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The current tumor node metastasis (TNM) staging system is inadequate for

identifying high-risk gastric cancer (GC) patients. Using a systematic and

comprehensive-biomarker discovery and validation approach, we attempted

to build a microRNA (miRNA)-recurrence classifier (MRC) to improve the

prognostic prediction of GC. We identified 312 differentially expressed miR-

NAs in 446 GC tissues compared to 45 normal controls by analyzing high-

throughput data from The Cancer Genome Atlas (TCGA). Using a Cox

regression model, we developed an 11-miRNA signature that could success-

fully discriminate high-risk patients in the training set (n = 372; P < 0.0001).

Quantitative real-time polymerase chain reaction-based validation in an

independent clinical cohort (n = 88) of formalin-fixed paraffin-embedded

clinical GC samples showed that MRC-derived high-risk patients succumb

to significantly poor recurrence-free survival in GC patients (P < 0.0001).

Cox and stratification analysis indicated that the prognostic value of this sig-

nature was independent of clinicopathological risk factors. Time-dependent

receiver operating characteristic (ROC) analysis revealed that the area under

the curve of this signature was significantly larger than that of TNM stage in

the TCGA (0.733 vs. 0.589 at 3 years, P = 0.004; 0.802 vs. 0.635 at 5 years,

P = 0.005) and validation cohort (0.835 vs. 0.689 at 3 years, P = 0.003). A

nomogram was constructed for clinical use, which integrated both MRC

and clinical-related variables (depth of invasion, lymph node status and dis-

tance metastasis) and did well in the calibration plots. In conclusion, this

novel miRNA-based signature is superior to currently used clinicopathologi-

cal features for identifying high-risk GC patients. It can be readily translated

into clinical practice with formalin-fixed paraffin-embedded specimens for

specific decision-making applications.

1. Introduction

Gastric cancer (GC) is the fourth most common malig-

nancy and ranks as the second leading cause of cancer

death worldwide (Siegel et al., 2017). Surgical resection

with subsequent adjuvant chemoradiotherapy has been

considered as a potentially curative treatment for

patients with early-stage GC (Bang et al., 2012;
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Cunningham et al., 2006; Macdonald et al., 2001;

Sasako et al., 2011; Stiekema et al., 2015). However,

recurrence occurs in up to 30–40% of patients within

5 years (Aoyama et al., 2011; Bang et al., 2012; Lee

et al., 2012; Sakuramoto et al., 2007) and, in turn, 5-

year overall survival estimates range from 5% to 90%,

depending largely on the stage of disease at presenta-

tion (Aoyama et al., 2011; Bang et al., 2012; Lee et al.,

2012; Sakuramoto et al., 2007). GC is a clinically

heterogeneous disease and it is difficult to accurately

predict outcomes even within the same stage. The abil-

ity to predict the precise prognosis of an individual

patient is critical for the selection of an appropriate

treatment plan and follow-up strategies, whereas the

current staging system for GC has shown insufficient

prediction for prognosis of patients (Choi et al., 2017;

Edge and Compton, 2010; Son et al., 2012). Hence,

the identification of novel markers that could predict

survival and relapse in GC would greatly optimize the

treatment planning and benefit patients.

Recent advancements in transcriptome profiling have

provided compelling evidence of small non-coding

RNA [such as microRNA (miRNA), Piwi-interacting

RNA and small nucleolar RNA] dysregulation in can-

cers, highlighting the potential of these molecules as

diagnostic and prognostic biomarkers (Romano et al.,

2017). miRNAs, in particular, have shown promising

prognostic associations with major cancer outcomes

(Nair et al., 2012). A growing number of studies have

indicated that differentially expressed miRNAs in

tumor tissues are key players in oncogenesis and have

an impact on the prognosis for GC patients (Kogo

et al., 2011; Li et al., 2015; Nishida et al., 2011). Recent

findings on the mechanisms of miRNA-mediated gene

regulation in GC also support the development of

biomarkers for the precise evaluation of cancer progres-

sion (Ishimoto et al., 2016). However, because the lim-

ited number of miRNAs or patients involved, or

different miRNA expression profiling platforms in a

GC study, such studies lack a normalized standard.

The Cancer Genome Atlas (TCGA) provides a foun-

dation for systematic analysis of large-scale miRNA

expression data. Most recently, a comprehensive study

based on the TCGA and other data platforms has suc-

cessfully identified an 8-miRNA signature that signifi-

cantly predicted recurrence-free interval in stage II and

III colorectal cancer (Kandimalla et al., 2018). In the

present study, we employed a large cohort of GC

patients from the TCGA project and identified a novel

miRNA-based signature for predicting recurrence-free

survival (RFS) in patients with GC, followed by vali-

dation of its clinical significance in an independent

clinical cohort. Additionally, we assessed the

prognostic and predictive value of this signature in the

TCGA and validation datasets.

2. Materials and methods

2.1. Candidate miRNA selection and miRNA

signature identification using TCGA data

Data for selected samples of 446 GC patients and 45

normal controls were downloaded from The Cancer

Genome Atlas Cancer Genome (https://portal.gdc.can-

cer.gov). The dataset acquired above contained 1881

noted miRNA expression data. The downloaded clini-

copathological information and follow-up data were

matched with the miRNA expression profiles. The

RFS events included the first recurrence of GC at a

local, regional or distant site, and death from any

cause. Patients without events or death were censored

at the time of last follow-up.

The TCGA GC patients were used as the training

cohort for identifying prognostic miRNAs and building

the miRNA-recurrence classifier (MRC). First, TCGA

miRNA data were log2 transformed and the miRNA

expression levels between non-cancer and cancer were

compared using the criteria: absolute log2 fold-

change > 1, false discovery rate (FDR) < 0.05 and

relatively high expression levels of miRNAs (count per

million > 1). Subsequently, differentially expressed

miRNAs were subjected to univariate Cox proportional

hazards regression analysis. The miRNAs with P < 0.05

were considered as the candidate prognostic miRNAs of

RFS and entered into multivariate Cox proportional

hazards regression. To identify the independent predic-

tors that significantly contributed to RFS, we used the

least value of Akaike information criterion (AIC) with

respect to miRNA selection and the established MRC.

The risk score of each patient was calculated to predict

RFS of GC, with the regression coefficients of multi-

variate Cox regression model being used to weight each

miRNA expression level in the prognostic classifier:

Risk Score ¼
X

i

coefficient ðmiRNAiÞ
� expression ðmiRNAiÞ

Using the optimum cut-off value obtained from X-TILE

plots (X-TILE, version 3.6.1; Yale University School of

Medicine, New Haven, CT, USA), patients were catego-

rized into high-risk and low-risk groups.

2.2. Patient and sample collection

In total, 88 formalin-fixed paraffin-embedded (FFPE)

specimens were collected from GCs patients who
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underwent radical surgery at Qilu Hospital, Shandong

University between 2012 and 2014. All samples were

evaluated by two pathologists in accordance with the

American Joint Committee on Cancer TNM grading

system (7th edition) (https://cancerstaging.org). All

procedures performed in the study involving human

participants were conducted in accordance with the

ethical standards of the Clinical Research Ethics Com-

mittee of Qilu Hospital, Shandong University and the

Declaration of Helsinki. The experiments were under-

taken with the understanding and written consent of

each subject.

2.3. RNA isolation, cDNA synthesis and

quantitative real-time polymerase chain reaction

Total RNA extraction from 10-lm thick FFPE speci-

mens was performed using miRNA isolation Kits (Bio-

teke, Beijing, China). All RNA manipulations were

carried out under RNase-free conditions and cDNA

was synthesized using miRNA-specific Bugle-Loop pri-

mers (Ribobio, Guangzhou, China) and the M-MLV

RT kit in accordance with the manufacturer’s recom-

mendations (Invitrogen, Carlsbad, CA, USA). miRNA

expression was assessed by a quantitative real-time

polymerase chain reaction using ABI PRISM 7500

Sequence Detection System (Applied Biosystems, Fos-

ter City, CA, USA). The relative levels of miRNA

expression were determined using the 2�DCT method

with the U6 small nuclear RNA (U6) as the reference

gene to normalize the data. The normalized values were

further log2 transformed. All primers for miRNAs used

in this part of the study were purchased from Ribobio.

2.4. Statistical analysis

PRISM, version 7.0 (GraphPad Software Inc., San Diego,

CA, USA) and R, version 3.4.0 (http://www.Rproject.

org) were used to analyze all the data. P < 0.05 was con-

sidered statistically significant. Differential expression

analysis of miRNAs between non-cancer and cancer

groups was performed using the edgeR package of R

(Robinson et al., 2010). In survival analyses, we used

the Kaplan–Meier method to draw survival curves,

which were compared by log-rank tests. A Cox propor-

tional hazard regression model was applied for the uni-

variate analysis and multivariate analysis of prognostic

factors. The prognostic or predictive accuracy of each

variable was investigated using time-dependent receiver

operating characteristic (ROC) analysis in the sur-

vivalROC package and the bootstrap method was

applied to test the significance of differences between the

ROC curves. The regression coefficients in multivariable

Cox regression model were used to generate the nomo-

gram. A calibration plot was used to explore the agree-

ment of nomogram between predictions and

observations. Nomogram and calibration plot were per-

formed using the rms package of R software.

3. Results

3.1. Identification of GC-specific miRNAs by

analyzing the TCGA dataset

Based on the miRNA expression data from the TCGA

dataset, we compared miRNA expression profiles

between 446 GC and normal 45 control groups and

found 312 miRNAs with an absolute fold-change dif-

ferences of 2 and a FDR < 0.05 (Table S1). These sig-

nificantly differentially expressed miRNAs were

considered as candidate prognostic biomarkers for GC

patients, among which 260 miRNAs were identified as

upregulated and 52 as downregulated in GC compared

to normal control (Fig. S1).

3.2. Identification of the prognostic miRNAs from

the training cohort

To single out the prognostic miRNAs, 312 GC-specific

miRNAs were initially subjected to univariate Cox pro-

portional hazards regression analysis in 372 patients for

whom complete miRNA data, clinicopathological char-

acteristics and follow-up information were available. In

total, 24 miRNAs were found to be significantly associ-

ated with the GC patient RFS (P < 0.05) (Table S2) and

were subsequently entered into a multivariate Cox regres-

sion analysis. For the purpose of identifying the best pre-

dictors that significantly contributed to patient RFS, we

used the lowest value of the Akaike information criterion

for variable selection and built a prognostic classifier,

which consisted of 11 miRNAs (miR-365a, miR-145,

miR-181b, miR-549a, miR-708, miR-7-3, miR-378i, miR-

466, miR-3923, miR-4793 and miR-3144). Among these

miRNAs, seven (miR-145, miR-549a, miR-7-3, miR-378i,

miR-466, miR-4793 and miR-3144) with a negative coef-

ficient were protective factors as a result of the close asso-

ciation between their high expression and a longer patient

RFS, whereas the remaining four (miR-365a, miR-181b,

miR-708 and miR-3923) were risk factors.

3.3. Construction of a miRNA prognostic risk

model and its predictability assessment in the

training cohort

Using the regression coefficients of multivariate Cox

regression model to weight each miRNA expression

2074 Molecular Oncology 12 (2018) 2072–2084 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

11-miRNA signature to predict GC prognosis Y. Yang et al.

https://cancerstaging.org
http://www.Rproject.org
http://www.Rproject.org


level in the MRC, we developed a risk score formula

to predict patient survival: risk score = miR-365a 9

0.15853 + miR-145 9 (�0.14044) + miR-181b 9 0.22993

+ miR-549a 9 (�0.15682) + miR-708 9 0.13047 + miR-

7-3 9 (�0.1562) + miR-378i 9 (�0.37045) + miR-466

9 (�0.23334) + miR-3923 9 0.25761 + miR-4793 9

(�0.6004 6) + miR-3144 9 (�0.25687). We then calcu-

lated the risk scores for all GC patients using this for-

mula. Using X-TILE plots to generate the optimum cut-

off value (Fig. S2A), we included those patients with a

risk score of 1.30 or lower in the group of patients at

low risk of disease recurrence (low-risk group) and also

those with a risk score higher than 1.30 in the high-risk

group. Patients with a higher risk score generally had

poorer survival than those with lower risk score and the

distribution of risk scores and survival status is shown

in Fig. 1A. Kaplan–Meier survival analysis demon-

strated that patients with high-risk scores had a shorter

RFS than those with low-risk scores (log-rank test,

P < 0.001) (Fig. 1B). Figure 1C shows the predictive

potential of MRC using time-dependent ROC curves.

The area under the ROC curve (AUC) of the prognostic

model for RFS was 0.733 at 3 years and 0.802 at

5 years. In the univariate Cox regression model of

RFS, the high-risk group showed a 2.492-fold increased

risk of recurrence [95% confidence interval (CI) 1.867–
3.326, P = 5.78 9 10–10] compared to the low-risk

group (Table 1).

3.4. Validation of the miRNA classifier for RFS

prediction in the validation cohort

To determine whether the MRC derived from the

TCGA cohort was robust, we measured its perfor-

mance in an independent validation cohort, which

comprised 88 FFPE tissues from GC patients. We

examined the expression levels of all 11 miRNAs in

GC tissues and constructed a prognostic classifier

using a Cox proportional hazard model. Based upon

the Cox-model derived risk scores, patients in the vali-

dation cohort were dichotomized into low and high-

risk groups, using the X-TILE derived cut-off threshold

(Fig. S2B). In line with the results from the TCGA

cohort, more patients with recurrence fell into the

high-risk group (Fig. 1D), in which the RFS was

shorter than that in low-risk group (Fig. 1E). Further-

more, the MRC achieved an AUC of 0.835, which was

clinically interesting (Fig. 1F).

Fig. 1. Risk score by the 11-miRNA classifier, time-dependent ROC curves and Kaplan–Meier survival in the training set (A–C) and validation

set (D–F).
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3.5. Prognostic value of the miRNA classifier

To investigate whether the prognostic value of MRC

was independent of other clinicopathological variables,

the univariable and multivariable Cox regression anal-

yses were initially performed in the TCGA cohort. We

found that risk score was significantly associated with

RFS even when adjusted by other clinical factors

(Table 1). We also observed that clinical stages and

clinicopathologic classifications (T, N and M) were sig-

nificant in Cox regression analyses. Therefore, stratifi-

cation analysis was introduced to determine the

independence of MRC according to clinical stages and

T, N and M classifications. As shown in Fig. 2, the

high-risk survival curves were below the low-risk

curves in all subgroups, including TNM stage (Stage I

and II, Fig. 2A; Stage III and IV, Fig. 2B); T stage

(T1 and T2, Fig. 2C; T3 and T4, Fig. 2D); lymph

node status (LN�, Fig. 2E; LN+, Fig. 2F); and M

stage (M�, Fig. 2G; M+, Fig. 2H). A log-rank test

showed that MRC was still a clinically and statistically

significant prognostic signature in all subgroups except

for distant metastasis group (M+ group). For the M+
subgroup, the difference was marginal (P = 0.0694).

This was probably because the sample size was too

small (only 21 patients) to draw any firm conclusions.

Stratification analysis yielded similar results in the vali-

dation cohort (Fig. 3). We also performed ROC analy-

sis to compare the prognostic accuracy of MRC with

tumor stage. Figure 4A,B shows that the 11-miRNA

risk score model possessed a stronger predictive power

than TNM stage for the prognostic evaluation of GC

patients in the TCGA cohort (0.733 vs. 0.589, 95%

CI = 0.613–0.853 vs. 0.514–0.664 at 3 years; 0.802 vs.

0.635, 95% CI = 0.652–0.952 vs. 0.548–0.722 at

5 years; P = 0.005). When the MRC was combined

with the TNM stage, no significant difference was

found between the combined model and the MRC

(P > 0.05). Subsequent analysis in the FFPE tissues

produced similar results (Fig. 4C). The results from

the validation dataset further confirmed the reliable

predictive ability of MRC.

Table 1. Variables associated with RFS according to the Cox proportional hazards regression model.

Variable

Univariable analysis Multivariable analysis

Hazard ratio 95% CI P value Hazard ratio 95% CI P value

Age 1.01 0.997–1.024 0.148

Sex

Male vs. female 1.272 0.935–1.731 0.126

Helicobacter pylori infection

Yes vs. no 0.435 0.175–1.079 0.072

Histologic grade

G1 Ref – –

G2 0.5742 0.180–1.838 0.350

G3 0.8426 0.268–2.652 0.770

Stage

Stage I Ref – –

Stage II 1.383 0.784–2.441 0.263

Stage III 2.005 1.180–3.408 0.010

Stage IV 3.447 1.839–6.462 0.000

T

T1 Ref – – Ref – –

T2 4.014 1.240–13.00 0.020 2.869 0.880–9.349 0.080

T3 4.173 1.322–13.18 0.015 2.378 0.740–7.648 0.146

T4 4.055 1.265–13.00 0.018 2.107 0.643–6.900 0.218

N

N0 Ref – – Ref – –

N1 1.86 1.237–2.797 0.003 1.593 1.049–2.421 0.029

N2 1.739 1.115–2.711 0.015 1.586 1.009–2.494 0.046

N3 2.676 1.769–4.047 0.000 2.114 1.371–3.261 0.001

M

M1 vs. M0 1.968 1.158–3.344 0.012 2.048 1.174–3.573 0.012

MRC

High vs. low 2.492 1.867–3.326 0.000 2.327 1.731–3.129 0.000
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Fig. 2. Kaplan–Meier survival analysis according to the 11-miRNA classifier stratified by clinicopathological risk factors in the TCGA cohort.

(A, B) TNM stage. (C, D) T stage. (E, F) lymph node status. (G, H) M stage. P values were calculated using the log-rank test.
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3.6. Construction of nomogram based on the

miRNA classifier

To provide the clinician with a quantitative method for

predicting the individual probability of cancer recurrence,

we built a nomogram that integrated the MRC and clini-

copathological independent risk factors for RFS

(Fig. 5A). The bias-corrected line in the calibration plot

was found to be closer to the ideal curve (the 45° line),

which indicated good agreement between prediction and

observation (Fig. 5B). The predictive accuracy of the

nomogram was calculated via ROC analysis: the AUC of

nomogram was 0.754, which implied that the discrimina-

tion performance was favorable (Fig. 5C).

Fig. 3. Kaplan–Meier survival analysis according to the 11-miRNA classifier stratified by clinicopathological risk factors in the validation

cohort. (A, B) TNM stage. (C, D) T stage. (E, F) lymph node status.
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4. Discussion

An effective molecular-based method for predicting

prognosis in cancer patients is urgently needed to opti-

mize tailored treatment in the era of precision medi-

cine. In the present study, we identified an 11-miRNA

signature that is associated with tumor recurrence in

GC patients using high-throughput data from the

TCGA database. We confirmed these findings in an

independent clinical cohort of GC patients. Patients

with a high-risk score for this 11-miRNA signature

had increased tumor recurrence, even after stratifying

patients by clinicopathological risk factors.

Previous studies on miRNA expression profiling have

consistently revealed that the miRNA-based signature is

a potential predictor for progression or relapse in

patients with various types of cancers, including GC (Li

et al., 2010; Ueda et al., 2010). Moreover, the TCGA

has profiled and analyzed large numbers of human can-

cers to identify molecular aberrations at the DNA,

RNA, proteomic and epigenetic levels (Weinstein et al.,

2013). Recently, Sohn et al. (2017) developed a model

based on four molecular subtypes of GC from the

TCGA project to predict survival and adjuvant

chemotherapy outcomes. However, to date, the miRNA

expression signatures from the TCGA database with

respect to the survival prognosis of GC have not been

investigated systematically. The miRNA predictive sig-

nature for survival meets some crucial standards: (i) its

expression must be specific in cancer and non-cancer;

(ii) it is correlated with patient survival; and (iii) it has a

synergized effect in the survival prognosis. Based on the

genome-wide discovery of GC-specific miRNAs in the

TCGA dataset, we identified 11 miRNAs that were

strongly related to RFS in GC patients. In agreement

with our findings, similar studies have already been car-

ried out for the identification of prognostic miRNA sig-

natures from the TCGA in other types of cancers,

including bladder cancer, glioblastoma, colon cancer,

etc. (Gonzalez-Vallinas et al., 2018; Hermansen et al.,

2017; Liu et al., 2017a; Wong et al., 2016; Xu et al.,

2016; Zhou et al., 2015).

Among the identified miRNAs in the present study,

we found that four miRNAs, including miR-365a,

miR-181b-1, miR-708 and miR-3923, were risk factors,

whereas the other seven, including miR-145, miR-

549a, miR-7-3, miR-378i, miR-466, miR-4793 and

miR-3144, were protective factors. High levels of risk

factors and low levels of protective factors were inde-

pendent negative prognostic factors according to our

multivariate analysis. These results are consistent with

previous research showing that miR-181b was involved

in transforming growth factor beta-induced epithelial-

to-mesenchymal transition and GC metastasis (Zhou

et al., 2016). Considering protective factors, we noted

that miR-145 could inhibit the malignant phenotypes

and suppress metastasis of GC via different molecular

mechanisms (Gao et al., 2013; Lei et al., 2017; Tong

et al., 2018; Xing et al., 2015; Xue et al., 2016; Zheng

et al., 2013). In another study, miR-7-3 was confirmed

to be an independent prognostic indicator for stomach

adenocarcinoma (Huo, 2017). Two miRNAs, miR-466

and miR-3144, have been indicated as tumor suppres-

sors in other types of cancers (Colden et al., 2017; Lin

Fig. 4. Time-dependent ROC curves to compare the prognostic accuracy of the 11-miRNA classifier with tumor stage in the training cohort

(A, B) and validation cohort (C).
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et al., 2015; Tong et al., 2018), although there are no

data available regarding their roles in GC. Other miR-

NAs, miR-365a, miR-3923, miR-549a, miR-378i and

miR-4793, are also reported for the first time in GC in

the present study. Although it appears that miR-708

as a risk factor was inconsistent with previous studies

reporting its anti-oncogenic role in GC (Li et al.,

2018), increased miR-708 expression and its associa-

tion with poor survival in lung adenocarcinoma has

been demonstrated by other researchers (Jang et al.,

2012). Thus, further studies are required to compre-

hensively assess the exact contribution of these miR-

NAs in tumor progression.

The combined analysis of a panel of multiple fac-

tors, rather than a single biomarker, will have more

power to provide clinically useful information. An

ideal prognostic classifier for GC risk prediction

should be robust and potentially feasible in FFPE

samples that would overcome barriers of sample col-

lection and storage. A validation from FFPE samples

was performed and the combined index of the 11

miRNAs showed a significant association with sur-

vival in GC patients. The results of multivariate anal-

ysis showed that the 11-miRNA signature is

independent of traditional clinical risk factors. When

the stratification analysis was performed, we found

Fig. 5. The nomogram to predict probability of RFS for CRC patients in the training set. (A) The nomogram for predicting the proportion of

patients with RFS. (B) The calibration plot of the nomogram for the probability of RFS at 3 years. (C) Time-dependent ROC based on the

nomogram for recurrence probability. AUC = 0.754. Nomogram-predicted probability of recurrence is plotted on the x-axis and observed

recurrence is plotted on the y-axis. The red line represents our nomogram and the vertical bars represent the 95% CI.
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the 11-miRNA signature could discriminate patients

at high-risk from those at low-risk within all sub-

groups. Time-independent ROC analysis showed that

our 11-miRNA signature was superior to TNM stage

for prognostic evaluation. To improve the ability of

prognostic prediction, we combined the 11-miRNA

signature with TNM stage. However, there was no

significant difference between the combined model

and our miRNA signature, indicating that our 11-

miRNA signature could yield reliable predictive abil-

ity by itself.

It has been reported that miRNAs are sufficiently

stable to be detected in both FFPE and blood samples

(Hall et al., 2012; Mitchell et al., 2008). Circulating

miRNAs might enable successful close monitoring for

early signs of cancer relapse because serum molecules

are easily detectable and are also acceptable for

patients. Previously, a 7-miRNA classifier within

plasma was reported to predict tumor recurrence in

stage II and III GC (Liu et al., 2017b); however, our

miRNA classifier illustrated its ability to predict recur-

rence in all stages of GC and performed well.

Although we did not have access to blood specimens,

it is very likely that our miRNA signatures may even-

tually be translated into a blood-based surveillance

assay.

Prognostic nomograms comprise the visualization

of statistical models specifically developed to opti-

mize the predictive accuracy of individuals, enabling

a more individualized prediction of outcome based

on a combination of variables (Balachandran et al.,

2015; Iasonos et al., 2008; Shariat et al., 2008).

Regarding GC, some models based on clinical-asso-

ciated factors, such as age, tumor size, tumor inva-

sion depth and lymph node involvement, were

demonstrated to be useful for prognosis prediction

in patients with GC (Hirabayashi et al., 2014; Kim

et al., 2015). However, an optimal approach that

combines multiple miRNA biomarkers and clinical

risk factors as a predictive model has yet to be

developed. In the present study, we built a nomo-

gram that integrated the miRNA-based classifier and

clinicopathological independent risk factors for RFS.

The nomogram performed well in the calibration

plot, which indicated good agreement between pre-

diction and observation. The ROC for the prediction

nomogram was 0.754, which implied that the dis-

crimination performance was favorable. Therefore,

our nomogram may be an important tool for risk

stratification and prognosis prediction in GC

patients, aiding in individualized treatment decisions

and postoperative counseling, and ultimately con-

tributing to improved survival.

5. Conclusions

In conclusion, the present study revealed a novel,

robust 11-miRNA classifier for tumor recurrence pre-

diction in patients with GC. This approach can be

readily deployed in clinical practice with FFPE sam-

ples and achieved superior predictive accuracy com-

pared to currently used clinicopathological risk

factors. Moreover, the 11-miRNA classifier was an

independent prognostic factor for, and had a better

prognostic ability than, clinical risk factors. Also, these

findings should be validated in large-scale multicenter

clinical trials.
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