prominent solution to handle this is the interacting multiple model
filter, which can be extended to smoothing. In this paper, we derive a novel generalization of the
interacting multiple filter and smoother to manifold state spaces, e.g., quaternions, based on the
boxplus-method. As part thereof, we propose a linear approximation to the mixing of Gaussians
and a Rauch–Tung–Striebel smoother for single models on boxplus-manifolds. The derivation of
the smoother equations is based on a generalized definition of Gaussians on boxplus-manifolds.
The three, novel algorithms are evaluated in a simulation and perform comparable to specialized
solutions for quaternions. So far, the benefit of the more principled approach is the generality towards
manifold state spaces. The evaluation and generic implementations are published open source.

Keywords: IMM; RTS; smoothing; manifolds; hybrid estimation;orientation estimation; quaternion
smoothing

1. Introduction

The interacting multiple model filter (IMM) is widely used in the field of target
tracking. After its original invention [1] for radar-based aircraft tracking [2–4], it has been
used in various applications such as attitude estimation [5], lane change prediction [6],
and sensor fault detection [7].

The IMM is applied when a single dynamical model does not predict the behavior of
the system accurately [8]. This is the case when the system dynamics depend on modes,
i.e., discrete states that change abruptly. The original IMM runs one Kalman Filter (KF) per
mode and fuses the estimates of the filters probabilistically based on the likelihood of the
models. Up to now, several adaptations of the IMM have been published to use different
nonlinear filters such as the Extended Kalman Filter (EKF) [8], the Unscented Kalman Filter
(UKF) [4], or the Particle Filter (PF) [9].

The accuracy of IMM estimates can be improved by smoothing [10]. Smoothing im-
proves the past estimate by propagating the information of measurements backwards [11].
Retrospectively, it uses measurements from the past and future. Similarly to the IMM filter,
the IMM smoother uses a smoother for each mode and fuses their estimates probabilistically.
Several mixing schemes already exist and further schemes are being developed [12,13].

Typically, nonlinear filters and smoothers are designed to operate on vector spaces (Rn).
Thus, it is difficult to maintain manifold structures like the rotation quaternion in the filter.
As it is often required to estimate orientations in target tracking, various extensions [14–17]
have been developed to handle rotation quaternions or matrices correctly without destroying
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their manifold properties, e.g., unit norm or orthogonality. To our knowledge, no such
extension exists for the IMM nor the IMM smoother.

For quaternions, the approach to normalize the quaternion exists [5]. However, such
an approach usually degrades the performance of the estimator due to erroneous covariance
matrices. Besides that approach, publications avoid using quaternions in the state by using
2D rather than 3D [6] or by using models that work in world coordinates only, as is common
in aircraft tracking [2]. In [18], the so called delta-quaternion is used in the state, while the
quaternion orientation is predicted outside of the IMM.

We see a gap in the literature on how to handle manifolds in the IMM smoother in a
principled way. This paper closes the gap by proposing an IMM smoother that can handle
manifolds properly. While we use quaternions as an accessible application example, we
designed our novel algorithms to handle more general manifolds—e.g., a sphere.

The core difficulty of an IMM smoother on manifolds is the probabilistic mixing of
states. In the IMM, the estimates of all filters are mixed in a weighted sum. Unfortunately,
the operator + breaks the manifold structure, wherefore, a sum cannot be computed [14].
Similar problems appear for the covariance, which conceptually assumes additive noise on
the state.

To overcome this problem for single-mode filtering on quaternions, the multiplicative
EKF (MEKF) [15] or the error state KF (ESKF) [16] were developed. Both methods update
the quaternion estimate by quaternion multiplication only, which sustains the manifold
structure in contrast to addition. The boxplus-method (�-method) of Hertzberg et al. [14]
generalizes this concept for manifolds. It only allows changes to the manifold, which do
not break its structure. It gained attention in pose tracking in the last years since it is
a general approach to handle manifolds in nonlinear filtering [19,20] and least squares
optimization [21]. The �-method encapsulates manifolds as black boxes, so that algorithms
can handle them generically. Furthermore, it provides the necessary definitions to calculate
a weighted sum of Gaussians over manifolds as it is required for the IMM on manifolds.

This paper is an extended version of [22], where we derived an IMM filter that uses
the �-method to properly handle the mixing of states and covariances in the manifold
case. The method has been proven to perform a first-order correct probabilistic mixing of
Gaussians. The additional contribution of this paper is the extension of the IMM filter on
�-manifolds to an IMM smoother. To do so, we extend the �-method to Rauch–Tung–Striebel
(RTS) smoothing [23].

In this work, we focus on the tangent spaces of manifolds to derive the RTS smoother
equations and reinterpret the mixing of covariances with tangent space transforms. To achieve
this, we propose a generalized definition of Gaussians on �-manifolds, which clarifies how to
transform Gaussians between different tangent spaces. The rigorous consideration of tangent
space transformations results in a generic Extended Kalman smoother (EKS) on �-manifolds.
The combination of the novel EKS and the probabilistic mixing of Gaussians of [22] directly
yields the IMM smoother on �-manifolds based on the scheme of [11].

The remainder of the paper is structured as follows: The theoretic foundation of
probabilistic mixing on �-manifolds with a new derivation of the covariance mixing based
on our generalized definition of Gaussians is shown in Section 2. The resulting IMM
Filter on �-manifolds is presented in Section 3. As a basis for the IMM smoother, an RTS
smoother on �-manifolds is derived in Section 4. The novel IMM smoother is shown in
Section 5. In Section 6, we give a simulation example for the new algorithms and analyze
their performance compared to state of the art approaches. Finally, we conclude and discuss
future work in Section 7.

2. Weighted Sum of Gaussians on �-Manifolds

Usually, the representation of a manifold S is overparametrized, i.e., represented with
more parameters than it has degrees of freedom (DOF). The key idea of the �-method is
to allow changes of the manifolds only in the direction of the DOFs [14]. This direction
is called the tangent space V ⊂ RDOF. The direction of the DOFs depends on the specific
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instance of the manifold. Thus, the tangent space is always defined with respect to a
reference instance. Small changes to the manifold instance can be expressed in the tangent
space and are applied with the operator � : S × V 7→ S . The �-operator enforces the
manifold structure.

The difference of two manifold instances is also expressed in the tangent space and
can be derived by the complementary boxminus-operator � : S × S 7→ V . The �-operator
calculates the geodesic between two manifold instances, i.e., the shortest path between
them on the manifold (x� (y� x) = y). The quadruplet {S ,�,�,V} is called a �-manifold.
The operators for commonly used manifolds can be found in [14].

The �-method allows us to compound a state of multiple manifolds and vectors.
The �/�-operators of a compound manifold x simply apply the operators elementwise:

x = {x1, · · · , xn}, (1)

x � δ = {x1 � δ1, · · · , xn � δn}, (2)

y � x = {y1 � x1, · · · , yn � xn}. (3)

For vectors, the operators naturally reduce to +/−. Thus, the method allows to
compound states of manifolds and vectors seamlessly, which is essential for target track-
ing applications.

One axiomatic property of �-manifolds is that every instance y of the manifold can be
represented in the tangent space of any other instance x by y = x � (y � x) [14]. Thus, all
operations can be defined with respect to the tangent space of x although singularities may
arise if x and y are distant. Since the tangent space is a vector space, standard definitions
and operations can be used. By choosing the tangent space appropriately, troublesome
singularities are avoided. Essentially, this is the engineering ”trick“ of the �-method.

Hertzberg et al. already stated that it is not possible to compute an expected value or a
weighted sum of manifolds with the classic definition since the +-operator is undefined [14].
Instead, they derived an implicit definition of the expected value:

E
(
X � X

)
= 0, (4)

where E(·) computes the expected value, X is a random variable on S , and X is the expected
value of X. Essentially, X � X expresses all manifolds elements in the tangent space of X,
which allows us to apply the standard computation of the expected value.

In the IMM, Gaussian distributions are mixed instead of simple instances. Thus, X is
a mixture of GaussiansXj ∼ N (xj, Pj) with mean xj and covariance Pj. For �-manifolds,
the Gaussian is defined as follows:

N (µ, P) := µ �N (0, P), (5)

where P ∈ RDOFxDOF. The key of this definition is that the covariance of the Gaussian
is defined with respect to the tangent space of the mean. Hence, if two Gaussians have
different means, their covariances refer to different tangent spaces.

In the manifold case, the weighted sum of the mean values of the Gaussians x is not
guaranteed to be the expected value X of the complete distribution. However, we prove
that it is at least a first-order correct approximation of X.

Theorem 1. Let X be the mixture of M normally distributed random variables Xj ∼ N (xj, Pj)

with probabilities pj, where X ∼
M
∑

i=1
pjN (xj, Pj). Then, the weighted sum x of the expected values

xj (defined implicitly by
M
∑

i=1
pj(xj � x) = 0) is a first-order correct approximation of the expected

value X of all elements in X.
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Proof.

E(X � x)
?≈ E(X � X) = 0, (6)

E(X � x) =
∫

p(x) · (x � x)dx =
M

∑
j=1

∫
p(xj) ·

(
xj � x

)
dxj, (7)

∫
p(xj)dxj = pj, (8)

where we use the conventions p(x) = p(X = x) and p(xj) = p(Xj = xj). Each element
xj can be expressed in the tangent space of the respective mean xj using the axioms of
�-manifolds [14]:

xj = xj � δj, δj = xj � xj, (9)

E(X � x) =
M

∑
j=1

∫
p(xj) ·

((
xj � δj

)
� x
)
dxj. (10)

We approximate the �-operator with a first-order Taylor series around δj =~0:

E(X � x) ≈
M

∑
j=1

∫
p(xj) ·

((
xj �~0

)
� x + Jj · (δj −~0)

)
dxj, (11)

Jj =
∂
((

xj � δj
)
� x
)

∂δj

∣∣∣∣∣
δj=~0

. (12)

Using Equation (8) we can split into

E(X � x) ≈
M

∑
j=1

(
pj
(

xj � x
)
+ Jj ·

∫
p(xj)δjdxj

)
. (13)

The first summand is 0 by the implicit definition of x.

E(X � x) ≈
M

∑
j=1

Jj ·
∫

p(xj)δjdxj. (14)

Using the definition of xj:

E(Xj � xj) = 0 =
∫

p(xj)
(
xj � xj

)
dxj =

∫
p(xj)δjdxj. (15)

We can reduce to

E(X � x) ≈ 0. (16)

Thus, the approximation is first-order correct.

In the IMM, the mixed distribution is approximated with a Gaussian. Since the
covariance of manifolds is expressed in the tangent space, the covariances cannot be mixed
as in the original IMM. First, the Gaussians have to be expressed with respect to the same
tangent space.
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Naturally, Gaussians on �-manifolds are defined in the tangent space of their expected
value, as in (5). However, we can retrieve a more general definition of the Gaussian by
defining it in the tangent space of an arbitrary reference r:

N r(Er(X), Covr(X)) = r �N (Er(X), Covr(X)), (17)

Er(X) = E(X � r) =
∫
(x � r) · p(x)dx, (18)

Covr(X) = Cov(X � r) =
∫
((x � r)− E(X � r))((x � r)− E(X � r))T · p(x)dx. (19)

Choosing r = E(X) directly yields the definitions of [14]. The standard computation
rules for the expectation and covariance do not necessarily hold for this generalization,
e.g., Er(X) + Er(Y) 6= Er(X + Y), since the +-operator is undefined on the manifolds.

With the new definition, the reference can be arbitrarily chosen as in Figure 1. To
change the reference of the Gaussian from r1 to r2, the Gaussian has to be transformed to
the manifold space and afterwards, to the tangent space of r2:

Er2(X) = E((r1 �N (Er1(X), Covr1(X)))� r2), (20)

Covr2(X) = Cov((r1 �N (Er1(X), Covr1(X)))� r2). (21)

Figure 1. The Gaussian distribution X approximated in two tangent spaces on a unit circle manifold.

As usual, no general closed form solution exists, since the operators are nonlinear.
A first-order Taylor approximation at Er1(X) yields

Er2(X) ≈ (r1 � Er1(X))� r2, (22)

Covr2(X) ≈ J Covr1(X)JT , (23)

J =
∂((r1 � (Er1(X) + δ))� r2)

∂δ
. (24)

To retrieve the representation in Equation (5), the expected value is computed in the
manifold space:

E(X) ≈ r2 � ((r1 � Er1(X))� r2) = r1 � Er1(X). (25)

Two major types of reference transformations occur in state estimation. The first type
is the reference transform from a Gaussian expressed in the tangent space of r1 to the
tangent space of its expected value r2. This reference transform is required to reestablish
the standard form of Gaussians on �-manifolds, as defined in [14]. We call this type
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“centered transform”, since it transforms the Gaussian to the tangent space of its center,
i.e., r2 = r1 � Er1(X).

The second type transforms a Gaussian that is expressed in the tangent space of its
expected value, i.e., Er1(X) = ~0, to another reference r2. This transform is required to
express two Gaussians in the same tangent space to allow further computations. We name
it ”displaced transform“.

Using displaced transforms, all Gaussians of a mixture can be expressed in the tangent
space of x. Then, the standard covariance mixing can be applied, which results in

P =
M

∑
j=1

p(Xj)
([

xj � x
]⊗

+ JjPj JT
j

)
, (26)

where [·]⊗ denotes the outer product and Jj as in (12). The same equation can be derived
by linearization of the covariance equation like in our conference paper [22].

The first summand of (26) expresses the spread of the means in �-terms. The second
summand propagates the covariances of the Gaussians to the new mean. The structural
difference to the original equation is the transformation of Pj with the Jacobian Jj. In the
vector case, the Jacobian equals identity. Thus, this formula is a generalization of the
Gaussian mixing of vectors to �-manifolds.

3. An IMM Filter on �-Manifolds

The IMM runs a filter, e.g., an EKF or UKF, for each mode of the system. At every time
step, it performs three steps: interaction, filtering, and combination [8]. The interaction
mixes the estimates of all filters according to their mode and transition probabilities.
The filtering performs the prediction and update of each filter. It calculates the new mode
probabilities based on the measurements. The details of this step depend on the chosen
filter type. The combination step combines all estimates according to their mode probability
to create the output of the IMM, which is the expected state of the system.

We derive the IMM on �-manifolds (�-IMM) by two changes:

1. We use the �-EKF [19,20] as the single mode filter. This adapts the filtering step to
�-manifolds. The measurement likelihood can be calculated using Gaussians on
�-manifolds.

2. We use the probabilistic mixing of Gaussians of Section 2 in the interaction and
combination step.

The implicit definition of the expected values on �-manifolds does not give a direct
rule to compute the value. It can be computed using the iterative algorithm�- WeightedSum
adapted from [14]:

Input: X0, xj, p(Xj) ∀j ∈ [1, M], (27)

Xk+1 = Xk �
M

∑
j=1

p(Xj)(xj � Xk), (28)

x = lim
k 7→∞

Xk. (29)

In practice, the iteration is stopped when the change of the mean is small. The con-
vergence behavior depends primarily on the choice of the initial guess X0. The algorithm
is a generalization of [24] and identical to the computation of the mean on compact Lie
groups [25].

To shorten the notation of covariance mixing, we define the function �- WeightedCov:
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Input: x, Pj, xj, p(Xj) ∀j ∈ [1, M],

Jj =
∂
(
xj � δ � x

)

∂δ

∣∣∣∣∣
δ=~0

, (30)

P =
M

∑
j=1

p(Xj)
([

xj � x
]⊗

+ JjPj JT
j

)
. (31)

The �-IMM (See Table 1) can properly handle generic �-manifolds and their covari-
ances. It does not require any ad hoc implementation to mix the states as it only uses the
�/�-interface of the manifold.

Table 1. Original IMM [8] vs. �-IMM. Dashed boxes belong to the standard IMM only and full
boxes to the �-IMM. zk may be a �-manifold D. Modified from [22].

State, input, process and
measurement models

xj
k ∈ S , Pj

k ∈ RDOF×DOF, uk ∈ Rν, zk ∈ D
gj : S ×Rν ×Rn 7→ S , xj

k+1 = gj(xj
k, uk, ε

j
k)

ε
j
k = Nn(0, Qj

k), Qj
k ∈ Rn×n

h : S 7→ D, zk = h(xk)�Z Nd(0, Rk), Rk ∈ Rd×d

Initialization ∀j ∈ [1, M] x̂j
0|0 = x0, Pj

0|0 = P0, µ
j
0|0 = µ

j
0

Interaction ∀i, j ∈ [1, M]

cj
k =

M

∑
i=1

pijµ
i
k|k

µ
ij
k|k =

pijµ
i
k|k

cj
k

, pij are transition probabilities.

x̂0j
k|k =

M
∑

i=1
x̂i

k|kµ
ij
k|k

x̂0j
k|k = �- WeightedSum

i∈[1,M]

(x̂j
k|k, x̂i

k|k, µ
ij
k|k)

P0j
k|k =

M
∑

i=1
µ

ij
k|k

(
Pi

k|k +
[

x̂i
k|k − x̂0j

k|k
]⊗)

P0j
k|k = �- WeightedCov

i∈[1,M]

(
x̂0j

k|k, Pi
k|k, x̂i

k|k, µ
ij
k|k
)

Filtering:
Prediction

(�-EKF)
∀j ∈ [1, M]

x̂j
k+1|k = gj(x̂0j

k|k, uk,~0)

Fj
k =

∂
(

gj(x̂0j
k|k � δ, uk,~0)� x̂j

k+1|k
)

∂δ

∣∣∣∣∣∣
δ=~0

U j
k =

∂
(

gj(x̂0j
k|k, uk, ε)� x̂j

k+1|k
)

∂ε

∣∣∣∣∣∣
ε=~0

Pj
k+1|k = Fj

kP0j
k|k
(

Fj
k

)T
+ U j

kQj
k

(
U j

k

)T
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Table 1. Cont.

Filtering:
Update
(�-EKF)

∀j ∈ [1, M]

H j
k =

∂
(

h(x̂j
k+1|k � δ)� h(x̂j

k+1|k)
)

∂δ

∣∣∣∣∣∣
δ=~0

Sj
k = H j

kPj
k+1|k

(
H j

k

)T
+ Rk

W j
k = Pj

k+1|k
(

H j
k

)T(
Sj

k

)−1

rj
k = zk � h

(
x̂j

k+1|k
)

x̂j
k+1|k+1 = x̂j

k+1|k �W j
krj

k

J j
k =

∂
(

x̂j
k+1|k � (rj

k + δ)� x̂j
k+1|k+1

)

∂δ

∣∣∣∣∣∣
δ=~0

Pj
k+1|k+1 = J j

k

(
Pj

k+1|k −W j
kSj

k

(
W j

k

)T
)(

J j
k

)T

Λj
k = N

(
rj

k; 0, Sj
k

)

µ
j
k+1|k+1 =

1
c

Λj
kcj

k, c is a normalization factor

Combination

x̂k+1|k+1 =
M
∑

j=1
x̂j

k+1|k+1µ
j
k+1|k+1

x̂k+1|k+1 = �- WeightedSum
j∈[1,M]

(x̂k|k, x̂j
k+1|k+1, µ

j
k+1|k+1)

Pk+1|k+1 =
M
∑

j=1
µ

j
k

(
Pj

k+1|k+1 + [x̂j
k+1|k+1 − x̂k+1|k+1]

⊗
)

Pk+1|k+1 = �- WeightedCov
j∈[1,M]

(x̂k+1|k+1, Pj
k+1|k+1, x̂j

k+1|k+1, µ
j
k+1|k+1)

4. An RTS Smoother on �-Manifolds

Since there is no single model smoother for general �-manifolds available, we derive
an RTS Extended Kalman Smoother on �-manifolds (�-EKS) in this section.

For filtering algorithms, it is suitable to express the covariance with respect to the
expected value, but care must been taken at smoothing. The reason is that different
estimates (the filtered, smoothed, and predicted estimate) participate in the smoothing
equations. Thus, every covariance in the equations is defined on a different tangent space.
They are incompatible unless they are transformed to the same tangent space. Therefore, we
derive the smoother equations for �-manifolds with special care of the used tangent spaces.

Our derivation of the �-EKS is based on the discussion of Singer [26]. We start with
the theorem of normal correlation for �-manifolds. The theorem allows us to calculate the
conditional probability p(X|Z) of two jointly Gaussian distributed random variables X
and Z.

We express the distributions in the two different tangent spaces with references r for
X and ζ for Z. This enables us to apply the standard theorem of normal correlation on the
tangent spaces around r and ζ:

Er(X|Z) = Er(X) + Covrζ(X, Z)Covζ(Z)−1[(Z � ζ)− Eζ(Z)
]
, (32)

Covr(X|Z) = Covr(X)−Covrζ(X, Z)Covζ(Z)−1 Covrζ(X, Z)T . (33)



Sensors 2021, 21, 4164 9 of 19

A formal requirement for this is that X � r and Z � ζ are jointly Gaussian-distributed.
For �-manifolds, this almost only holds for linear approximation. We still use the notation
= instead of ≈ to clarify where further approximations are required. All expected values
and covariances are expressed in the tangent spaces of r and ζ, and Covrζ(X, Z) implicitly
converts the reference tangent space. As a side remark, choosing ζ = E(Z) would result in
the theorem of normal correlations that is used in current �-estimators [14,20].

The theorem can be applied to any probability space, conditioned under some other
variables Y:

Er(X|Z, Y) = Er(X|Y) + Covrζ(X, Z|Y)Covζ(Z|Y)−1
[
(Z|Y � ζ)− Eζ(Z|Y)

]
, (34)

Covr(X|Z, Y) = Covr(X|Y)−Covrζ(X, Z|Y)Covζ(Z|Y)−1 Covrζ(X, Z|Y)T . (35)

For readability, we underline conditional distributions if neither their expected value
nor their covariance is meant. Following [26], the variables X, Z, and Y are interpreted in
an unusual fashion: X is the state xk at time k, Z is the state xk+1 at time k + 1, and Y is the
vector of all measurements z1:k up to time k.

Er(xk|xk+1, z1:k) = Er(xk|z1:k) + Ck

[(
xk+1|z1:k � ζ

)
− Eζ(xk+1|z1:k)

]
, (36)

Covr(xk|xk+1, z1:k) = Covr(xk|z1:k)− Ck Covζ(xk+1|z1:k)CT
k , (37)

Ck : = Covrζ(xk, xk+1|z1:k)Covζ(xk+1|z1:k)
−1, (38)

where Ck is known as the smoother gain. These formulas essentially describe the fusion of
the past z1:k with a hypothetically fixed next state xk+1. The next state is actually not fixed
but distributed, given all measurements z1:N . Thus, we have to use the formulas in [26] to
calculate the expectation and variance:

Er(xk|z1:N) = E(Er(xk|xk+1, z1:k)|z1:N), (39)

Covr(xk|z1:N) = E(Covr(xk|xk+1, z1:k)|z1:N) + Cov(Er(xk|xk+1, z1:k)|z1:N). (40)

Note that only the distribution xk+1|z1:k has to be conditioned on z1:N since all other
values are known constants. The expected value and covariance of (39) can be calculated
by standard rules:

Er(xk|z1:N) = E
(

Er(xk|z1:k) + Ck

[(
xk+1|z1:N � ζ

)
− Eζ(xk+1|z1:k)

])

= Er(xk|z1:k) + Ck
[
Eζ(xk+1|z1:N)− Eζ(xk+1|z1:k)

]
, (41)

Cov(Er(xk|xk+1, z1:k)|z1:N) = Cov
(

Er(xk|z1:k) + Ck

[(
xk+1|z1:N � ζ

)
− Eζ(xk+1|z1:k)

])

= Cov
(

Ck

(
xk+1|z1:N � ζ

))

= Ck Cov
(

xk+1|z1:N � ζ
)

CT
k

= Ck Covζ(xk+1|z1:N)CT
K . (42)

Substituting all into Equation (40) yields

Covr(xk|z1:N) = Covr(xk|z1:k) + Ck
[
Covζ(xk+1|z1:N)−Covζ(xk+1|z1:k)

]
CT

k . (43)

From here, it is required to choose suitable references r and ζ to be able to compute the
smoothing step. Choosing the references is crucial for the mathematical complexity of the
computation. Covariances in the �-IMM all live in the tangent space of the expected value,
i.e., the estimate. Thus, they are all in different tangent spaces and have to be transferred to
the tangent spaces required by the smoothing step. The choice of the references decides
how many transforms have to be calculated. We choose r = E(xk|z1:k) and ζ = E(xk+1|z1:k).
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This avoids transforming the covariances Covr(xk|z1:k) and Covζ(xk+1|z1:k) as they are
already available in these tangent spaces. It also reduces the expected value to

Er(xk|z1:N) = E(xk|z1:k)� E(xk|z1:k) + Ck

[
E
(

xk+1|z1:N � E(xk+1|z1:k)
)
− E

(
xk+1|z1:k � E(xk+1|z1:k)

)]

= Ck E
(

xk+1|z1:N � E(xk+1|z1:k)
)

.
(44)

By linear approximation, we retrieve

Er(xk|z1:N) ≈ Ck[E(xk+1|z1:N)� E(xk+1|z1:k)]. (45)

The value of Covζ(xk+1|z1:N) can be retrieved by a displaced transform. Finally, we
give a formula for Covrζ(xk, xk+1|z1:k) by approximation of

Covrζ(xk, xk+1|z1:k) = Cov(xk|z1:k � E(xk|z1:k), g(xk|z1:k)� E(xk+1|z1:k)), (46)

where g is the dynamic model function. Approximating the second argument yields

Covrζ(xk, xk+1|z1:k) ≈ Cov
(

xk|z1:k � E(xk|z1:k), g(E(xk|z1:k))� E(xk+1|z1:k) + Fk

[
xk|z1:k � E(xk|z1:k)

])

= Covr(xk|z1:k)FT
k

(47)

Fk =
∂(g(E(xk|z1:k)� δ)� E(xk+1|z1:k))

∂δ

∣∣∣∣
δ=~0

, (48)

where Fk is commonly known as the state transition matrix.
With the chosen references, the complete smoothing step is (using more common symbols)

x̂k|N = x̂k|k � Ck

[
x̂k+1|N � x̂k+1|k

]
, (49)

Pk|N = Jk

(
Pk|k + Ck

[
BkPk+1|N BT

k − Pk+1|k
]
CT

k

)
JT
k , (50)

Ck = Pk|kFT
k P−1

k+1|k , (51)

Fk =
∂
(

g(x̂k|k � δ)� x̂k+1|k
)

∂δ

∣∣∣∣∣∣
δ=~0

, (52)

Bk =
∂
((

x̂k+1|N � δ
)
� x̂k+1|k

)

∂δ

∣∣∣∣∣∣
δ=~0

, (53)

Jk =
∂
((

x̂k|k �
(

Ck

[
x̂k+1|N � x̂k+1|k

]
+ δ
))

� x̂k|N
)

∂δ

∣∣∣∣∣∣
δ=~0

. (54)

These formulas are structurally similar to the standard RTS formulas [23]:

x̂k|N = x̂k|k + Ck

[
x̂k+1|N − x̂k+1|k

]
, (55)

Pk|N = Pk|k + Ck

[
Pk+1|N − Pk+1|k

]
CT

k , (56)

Ck = Pk|kFT
k P−1

k+1|k , (57)

Fk =
∂g(x)

∂x

∣∣∣∣
x=x̂k|k .

(58)

In the vector case, the �/� operators reduce to +/− and the computation of the
expected value agrees completely. In contrast, the covariance computation shows important
differences — the transforms with the matrices Jk and Bk. Bk transforms the covariance
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of the smoothed future state to the tangent space of the filtered predicted state. Thus,
the matrices BkPk+1|N BT

k and Pk+1|k are on the same tangent space, which allows them to
be subtracted. Jk conducts a centered transform to reestablish the standard Gaussian form.
Nevertheless, the covariance reduces to the standard RTS formulas in the vector case as
well, since Bk and Jk evaluate to identity. Therefore, the derived smoothing formulas can
be seen as a generalization of the standard RTS formulas.

Note that the choice of the references r and ζ is crucial for the structure of the final
formulas. Other references may alter the performance since other linearization points
are used. Regardless of the choice of the references, the formulas reduce to the standard
RTS formulas in the vector case, because all transformation matrices reduce to identity
and the reference ζ cancels out at the computation of the expected value. Thus, countless
possibilities exist to generalize the RTS formulas on �-manifolds.

The presented �-EKS differs from existing RTS smoothers on quaternions [17]. Since
smoothing on a quaternion state is a special case of our general �-EKS, it should coincide.
The smoothed covariance is calculated differently from the existing smoothers as they
use the vector Equation (56). The existing RTS smoothers ignore that the covariances are
defined on different tangent spaces. In practice, the formulas are almost identical for
quaternions if the estimates are close to each other. In that case, the �/�-operators are
almost linear; wherefore, Bk and Jk evaluate close to identity.

5. IMM RTS Smoother

Since the IMM performs an arbitrary (but well-chosen) approximation of the hybrid
estimation problem, there is no single answer on how to perform the smoothing. Several
smoothing schemes exist in the literature [11–13]. We choose the scheme of [11] as it
requires only one smoothing step per mode and is straightforward to adapt to �-manifolds
with our results from Sections 2 and 4. [12] pointed out that the chosen scheme uses strong
approximations. However, the approach of [12] requires operations that are currently not
possible on general �-manifolds.

The IMM RTS smoother in [11] can be adapted to �-manifolds in a similar man-
ner as the IMM Filter. The mixture of Gaussian approximations are exchanged with
the �- WeightedSum and �- WeightedCov algorithms. The mode-matched smoothing
is exchanged with the �-EKS from Section 4. This results in the �-RTSIMM smoother
(�-RTSIMMS), as shown in Table 2.

The �-RTSIMMS generically operates on all differentiable �-manifolds without de-
stroying the manifold properties of the state. To our knowledge, this is the first IMM
smoother that can operate properly on quaternions and other manifolds.

Table 2. The �-RTSIMMS smoothing scheme based on [11].

Backward transition
probability

bij =
1
ei

pjiµ
j
k|k

ei =
M

∑
l=1

pliµ
l
k|k

Backward mixing
probability

µ
ij
k+1|N =

1
dj

bijµ
i
k+1|N

dj =
M

∑
l=1

bliµ
l
k+1|N

Backward mixing

x̂0j
k+1|N = �- WeightedSum

i∈[1,M]

(x̂j
k+1|N , x̂i

k+1|N , µ
ij
k+1|N)

P0j
k+1|N = �- WeightedCov

i∈[1,M]

(x̂0j
k+1|N , Pi

k+1|N , x̂i
k+1|N , µ

ij
k+1|N)
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Table 2. Cont.

Mode-matched
smoothing

x̂j
k|N = x̂j

k|k � Cj
k

[
x̂0j

k+1|N � x̂j
k+1|k

]

Pj
k|N = J j

k

(
Pj

k|k + Cj
k

[
Bj

kP0j
k+1|N BjT

k − Pj
k+1|k

]
CjT

k

)
J jT
k

Cj
k = Pj

k|kFjT
k

(
Pj

k+1|k
)−1

Fj
k =

∂
(

gj(x̂j
k|k � δ)� x̂j

k+1|k
)

∂δ

∣∣∣∣∣∣
δ=~0

Bj
k =

∂
((

x̂j
k+1|N � δ

)
� x̂j

k+1|k
)

∂δ

∣∣∣∣∣∣
δ=~0

J j
k =

∂
((

x̂j
k|k �

(
Cj

k

[
x̂0j

k+1|N � x̂j
k+1|k

]
+ δ
))

� x̂j
k|N
)

∂δ

∣∣∣∣∣∣
δ=~0

Smoothed mode
probability

Λj
k|N =

M

∑
i=1

pjiN
(

x̂i
k+1|N ; x̂j

k+1|k, Pj
k+1|k

)

µ
j
k|N =

1
f

Λj
k|Nµ

j
k|k, f is a normalizing factor

Combine
smoothed
estimate

x̂k|N = �- WeightedSum
j∈[1,M]

(x̂k|k, x̂j
k|N , µ

j
k|N)

Pk|N = �- WeightedCov
j∈[1,M]

(x̂k|N , Pj
k|N , x̂j

k|N , µ
j
k|N)

6. Example Application and Performance Discussion

We test the new algorithms in a simulated environment to provide first insights into
their performance. We choose the following setup inspired by classic radar tracking: A
drone flies across known terrain. It has a stereo-camera facing downwards. With the
camera, it detects known landmarks in the terrain. The task is to track the position of
the drone. Since the camera is mounted on the drone, its measurements are in body
coordinates. Hence, it is required to estimate the orientation of the drone to make use of
the measurements. The simulated drone flies a trajectory of two straight lines and two 180◦

curves over four visible landmarks.
The drone has two different flight modes. In the first mode, it flies straight with a

constant velocity. In the second mode, it flies a curve with a constant angular rate.
We model the dynamics of the drone with the state x:

x = (qw
b ~pw ~vw ~ωw)

T , (59)

where qw
b is the rotation quaternion that rotates a world frame vector to body frame, ~pw is

the position in world frame, ~vw is the velocity in world frame, and ~ωw is the angular rate
in world frame. The straight dynamic is modeled as follows:

gs(x, εs) =




qw
b

~pw + (~vw + εs)∆t
~vw + εs
~ωw


, (60)
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where ∆t = 0.05 s is the time difference between time k and k + 1. The constant turn
dynamic is modeled as in [2] with a change for the orientation and angular rate :

gc(x, εc) =




qw
b exp(∆t

2 ~ωw)−1

~pw + (∆tI3×3 + B)~vw
(I3×3 + A)~vw

~ωw + εc


, (61)

where exp(·) forms a quaternion from the given Euler-angle-axis [14] and A, B ∈ R3×3,
as given in [2].

For simplification, we assume that the camera measures the position of the landmark
in body coordinates instead of pixel coordinates. The measurement model is

h(x) = qw
b · ~pw · (qw

b )
−1 (62)

The covariance matrices can be found in Appendix A.

6.1. Results

The performance of seven algorithms is evaluated in the simulation:

1. �-EKF: The EKF on �-manifolds, as presented in [20], on the constant turn model (61).
2. �-EKS: The RTS EKS on �-manifolds, as derived in Section 4, on the constant turn

model (61).
3. (M)-EKS: The same as the �-EKS, but it uses the simplified covariance smoothing

(56). This algorithm uses the �-EKF for filtering but its smoothing step is identical to
the MEKS or the left invariant EKS on quaternions [17].

4. �-IMM: The IMM on �-manifolds, as derived in Section 3.
5. N-IMM: An IMM that handles the manifold state such as a vector state for mixing

purposes. We call this approach naive-mixing: The quaternions are summed up in
parameter space and normalized afterwards (as in [5]). It uses the standard IMM
equation to sum up the covariances. The mode filters of the N-IMM are �-EKFs, since
we want to specifically compare the �-mixing from Section 2 against naive-mixing.

6. �-RTSIMMS: The IMM RTS smoother on �-manifolds, as derived in Section 5.
7. NM-RTSIMMS: An IMM smoother that handles mixing such as the N-IMM and

uses the (M)-EKS for mode-matched smoothing. This IMM basically combines the
approaches in [5] and [17].

The root mean squared error (RMSE) of the position and orientation are used as
performance metrics. The �-operator is used to calculate the quaternion estimate error
(difference as Euler-Angle-Axis). In addition, the consistency measure of [27] is computed;
it states that the estimate is consistent if it resembles the true probability distribution. Hence,
the expectation bias E(x̂ � x) has to be 0 and the expectation of the squared Mahalonobis
distances E

(
||x̂ � x||2P

)
has to equal the DOF of the state. Both values are computed on the

position and orientation, wherefore DOF = 6. The averaged metrics of 100 Monte Carlo
runs are shown in Figure 2.
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Figure 2. RMSE and consistency comparison for aircraft tracking in 100 Monte Carlo runs. The opti-
mal value is 0 for ||E(x̂ � x)|| and 6 for E

(
||x̂ � x||2P

)
(dashed line).
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Both IMM smoother variants caused numerical issues at the computation of the mode-
matched smoothed covariances. Apparently, the subtraction of covariances results in
indefinite matrices. Since the issue arises in both IMM smoothers, it does not appear to be
specific for the changed covariance formula (50). To ensure positive definite covariance
matrices, the eigenvalues of the smoothed matrices are set to a minimal threshold ε > 0.
All metrics of the �-RTSIMMS and NM-RTSIMMS are affected by this regularization.

As expected, the RMSEs and biases of the smoother variants are lower than their
filter counterparts. Remarkably, the single model algorithms perform better than the
multiple model algorithms in some of the metrics. However, the IMM variants deliver
overall more consistent estimates. In the remainder of our discussion, we focus on the
comparison between our three, novel algorithms and their respective state-of-the-art
solutions. The �-EKF metrics are only used to explain different behavior between the
single- and multimodel smoothers.

The �-EKS and (M)-EKS perform equally on the three metrics that concern only the
state, since they only differ in the covariance computation. The (M)-EKS is closer to the
optimal value E

(
||x̂ � x||2P

)
= 6 than the �-EKS, which implies a slightly better consistency

of the covariances. In contrast, the different covariance computation has an effect on the
state for the IMM smoothers, as it influences the model probabilities.

The �-IMM and N-IMM perform identically at the leading digits. Hence, the �-
mixing does not change the computation in the presented example. The IMM smoothers
perform almost identically as well.

This results are unsatisfying since the theoretically justified �-mixing and smoothing
should yield better accuracy and consistency. Therefore, we analyze the effects of the
�-mixing and the changed covariance smoothing equation.

6.2. Discussion: �-Mixing of Gaussians

The error of the naive-mixing is negligible in the presented example. To show this,
we try to quantify the error induced by naive-mixing. We calculate the weighted mean of
two quaternion Gaussian distributions q1, q2 for different angular differences and different
probabilities (see Figure 3a).
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Figure 3. The mean and covariance difference between �- and naive-mixing over the angular
differences of q1 and q2. Reprinted with permission from ref. [22]. Copyright 2020 IEEE.

The difference is in the range of 10−4 rad for angular differences below 0.35 rad
(ca. 20◦), for all probabilities. Since the IMM usually operates at small differences between
the models, the error of the naive-mixing is negligible for the mean.

Similarly, the effect of the �-mixing on the covariance is small (see Figure 3b). Hence,
the two mixing methods differ only for high differences of the mixed quaternions. In the
presented simulation example, the angular differences are small, wherefore the mixing
methods have equal results.

In general, it is unlikely that the quaternion estimates of the IMM filter differ greatly.
The mixing is always performed after the update step. Hence, even big differences of
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the dynamic models are compensated by the update. Likewise, in the IMM smoother,
the mixing is performed on the updated or smoothed estimates.

The �-mixing may perform better for higher differences. To analyze this, �- and naive-
mixing are compared to an optimal solution (see Figure 4). Since no closed form solution
to mix the Gaussians exists, the optimal solution is obtained numerically. Quaternions are
sampled uniformly from the Gaussians to approximate the complete distribution.
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Figure 4. Mean and covariance error of �- and naive-mixing compared to optimal mixing over the
angular differences of q1 and q2. Reprinted with permission from ref. [22]. Copyright 2020 IEEE.

The mean and covariance error of the �-mixing increase with the distance between
the Gaussian means. The approaches are almost equal for small differences between the
quaternions. At higher differences, �- outperforms naive-mixing. Thus, �-mixing is
technically an improvement but its advantage is negligible due to the small differences in
IMM applications.

6.3. Discussion: �-RTS Smoothing

The �-EKS is slightly less consistent than the (M)-EKS. The difference between the
�-EKS and (M)-EKS is the reference transformation of the covariances. Therefore, we
analyze the performance of the linear approximation of the reference transform.

We compare the conducted linear approximation of the reference transform with a
numerically computed optimum, where we distinguish between displaced and centered
transforms (see Figure 5). For further comparison, we add the error of no transformation,
which shows the behavior of the (M)-EKS. The covariance of the Gaussians has been set to
Σ = 0.1I3x3.

The error graphs of the centered and displaced transform clearly differ, which justifies
the distinction of the two transform types. The error of the displaced transform (see
Figure 5b) is, for high differences of the references, several orders of magnitudes higher
than the base covariance. The reason is that wrap-around issues arise, since we approach the
classic singularity of quaternions close to angles of π. Note that closeness depends on the
chosen covariance. With a higher covariance, the wrap-around issues occur earlier. Since
the linear transformation evaluates a single point, the wrap-around is not incorporated.
However, such extreme differences of the references do not usually occur during estimation.
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Figure 5. The covariance error (Schur norm) in logarithmic scale of the �-transform and no transform
compared to numerical optimal transformation over the angular differences of r1 and r2.

The comparison shows that the linear approximation has a smaller error than no
transformation. Thus, regarding a single smoothing step, the �-EKS is more precise than
the (M)-EKS. Apparently, the improvement of a single step does not improve the whole
interval smoothing. To investigate the accumulated effect of the transforms, we plot the
ratio of the covariance determinants before and after the reference transform (see Figure 6).
In the quaternion case, the displaced transform monotonically increases the covariance and
the centered transform reduces it.
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(a) Optimal Transform
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Figure 6. The covariance response in logarithmic scale over the angular differences of r1 and r2.
The covariance response is the ratio of the transformed and base covariance determinants.

In the �-EKS formula, the centered transform is dominant as it encloses the whole
Equation (50). Thus, the �-EKS reduces the covariance marginally in comparison with
the (M)-EKS. Since the covariance is already too small in the simulation, the �-EKS is
slightly less consistent. Otherwise, if the covariances are too high, this effect would
yield more consistent results. Thus, this is neither a clear performance degradation nor
an improvement.

Noticeably, the IMM smoother variants perform almost identically. Since the IMM has
an overall smaller bias than the EKF, the differences between the filtered and smoothed
estimates are smaller. Thus, the reduction of the covariance matrices becomes negligible.
This result coincides with the analysis of Section 6.2, since the �-mixing of covariances is
founded on displaced transforms.

The hypothesis that the bias has a crucial influence can be further substantiated by
adapting the noise of the constant turn model to reduce the bias. This is possible since
the low inconsistent noise biases the estimators towards the dynamic model instead of the
measurements. Thus, the bias can be drastically reduced and the difference in consistency
vanishes using an additive noise on the position of Σ = 10∆t I3x3 (see Figure 7).
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Figure 7. RMSE and consistency comparison of single-model estimators with additional noise on
the position.

6.4. Discussion: Wrap-Up

Overall, using �-mixing with a first-order approximation does not give a performance
boost for the IMM on quaternions. Instead, its strength is to enable a generic IMM on
differentiable �-manifolds. The method encapsulates the manifold properties of the state
so it can be treated as a black box. Therefore, the IMM can be implemented independently
of the used state representation. It does not require any ad hoc solutions to mix the states.

It has been shown that, in the quaternion case, the reference transforms are negligible
if the references are close to each other. The transforms can be dropped to reduce computa-
tional and algorithmic complexity. Thus, we recommend to use the approach of [17] for
quaternion smoothing. For other manifolds, the reference transform may be relevant to
achieve consistent results.

Open source C++ implementations of the generic�-EKS (https://github.com/TomLKoller/
Manifold-RTS-Smoother, accessed on 16 June 2021) and the �-IMM and �-RTSIMMS (https:
//github.com/TomLKoller/Boxplus-IMM, accessed on 16 June 2021) are provided. The im-
plementations use automatic differentiation [28] to calculate all required Jacobians for state
mixing and for the internal �-EKF [29]. They use a generic state representation to adapt to other
system models. Therefore, they can be used without taking care of the heavy math in this paper.
The �-IMM repository also contains the presented simulation example.

7. Conclusions

Three, novel estimation algorithms based on the �-method have been presented in
this work. All algorithms properly handle the manifold structure of �-manifolds such as
quaternions or rotation matrices. Hence, they do not need ad hoc normalization procedures
to preserve manifold structures.

The �-IMM, a first-order correct IMM on �-manifolds, has been derived. We described
methods to calculate the weighted mean and covariance of Gaussian mixtures on �-
manifolds and provided necessary proofs. With these, the �-method is applied to the IMM.

By following the RTS derivation of [26], the new �-EKS has been derived. The �-
EKS uses a different smoothing update of the covariance than published smoothers for
quaternions, but the expected value is calculated identically.

By combining the �-EKS and the �-IMM, a novel IMM smoother on �-manifolds,
�-RTSIMMS, has been derived. To our knowledge, the �-RTSIMMS is the first IMM that
enables smoothing on rotation quaternions and other �-manifolds in hybrid estimation.

All algorithms are evaluated on a simulated aircraft tracking example. The evaluation
shows that the estimation accuracies are not improved compared to state-of-the-art smooth-
ing methods on quaternions and ad hoc normalization procedures. For other manifolds,
a practical advantage may be achieved. The presented algorithms still have high theoretical
value as they can be derived from the basic definitions of the expected value and the
covariance on �-manifolds. Thus, they are justified, generic algorithms.

This paper extended the family of �-algorithms to hybrid estimation and smoothing.
The practical strength of the presented algorithms is their generality. The �-method
encapsulates the manifold properties. No further ad hoc implementations are required to

https://github.com/TomLKoller/Manifold-RTS-Smoother
https://github.com/TomLKoller/Manifold-RTS-Smoother
https://github.com/TomLKoller/Boxplus-IMM
https://github.com/TomLKoller/Boxplus-IMM


Sensors 2021, 21, 4164 18 of 19

perform mixing and smoothing, regardless of the state. Therefore, the algorithms enable the
implementation of a generic library that can handle �-manifold states in hybrid estimation
and smoothing. A first prototype is published alongside this paper.

The presented methods are only first-order correct, which causes linearization errors.
Thus, one may develop higher-order methods or use the unscented transform as approx-
imation, which may improve the consistency of the �-EKS. Presumably, the unscented
transform would not significantly reduce the error, as the error compared to the numerical
solutions was quite low for small distances anyway. Instead, it should be investigated
whether the indefiniteness of the covariance arises from numerical issues or systematic
problems in the formulas, e.g., the approximation pointed out by [12].
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The following abbreviations are used in this manuscript:

IMM Interacting Multiple Model (Filter)
EKF Extended Kalman Filter
EKS Extended Kalman Smoother
RTS Rauch–Tung–Striebel
RTSIMMS Rauch–Tung–Striebel Interacting Multiple Model Smoother
MEKF Multiplicative EKF
MEKS Multiplicative EKS

Appendix A. Covariances

Covariances of dynamic models:

Qs(k) =
( 10 0 0

0 10 0
0 0 10

)
, Qc(k) =

( 0.1 0 0
0 0.1 0
0 0 0.1

)

Covariance of measurement and transition probabilities:

R(k) =
( 1 0 0

0 1 0
0 0 1

)
, ptrans =

(
0.95 0.05
0.05 0.95

)
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